
Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

535

CORO : GRAPH-BASED AUTOMATIC INTRUSION

DETECTION SYSTEM SIGNATURE GENERATOR FOR E-

VOTING PROTECTION
1
SUPENO DJANALI,

2
BASKORO ADI P.,

3
HUDAN STUDIAWAN,

4
RADITYO ANGGORO,

5
HENNING T.C

Department of Informatics, Faculty of Information Technology, Institut Teknologi Sepuluh Nopember

Email :
1
supeno@its.ac.id,

2
baskoro@if.its.ac.id,

3
hudan@if.its.ac.id,

4
onggo@if.its.ac.id,

5
henning@if.its.ac.id

ABSTRACT

Attacks on computer network are increasing everyday and most institution use Intrusion Detection

System (IDS) to cope with that and most used IDS is the signature-based IDS, which need a database of

rules when looking for an malicious packet. Yet there are two problems with this kind of IDS, first, not all

people are able to create a signature or rule, therefore they need to wait for updates if they want to renew

their database. Secondly, zero-day attack, attack that has never been happened before, is the main weakness

of this IDS due to absence of its signature.

We proposed Coro, an IDS signature generator that create an IDS rules based on honeypot log data.

Coro uses graph clustering that make it be able to cluster data without the need to recompute the centroid.

Coro focuses on HTTP, as it will be used to harden our e-voting system, but it is possible to be extended to

other protocols.

Our experiment showed that Coro was able to cluster around 5000 request in a short time and our graph

clustering was a big help to that. Moreover, two threshold value used and data preprocessing in that

experiment affected amount and quality of the generated rules.

Keyword : IDS, Rules Generation, Graph Clustering, E-Voting, Graph Mining

1. INTRODUCTION

Intrusion Detection System (IDS) is something

that can be used to protect computer network by

alerting administrator when an attack has been

occurred. With that alert, administrator can take

some actions to prevent the attack from going

further. Based on how they detect intrusion, there

are two kinds of IDS, Anomaly-based IDS and

Signature-based IDS.

Signature-based IDS works by matching

incoming/outgoing data with a set of rules/pattern.

If any of them are matched with the rules, then it

can be concluded that an attack has happened. This

method is very effective against well-known

attacks, since popular attack string must have some

pattern. Most of IDS for production use this, such

as Snort, Prelude, and Suricata [1], [2], [3].

Weakness of signature-based IDS is it cannot

detect new kind of attack, which usually called

Zero-Day Attack. Because at its first appearance

nobody know the pattern of the attack, signature-

based IDS will not be able to catch them. This type

of IDS is heavily depend on the collection of

signature/rules, yet making a rule is not a simple

thing that everyone can do. Signature-based IDS

without rules is useless.

To overcome that weakness, anomaly-based

IDS’s were made. This kind of IDS works by the

principle that behavior of normal users is repetitive

action and have some statistical pattern. For

example, normal people could forget their password

sometimes. But if a system logs wrong passwords

were inserted many times, more than usual, it might

be an attack. Main method of this type is to find the

anomaly from the normal behavior. That enables

them to detect unknown attack. Furthermore,

human intervention can be limited. The system

should be able to learn by themselves. But there is

several problem that make this system is hardly

implemented [4], [5].

Anomaly-based IDS needs to know what

normal behavior looks like, but it is really hard to

know what normal behavior is. From the previous

example, what if there is a person who is really

forgetful. He enters the wrong password more than

usual, should it be considered as an attack?

Another limitation of anomaly-based IDS is it

usually takes more processing power than the

signature-based. It could come from data

preprocessing or main statistical computation.

Preprocessing data in anomaly-based IDS is not

as simple as in signature-based IDS, which only

arrange incoming packet in correct order, but it

needs to count some statistical features i.e. mean

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

536

and variance, and turn the packet into a correct

form before inserted into the algorithm. Therefore,

signature-based IDS is still preferred today.

In this paper, we develop a system named Coro

to automatically generate IDS rules from HTTP

logs that was taken from a honeypot. Honeypot has

great amount of access log, but it is really

disorganized and each data seems unrelated. But

actually, each attacker's request is related, for

example when they use same tools to attack the

server. We sought that every related attack can be

concluded as a single rule for IDS, thus make it

easier to create a new IDS rule. Furthermore, if the

attack was a zero-day attack, then it would be very

beneficial for us, since we could know a zero-day

attack as soon as possible. In the end, the system

will be used for hardening our electronic voting

system which is still in progress.

The rest of this paper is structured as follows,

section II is talk about related works in signature

generation. Our methodologies will be explained in

detail in section III. And then we conducted

experiments to see the result of our proposed

method in section IV. Last but not least, all of these

works come into conclusion in section V.

2. RELATED WORKS

Nebula [6] is a signature generator for Snort. It

works by utilizing honeypot log data to create a

signature and because of that it considers all of the

input are malicious. The authors claimed that

Nebula was compatible with all honeypots which

had previously built, but mostly used with Argos

[7] and honeytrap [8].

The signature generator uses a distance graph to

cluster similar request. And its strength come from

its ability to do real time generator, since Nebula

does not need to rebuild the cluster every time a

request come, its graph can be recompute in a

second. From each cluster, Nebula will create

signatures by using generalized suffix tree.

Nebula was released as an open source project

and last updated in 2013. From our experiment,

Nebula did not work well if the data is too small.

Moreover, Nebula failed to generate any signature

from requests had came from Glastopf[9] and

HoneyD[10].

Honeycomb [11] works like Nebula. It uses

honeypot as the source data to create a signature.

The main difference between them is the generation

algorithm and supported honeypot. Honeycomb

only compatible with HoneyD that makes it could

get less data than Nebula. Ukkonen's algorithm for

finding longest common substring (LCS) is used by

honeycomb to search for pattern similarity in a

clustered data.

In contrast to Nebula, Honeycomb clusters

incoming data based on traffic flow. Every packet

comes from same IP address or similar packet

comes to same port is clustered. But it did not

consider if there are similar packet with same

protocol but with different port address. After the

clustering process finishes, LCS algorithm will

harvest the signature from available clusters, and

make it into Pseudo-Snort or BroIDS[12] format.

Unlike Nebula which need a honeypot to be its

source of data, Anagram [13], which is a further

development of PAYLError! Reference source

not found., is actually an anomaly-based intrusion

detection system with an additional feature which is

signature generation. N-Gram is used by Anagram

to detect malicious packet. In a simple way,

anagram compute high order 3-to-9-gram of known

benign packet then save them with Bloom Filter to

increase space efficiency. Beside computing n-gram

from benign packet, Anagram also find n-gram

value of Snort signatures and known viruses.

When data come into the system, anagram will

compute its n-gram again. Its core hypothesis is any

new exploit contains a portion of data that has

never been seen anywhere. Thus if any new n-

gram, which does not exist in its previous benign n-

gram database, then those packet are considered

malicious. Besides that, the packet is also checked

against known malicious n-gram (created from

Snort signatures and known viruses).

Its signature generation feature makes use of

detected malicious packet. Those packets have

related n-gram then from the n-gram Anagram

creates the signature. Figure 1 shows sample

signature of an attack generated by Anagram.

Vollmer, et.al. [15] tried to make another

autonomous rule creation for IDS and just like

Anagram it does not need honeypot as its source.

Because the author assumed that the input traffic is

already detected as malicious, but it did not

mention anything about using honeypot. So it needs

separate detection mechanism to distinguish benign

and malicious traffic.

Vollmer's method only supports ICMP traffic to

be analyzed and uses genetic algorithm to create a

signature. Moreover, it only considers ICMP header

information, not the payload, which makes it more

suitable in an attack which plays with number of

traffic such as DDoS, i.e. ICMP flood. Besides,

most state of the art attacks do not utilize ICMP

anymore; they would rather exploit another

protocol weaknesses or application vulnerabilities.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

537

3. METHODOLOGIES

Our proposed method works like Nebula and

Honeycomb. Coro is specially built for HTTP,

considering that it is common used in daily

activities and our e-voting system will use it, so a

HTTP-based honeypot is needed. We used our own

honeypot not Glastopf or other HTTP-based

honeypot because our experiment showed that

either their log data are hard to be processed later or

their system were not too attractive for attacker,

thus preventing us from getting more realistic data.

A slight improvement has been made to our

honeypot and will be written on the following

subsection. Next subsections talks about our graph

clustering method and the rules generation method

respectively.

3.1. Honeypot

Our honeypot are based on the previous work

[16] with small modification on what data should

be saved. This honeypot works almost like

Glastopf, but it was specially designed to attract

more human attacker. Their main difference is web

pages shown to the users, Glastopf make a web

page from a collection of error string to fool

hacking tools, while our honeypot use a seemingly

dynamic usable web page. It imitates a institution

news website, so any human attacker would think

that it is a real website, not a honeypot. Our

experiment showed that this system could get more

data than Glastopf in a same time period.

Somehow, when the experiments were running,

we saw that some people used both query string and

POST data, regardless to their HTTP method. Thus

both query string and POST data must be saved

individually, because they have important

information. Then we put this honeypot on a public

IP address among other existing website in our

department for six weeks to collect data. From that

experiment we successfully collect about 42,435

requests.

3.2. Graph Clustering

Honeypot log data are various; it could be hard

to find a similar string pattern. So we need

clustering to gather related request then string

patterns will be searched from those resulting

clusters. We store the log data in a graph G = { V, E

}, where V is a set of vertices and E is a set of edges

connecting the vertices. Each vertex� ∈ �denotes

an incoming request which has several attributes

������,
��,

���������, ��������, ������, �������.
Graph clustering was chosen due to its ability to

compute cluster membership of new data without

having to recomputed the centroid, thus make the

signature generator able to work in real time. Every

time a HTTP request come into honeypot and

logged, Coro periodically take those requests and

make them as vertices V of the graph G. But

requests with no query string or POST data and

shorter than then character are omitted, because the

request URI is too short to be calculated later.

Before that, the requests are preprocessed to ensure

no unnecessary characters are included.

After the vertex is created, by using Levenshtein

algorithm that request is compared to the existing

vertices to find how similar that request to the

other. Since there are two parameter that we use to

compute the distance, query string and POST data,

whilst our edge must have single value then

Euclidian distance is used. So the formula to find

distance between two request can be written as

formula (1) :

� � ������ . "�, �# . "�$% & ����� . '�, �# . '�$%
… (1)

Where w denotes weight of edge, VN and VE is

new and existing vertex respectively. QS is Query

String attribute of the vertex and PB is Post Body

attribute.

From the obtained distance, similarity between

two requests can be estimated. Two vertex will be

connected if their distance is smaller than

Figure 1. Sample Signatures Generated By Anagram With Different N Values

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

538

predetermined threshold value TEW or smaller than

previous smallest distance of the vertex and the

calculated value weight becomes weight of edge e

that connects vnew and vexisting. Let's say there is a

new vertex vN which has distance of 4, 7, 4 to other

three existing vertices v1, v2, v3 respectively and TEW

for connecting vertices is 5, then fourth existing

vertex v4 has distance of 3 with vN, therefore

existing connection among the vN, v1, and v3 will be

broken, and replaced with an edge between the vN

and v4. Illustration of this story is described on

Figure 2.

Resulting graph might consist of more than one

fully separated subgraphs	� ∈). Different from

tree, it is hard to determine which node/vertex is the

root node of the subgraph, as starting point when

traversing the graph. Therefore to find those

subgraph, each vertex v has attribute isRoot with

value of true or false. The isRoot label is used for

determining where the center of the sub graph is.

Thus can be used to find how many sub graph are

there. Every time a new vertex is connected to

another, this label is set to false.

Another attribute given to the vertices is traced.

This attribute is needed for marking whether the

vertex has been visited or not when the traversal

process is running. New vertex is always marked as

false and Visited vertex is marked as true and will

not be traversed again. This can eliminate

probability of infinite looping occurrence, since a

graph might contain a circular connection.

3.3. IDS Rules Generation

Once requests clustered, the graph G is pruned

by minimum spanning tree algorithm to avoid too

many recursive calls while traversing. Several sub

graphs S will be analyzed then each sub graph

� ∈ � is to generate as an IDS rule. The process of

generating IDS rules from the subgraphs is as

followed. First, each root vertex is searched then

each subgraph s of that root vertex will be

traversed. While traversing the graph G, each

traversed vertex is marked as 'visited'. Because our

algorithm works by visiting a vertex then all of its

neighbors, if we do not prevent a visited vertex

from being visited again, there will be an infinite

loop.

When visiting a vertex, we take either the

request URI or POST data as a string. Each string is

stored inside an array which will be used to find the

longest common substring among those strings.

From the longest common substring found, a

signature of an HTTP attack is formed and

formatted in Snort rules format. Pseudo codes of

the graph clustering and rules generation are written

on Figure 3 and Figure 4. Note that there is another

threshold TV, which is minimum number of vertices

n = |V| in a sub graph s. If n does not exceed TV,

then there is no need for that sub graph s to be

generated as a rule. These steps are repeated in a

certain time period. Each newly arrived data will be

directly added to the existing graph. Then the rules

generation process is repeated for each sub graph.

4. EXPERIMENTAL RESULTS

4.1. Getting Data into Honeypot

Honeypot plays important roles in our system

and in order to works well, luring more attacker to

the honeypot is important. We placed our honeypot

among other public server in our department. We

made a default virtual host in our two web servers

and used reverse proxy to redirect incoming

requests to the honeypot. This was done because we

had seen that some attacker tend to scan the server

for vulnerable websites or web pages. Few virtual

Figure 2. Illustration Of Coro's Graph Clustering

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

539

hosts in those servers do not exist anymore, yet the

domain is still active and pointed to that servers.

Making incoming requests to that domain will be

redirected to the default virtual host. Moreover, all

of those domains are not in use by neither faculty

members nor students that make access to them can

be considered as malicious. Architecture of the

honeypot and web servers is shown on Figure 6.

Function AddRequest()
{
 preProcessed(query_string)

 if query_string.length < 10
 return

 new_vertex = Graph.AddVertex(id, URL, query_string, post_data, is_root,
traced)
 foreach vertex in Graph
 if vertex == new_vertex
 continue

 distance = SquareRoot(Lev(vertex.query_string,
new_vertex.query_string)2 + Lev(vertex.post_data,
new_vertex.post_data)2)

 if distance <TEW
 threshold = distance
 selected_vertices.add(new_vertex)
 new_vertex.is_root = False
 else if distance == TEW
 selected_vertices.add(new_vertex)
 new_vertex.is_root = False

 foreach vertex in selected_vertices
 Graph.AddEdge(new_vertex, vertex, distance)
}

Figure 3. Pseudocode Of Adding A Request To Graph

Function TraverseVertex(str_seq, vertex)
{
 foreach v in vertex.neighbors
 if v has not been visited
 str_seq.add(v.query_string)
 v.visited = True
 TraverseVertex(str_seq, v)
}

Function TraverseGraph()
{
 root_vertices = Graph.FindVertex(is_root = True)

 str_seq = String[][]
 count = 0

 foreach root_vertex in root_vertices:
 if root_vertex has not been visited
 str_seq[count].add(root_vertex.query_string)
 root_vertex.visited = True
 TraverseVertex(str_seq[count], root_vertex)
 if str_seq[count].length > 1 and vertices_in_subgraph > TV
 GenerateRule(str_seq[count])
 count = count + 1

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

540

}

Figure 4. Pseudocode Of Graph Traversal And Rules Generation

We run the honeypot for 6 weeks and was able

to get 42,435 requests. The data is divided based on

the HTTP method, POST, GET, or other method

and distribution of requests each day. Statistic of

those data is shown on Table 1, while chart of

amount of request is shown on Figure 5.

Table 1. Statistic Of Incoming Data

Request Method Occurrence

GET 35,818

POST 6,432

HEAD 94

OPTION 39

Other 52

4.2. Generating Rules

We only consider requests with any query string

or post data because if the request does not have

them, the attacker must have used a brute force

directory listing attack which is not too important

for the rule generator. That's left us with 7,964 from

42,435 requests which denoted as valid requests. It

means most of the attacks are directory brute force

or looking for sensitive files. But this should be

enough for conducting rules generation experiment.

Figure 6. Honeypot Architecture

Figure 5. Request Distribution Chart

0

2000

4000

6000

8000

10000

12000

14000

Distribution of Requests

Date

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

541

We tested the program six times with different

options. In the first three experiments we used all of

7,964 requests to see effectiveness of our method,

but these experiments used different kind of

requests. First experiment used raw data in which

the requests are still URL encoded string, while the

second and third experiment used URL decoded

(unquote) string and URL decoded+removing

unneeded character (clean), i.e. '/id=', respectively.

As shown on Table 2, each experiment resulted

different amount of clustered requests due to

preprocessing before clustering. Furthermore,

amount of sub graphs created were different too,

yet the amount of rules created were not too

different. If we look at Table 3, rules created by

these three experiments are similar, but the

preprocessed one produced better and shorter rules.

Time needed to cluster and generate rules are

shown on , in which just URL decoding can speed

up processing time and removing extra characters

apparently put additional burden to the system.

In the second three experiments, we did not

cluster all of valid requests at once, but they were

clustered incrementally to see how Coro handle

multiple requests repeatedly. With graph clustering,

every time a request comes, we only need to see

how far it is with the existing requests. Therefore

this should make our proposed method faster than

conventional clustering algorithm. This part of

experiments is to see that.

From the experiments, we know that total

amount of clustered requests, sub graph created,

and rules created are exactly same with the previous

experiments. But there are three things that can be

seen in these experiments. First, A very short rule

might be created in the middle of the experiment,

but as the requests increasing, it was omitted and

replaced with a more specific and longer rule.

Secondly, as shown on Figure 7, time needed to

cluster requests, whether it was raw, unquote, or

clean, were almost constant until several requests

(3500-4000 requests), but after that there was a

slight increase. On Figure 9, time needed for rules

generation was relatively constant for unquote

method, and a bit linear for raw and clean method.

Lastly, just like the all clustered experiments,

unquote method always takes less time than the

others.

(a) 9b0

 (b)

3624,871

2146,672

3252,333

0

1000

2000

3000

4000

Raw Unquote Clean

T
im

e
 (

s
)

Clustering Time

Table 2. Result Of Different Preprocessing

Raw 6116 348 11

Unquote 5992 271 9

Clean 5914 290 10

of Clustered
Requests

of Sub
Graphs

of Rules
Created

4,006

1,155

6,361

0

2

4

6

8

Raw Unquote Clean

T
im

e
 (

s
)

Generating Rules

Figure 7. Effect Of Different Preprocessing Method To Run Time

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

542

Figure 8. Effect On Clustering Running Time In Incremental Experiment

0

200000

3
7
9

5
3
4

8
8
7

1
2
6
6

1
6
5
9

2
0
2
6

2
3
2
6

2
7
0
2

3
0
7
0

3
3
7
7

3
6
2
0

3
9
2
9

4
2
7
9

4
5
7
8

4
8
7
9

5
2
1
6

5
4
9
2

5
7
3
3

5
9
2
1

T
im

e
 (

m
s

)

Amount of Requests

Clustering Time

Raw

Unquote

Clean

Figure 11. Effect On Rules Generation Running Time In Incremental Experiment

0

5000

10000

3
7
9

5
3
4

8
8
7

1
2
6
6

1
6
5
9

2
0
2
6

2
3
2
6

2
7
0
2

3
0
7
0

3
3
7
7

3
6
2
0

3
9
2
9

4
2
7
9

4
5
7
8

4
8
7
9

5
2
1
6

5
4
9
2

5
7
3
3

5
9
2
1

T
im

e
 (

m
s

)

Amount of Requests

Rules Generation

Raw

Unquote

Clean

Figure 10. Effect Of Edge Weight Threshold On Amount Of Sub Graph Created

5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50
5 5 5 5 5 5 10 10 10 10 10 10 20 20 20 20 20 20 30 30 30 30 30 30 40 40 40 40 40 40 50 50 50 50 50 50

0

50

100

150

200

250

300

Edge Weight Threshold and Amount of Sub Graph

Vertices Threshold / Edge Weight Threshold

#
 o

f
S

u
b
 G

ra
p
h

Figure 9. Effect Of Vertices Threshold On Amount Of Rules Created

5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50
5 5 5 5 5 5 10 10 10 10 10 10 20 20 20 20 20 20 30 30 30 30 30 30 40 40 40 40 40 40 50 50 50 50 50 50

0

5

10

15

20

25

30

Minimum Amount of Vertices and Amount of Rules Created

Vertices Threshold / Edge Weight Threshold

R
u

le
s
 C

re
a

te
d

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

543

Threshold Effect

We took 1000 valid requests and tried to

generate rules from them with different threshold

value to see its effect. As written above, there are

two threshold value used in Coro, threshold for

minimum distance between two vertices to be

connected (Edge Weight Threshold) and minimum

amount of vertices in a sub graph to be computed

then (Vertices Threshold). In this part we tried

several combinations of those two threshold value

and see how they affect the result. We used value of

5, 10, 20, 30, 40, 50 for both of the threshold and

unquote method.

The Edge Weight Threshold has the most effect

for the amount of sub graph created. It can be seen

from the chart on Figure 10 that whatever the

Vertices Threshold value, amount of sub graph

created were always same and needless to say that

for every increment of this value, the amount of sub

graph created decreased.

The other value, Vertices Threshold, affected

the amount of rules created. As this value getting

bigger, the number of rules created was getting

smaller. Nevertheless this information cannot be

seen as a conclusion yet. We saw more than just a

number regarding change of this value, but quality

of the rules was also affected.

For example, as shown on Figure 9, some rules

were too specific if this value was too small, mostly

when we used five. Furthermore, repetitive rules

were occurred due to this small value. But if this

value was too big, we found that rules created were

too general and they included a portion our

honeypot specific string, which could mess up

detection system. This must have happened because

we used unquote method. From our experiment, we

think that the value of ten is the best for Vertices

Threshold. With that value, repetitive rules could be

eliminated and rules created were not too specific

nor too general. Examples of those rules can be

seen on Table 4 and Table 5 respectively.

5. CONCLUSION AND FUTURE WORKS

Coro was successfully built as IDS signature

generator and the result of our experiment shows

that Coro is able to work incrementally as the data

come. Though created rules still depend on the

threshold values and need human evaluation. There

are some challenges left in this topic, such as

speeding up the clustering computation when the

data is so large and more filtering to the rules

created, so repetitive, too specific, or too general

rules can be eliminated. Hopefully we can expand

Coro to be able to compute not only HTTP traffic

but other protocols as well.

Table 3. Example Of Generated Rules Based On Preprocessing Method

Method Rules Content

Raw alert tcp any any -> any 80 (content: "%29%20and%20"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "select%2"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "%270%3a0%3a"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "%20from%20pg_sleep%28"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content:
"%3ddbms_pipe.receive_message%28chr%28"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content:
"%26highlight%3d%2527.passthru%28%24http_get_vars%5brush%5d%29.%2527";
nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "-d%2ballow_url_include%3don%2b-
d%2bsafe_mode%3doff%2b-d%2bsuhosin.simulation%3don%2b-
d%2bdisable_functions%3d%22%22%2b-d%2bopen_basedir%3dnone%2b-
d%2bauto_prepend_file%3dphp%3a//input%2b-d%2bcgi.force_redirect%3d0%2b-
d%2bcgi.redirect_status_env%3d0%2b-
d%2bauto_prepend_file%3dphp%3a//input%2b-n"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "-d%2ballow_url_include%3don%2b-
d%2bsafe_mode%3doff%2b-d%2bsuhosin.simulation%3don%2b-
d%2bdisable_functions%3d%22%22%2b-d%2bopen_basedir%3dnone%2b-
d%2bauto_prepend_file%3dphp%3a//input%2b-d%2bcgi.force_redirect%3d0%2b-
d%2bcgi.redirect_status_env%3d0%2b-n"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "%27%22--

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

544

Method Rules Content

%3e%3c/style%3e%3c/script%3e%3cscript%3enetsparker%280x0000"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "netsparker"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content:
"id%3d2%27%20union%20all%20select%201%2cemail_kontributor%20%2c3%20from
%20db_artikel.tb_kontributor%20limit%200%2c1%20--%2b"; nocase;
http_raw_uri;)

Unquote alert tcp any any -> any 80 (content: " from pg_sleep("; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content:
"=dbms_pipe.receive_message(chr("; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " union all select "; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content:
"&highlight=%27.passthru($http_get_vars[rush]).%27"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "-d+allow_url_include=on+-
d+safe_mode=off+-d+suhosin.simulation=on+-d+disable_functions=""+-
d+open_basedir=none+-d+auto_prepend_file=php://input+-
d+cgi.force_redirect=0+-d+cgi.redirect_status_env=0+-
d+auto_prepend_file=php://input+-n"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "-d+allow_url_include=on+-
d+safe_mode=off+-d+suhosin.simulation=on+-d+disable_functions=""+-
d+open_basedir=none+-d+auto_prepend_file=php://input+-
d+cgi.force_redirect=0+-d+cgi.redirect_status_env=0+-n"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "'"--
></style></script><script>netsparker(0x0000"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "netsparker"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "id=2' union all select
1,email_kontributor ,3 from db_artikel.tb_kontributor limit 0,1 --+";
nocase; http_raw_uri;)

Clean alert tcp any any -> any 80 (content: " from pg_sleep("; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content:
"=dbms_pipe.receive_message(chr("; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " union all select "; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "71,floor(rand(0)*2))x from
information_schema.character_sets group by x)a)"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: ") then 1 else 0
end))::text||(chr(113)||chr("; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content:
"&highlight=%27.passthru($http_get_vars[rush]).%27"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "-d+allow_url_include=on+-
d+safe_mode=off+-d+suhosin.simulation=on+-d+disable_functions=""+-
d+open_basedir=none+-d+auto_prepend_file=php://input+-
d+cgi.force_redirect=0+-d+cgi.redirect_status_env=0+-
d+auto_prepend_file=php://input+-n"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "-d+allow_url_include=on+-
d+safe_mode=off+-d+suhosin.simulation=on+-d+disable_functions=""+-
d+open_basedir=none+-d+auto_prepend_file=php://input+-
d+cgi.force_redirect=0+-d+cgi.redirect_status_env=0+-n"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: ""--

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

545

Method Rules Content

></style></script><script>netsparker(0x0000"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "' union all select
1,email_kontributor ,3 from db_artikel.tb_kontributor limit 0,1 --+";
nocase; http_raw_uri;)

Table 4. Rules Created Due To Wrong Threshold Value

Category Sample of Rules Created

Too

Specific

Rules

alert tcp any any -> any 80 (content: " and (select 1259 from(select
count(*),concat(0x7174686871,(select (case when (1259=1259) then 1 else
0 end)),0x7161717671,floor(rand(0)*2))x from
information_schema.character_sets group by x)a)"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: " and
2486=cast((chr(113)||chr(116)||chr(104)||chr(104)||chr(113))||(select
(case when (2486=2486) then 1 else 0
end))::text||(chr(113)||chr(97)||chr(113)||chr(118)||chr(113)) as
numeric)"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " and 6391=convert(int,(select
char(113)+char(116)+char(104)+char(104)+char(113)+(select (case when
(6391=6391) then char(49) else char(48)
end))+char(113)+char(97)+char(113)+char(118)+char(113)))"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: " and 9676=(select
upper(xmltype(chr(60)||chr(58)||chr(113)||chr(116)||chr(104)||chr(104)|
|chr(113)||(select (case when (9676=9676) then 1 else 0 end) from
dual)||chr(113)||chr(97)||chr(113)||chr(118)||chr(113)||chr(62))) from
dual)"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "id=<iframe src=""; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: "' union all select null,(select
concat(0x7174686871,column_name,0x716769676573,column_type,0x7161717671
) from information_schema.columns where table_name=0x74625f6"; nocase;
http_raw_uri;)

Repetitive

Rules

alert tcp any any -> any 80 (content: " limit 1,1 union all select
null#"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " limit 1,1 union all select
null, null#"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " limit 1,1 union all select
null, null, null#"; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " limit 1,1 union all select
null, null, null, null#"; nocase; http_raw_uri;)

Too

General

Rules

alert tcp any any -> any 80 (content: "id="; nocase; http_raw_uri;)

Table 5. Rules Created With Edge Weight Threshold 5 And Vertices Threshold 10

alert tcp any any -> any 80 (content: "; select "; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " waitfor delay '0:0:5'"; nocase;
http_raw_uri;)
alert tcp any any -> any 80 (content: " order by "; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: "id="; nocase; http_raw_uri;)
alert tcp any any -> any 80 (content: " union all select null"; nocase;
http_raw_uri;)

Journal of Theoretical and Applied Information Technology
 30

th
 November 2015. Vol.81. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

546

REFERENCES

[1] Roesch, M. (1999, November). Snort:

Lightweight Intrusion Detection for Networks.

In LISA (Vol. 99, No. 1, pp. 229-238).

[2] Zaraska, K. (2003). Prelude IDS: current state

and development perspectives. URL

http://www. prelude-ids.

org/download/misc/pingwinaria/2003/paper.

pdf.

[3] Suricata. (2015). Homepage: http://suricata-

ids.org/

[4] Denatious, D. K., & John, A. (2012, January).

Survey on data mining techniques to enhance

intrusion detection. In Computer

Communication and Informatics (ICCCI),

2012 International Conference on (pp. 1-5).

IEEE.

[5] Sabahi, F., & Movaghar, A. (2008, October).

Intrusion detection: A survey. In Systems and

Networks Communications, 2008. ICSNC'08.

3rd International Conference on (pp. 23-26).

IEEE.

[6] Werner, T., Fuchs, C., Gerhards-Padilla, E., &

Martini, P. (2009, October). Nebula-generating

syntactical network intrusion signatures. In

Malicious and Unwanted Software

(MALWARE), 2009 4th International

Conference on (pp. 31-38). IEEE.

[7] Portokalidis, G., Slowinska, A., & Bos, H.

(2006, April). Argos: an emulator for

fingerprinting zero-day attacks for advertised

honeypots with automatic signature generation.

In ACM SIGOPS Operating Systems Review

(Vol. 40, No. 4, pp. 15-27). ACM.

[8] Yasinsac, A., & Manzano, Y. (2002, July).

Honeytraps, a network forensic tool. In Sixth

Multi-Conference on Systemics, Cybernetics

and Informatics.

[9] Rist, L., Vetsch, S., Koßin, M., & Mauer, M.

Know your tools: Glastopf—A dynamic, low-

interaction Web application honeypot. 2011.

[10] Provos, N. (2003, February). Honeyd-a virtual

honeypot daemon. In 10th DFN-CERT

Workshop, Hamburg, Germany (Vol. 2, p. 4).

[11] Kreibich, C., & Crowcroft, J. (2004).

Honeycomb: creating intrusion detection

signatures using honeypots. ACM SIGCOMM

Computer Communication Review, 34(1), 51-

56.

[12] Bro, I. D. S. (2008). Homepage: http://www.

bro-ids. org.

[13] Wang, K., Parekh, J. J., & Stolfo, S. J. (2006,

January). Anagram: A content anomaly

detector resistant to mimicry attack. In Recent

Advances in Intrusion Detection (pp. 226-248).

Springer Berlin Heidelberg.

[14] Wang, K., & Stolfo, S. J. (2004, January).

Anomalous payload-based network intrusion

detection. In Recent Advances in Intrusion

Detection (pp. 203-222). Springer Berlin

Heidelberg.

[15] Vollmer, T., Alves-Foss, J., & Manic, M.

(2011, April). Autonomous rule creation for

intrusion detection. In Computational

Intelligence in Cyber Security (CICS), 2011

IEEE Symposium on (pp. 1-8). IEEE.

[16] Djanali, S., Arunanto, F. X., Pratomo, B.

A., Baihaqi, A., Studiawan, H., & Shiddiqi, A.

M. (2014, November). Aggressive web

application honeypot for exposing attacker's

identity. In Information Technology, Computer

and Electrical Engineering (ICITACEE), 2014

1st International Conference on (pp. 212-216).

IEEE.

