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ABSTRACT 

 

The article provides a synchronization model of biological neurons based on the hysteretic properties of 

metabotropic receptive clusters. We study the properties of the proposed model and various variants of 

connections between individual neurons.  The advantage of the proposed model is its ‘ordered’ response to 

external environment, which is determined by the hysteretic connection between individual neurons. The 

described biological neural network model may find application in the segmentation tasks and classification 

with efficiency exceeding standard numerical algorithms of data handling.  
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1. INTRODUCTION 

 

Currently, the line in research of the oscil-

latory aspects of the brain functioning is actively 

developing in the theory of neural networks. There 

are a number of models [1], [2], [3], [4], [5], [6] 

which in virtue of their varying degrees of their 

biological substantiation are able to describe the 

interaction of neurons in the cerebral cortex. Hodg-

kin-Huxley model should be particularly noted as 

the closest to the biological data [4], [5] though it is 

scarcely applied for neural network simulation due 

to its complexity. The tasks that can provide an-

swers to important questions of psychology and 

neuroscience are at the heart of the models. Given 

that to date, the computational power is growing 

steadily, to study neural networks it is possible to 

use models most closely approximating the biologi-

cal data, as the human brain remains a benchmark 

in solving a variety of tasks. 

 

2. LITERATURE REVIEW   
 

In this paper we study the behavior of bio-

logical neural networks, based on Kashchenko-

Mayorov model [1]. However, unlike that model in 

the present paper arrangement of connection be-

tween individual neurons is simulated with regard 

to biological peculiarities considered in detail in the 

work by A.N. Radchenko [7]. According to the 

present-day views, neuron is surrounded by cell 

formations (clusters), which under certain condi-

tions can initiate the endogenous (internal) process-

es in the neuron, which may be followed by the 

spike. Initiation of endogenous processes has a hys-

teretic nature. To simulate the interneuronal con-

nections the operator interpretation of hysteresis 

nonlinearities is used, which was first introduced by 

M.A. Krasnosel’skii and A.V. Pokrovskii [8], later 

this approach was developed in respect to the sys-

tems containing links of the hysteretic nature [9]. 

The proposed model was chosen because of its bio-

logical validity. The regularities in the dynamics of 

neurons depending on the neural network structure 

and connections between neurons are also revealed.  

 

3. MATERIALS AND METHODS 

 

3.1. Basic model 

Phenomenological  Kashchenko-Mayorov 

model is based on оthe flow of potassium and sodi-

um currents through the neural membranes. It has 

been successfully used for simulation of annular 

neural structures in which excitation of neural pro-

genitors was transmitted wavelike to neural emula-

tors [1]. An important feature of this model is that 

the biological fact of delayed potassium currents 

against sodium ones is formalized. 
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In this model ф neuron activation function is de-

scribed by delay differential equation: 

 

( 1 Κ( ( 1)) Na( )) ,u f u t f u uλ= − + − −&       (1) 

with the appropriate initial condition: 

 

( ) ( ) ( ) 1

1 0
,

t
u t t t Ce

εϕ ϕ − −

− ≤ ≤
= ≤         (2) 

where λ – coefficient and С – constant, which are 

determined by the modeling views about biological 

properties of  neural membrane, functions fK (u) 

and fNa (u) characterize potassium and sodium cur-

rents. As a rule, the following restrictions are ap-

plied to these functions: 

 
K( ) 0, Na( ) 0,

1 Na(0) K(0) 0,

1
K( ) ,

1
Na( ) ,

f u f u

f f

f u Cu

f u Cu

ε

ε

> >

− − + >

− −<

− −<

        (2') 

where 0ε > , is a parameter determined by the 

modeling views. 

Neuron can perceive both electric and chemical 

excitation. In case of electric excitation of the neu-

ron activation function will satisfy the equation: 

 

( )( 1 K( ( 1)) Na( )) ,u f u t f u u g tλ= − + − − +&  (3) 

where ( )g t  – intensity of electric action. 

In case of chemical excitation: 

 

( )( 1 K( ( 1)) Na( ) ) .u f u t f u v t uλ= − + − − +&   (4) 

where ( )v t  – intensity of chemical action. 

According to [1] electric excitation effec-

tively imposes generation period of neuron spikes, 

while chemical excitation is more effective during 

connection simulation and ensemble synchroniza-

tion in a neural network. 

 

3.2. Radchenko's neural memory model 

Ability of the neural network to perceive and store 

information is related to learning. In classical artifi-

cial neural networks this problem is solved by 

weight matching and adjusting for connections be-

tween neurons according to definite regularities. 

Radchenko [7] suggested a new model, in which 

the structure of connections between neurons was 

based on the biological data and was of hysteretic 

nature. The same work presented the results of bio-

logical experiments, in the course of which special 

formations were detected around neural synapses 

(the point where the neuron perceives action) – 

metabotropic receptive cluster (MRC). This for-

mation when stimulating the neuron can trigger 

endogenous (internal) chemical processes, thereby 

triggering a spike (the burst of energy, a surge in 

membrane potential). Hysteretic nature of endoge-

nous process initiation depends on the type of ac-

tion on the neuron (chemical or electric). 

 3.2.1. Chemical action on MRC 

Chemical excitation of the neuron will 

trigger internal processes by means of MRC ac-

cording to Figure 1: 

 
Figure 1: Reshaping of hysteresis curves characterizing 

the MRC dynamics at chemical exposure  

Curves shown in Figure 1 are defined by the equa-

tion: 

 

21
,

k
u By Ay

y k

−
= −

−
  (5) 

where y – a relative distance between charges in the 

MRC, 0
0

2
,

Y
A B

λ ρ
λ

ε ε
= = , ρ  - charge concentra-

tion in the MRC. Experimentally calculated values 

of constants are determined by the equations: 
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λ ε− −= =

=

   

The curve form (Figure 1) is defined by the coeffi-

cient 0 1k≤ ≤ . From the biological viewpoint this 

parameter characterizes charge mobility in the 

MRC. 

With increasing exposure of 
mu  on the 

MRC, a transition occurs from the upper part of the 

curve to its lower part (Figure 1). From the biologi-

cal viewpoint chemical conformational transition 

(CCT) will occur, i.e. receptive cluster particles 

will consolidate, thereby accumulating energy. 

With the further growth of 
mu  the coefficient k  

approaches unity and, as a consequence, MRC con-
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solidation will continue, and in this case the curve 

will vary from
1A  to

3A . 

When decreasing 
mu  to the value suffi-

cient for reverse transition from the lower part of 

the curve to the upper one, depolarization-induced 

conformational transition (DCT) occurs, and in this 

case increased by a factor of hundreds energy, ac-

cumulated in the MRC after CCT, will be directed 

on the neuron. 

The described mechanism of the MRC op-

eration makes it clear that intermittent chemical 

exposure is most efficient with increasing ampli-

tude similar to the action on the part of neural en-

semble, which attracts neurons, thereby increasing 

the gravity force.  

3.2.2. Electric action 

If the neuron is exposed to electric excitation, the 

equation (5) is transformed and takes the form: 

 

1
,

k
u By

y k

−
=

−
          (6) 

Reshaping of curves as a function of coefficient k is 

shown in the following figure [7]: 

 
Figure 2: Reshaping of hysteresis curves characterizing 

MRC dynamics at electric exposure  

When increasing the force of the electric action on 

the neuron, the relative distance between the charg-

es in the MRC decreases and the hyperpolarization 

transition (HCP) occurs. When reducing the action 

force, similarly to the case with a chemical external 

action, DCT will occur. 

As can be seen in Figure 2, with decrease 

in the mobility of charges in the MRC, which cor-

responds to an increase in k, MRC loses its hyster-

etic nature and the ability to activate the endoge-

nous processes in the neuron. The charge mobility 

reduction can be caused by a long-term increase in 

mu . Thus, a strong electric excitation attenuates the 

MRC impact on the neuron. 

4. MODEL DESCRIPTION  

Below we consider a neural network, individual 

elements of which are defined by the differential 

equations: 
 

( )( ) ( )( )1 K 1 Na ,i i i i iu f u t f u Y Iλ= − + − − + +& (7) 

where 
iu – neural membrane potentials 

iY  – excita-

tion applied to the i neuron on the part of neural 

network, 
iI  – external action on the i neuron. Here 

Yi  is responsible for the chemical bond of the ele-

ments in the network, and Ii, in its turn, simulates 

electric external action on the neurons. Let us as-

sume that 

 

,
,0

>,





=
casesotherin

yify
Y

ii

i

γ&

  
   (8) 

where γ  – threshold rate of yi growth. Here re-

striction is imposed to determine the CCT stage, 

when yi is growing rapidly. The connection be-

tween neurons will be characterized in the quantity 

terms by the relation:  

 

( )
1

,

t

i jN
t T

i ij t
j

i

t T

u u ds

x t D

u ds

−

=

−

−

=
∫

∑
∫

  (9) 

where Dij – coefficient of coupling force between i 

and j neurons, N – total number of neurons. Param-

eter T is selected so that exactly one spike would fit 

in the appropriate interval. By definition, the value 

of the variable xi(t) increases with an integrated 

measure of neuron desynchronization.  

In its turn xi(t) is an input of hysteresis quantizer 

[ ]0 0
,x yΓ , i.e. connection between yi and xi will be 

defined as follows: 

 

( ) ( ) 0
, , 0 ,

i i i i
y f x y y y= =&   (10) 

where function ( ),
i i

f x y  is given by the relation: 

 

( ) ( ) ( )( )3
4 1

, .
2 2

i i i

i i i

y k y
f x y arctg x

ξ ρ ρ π
χ
  − + − −
 = + − 

    

  (11) 

Here 50χ = , 4ξ = − , 0.6ρ =  – constants charac-

terizing the form of the hysteresis loop. The contour 

line ( ), 0
i i

f x y =  is shown in Figure 3. 

HCT 
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Figure 3: Contour line f (xi, yi)=0 

Electric action from the MRC will be defined as 

follows: 
 

,
,0

>,




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casesotherin

yify
I

ii

i

γ&

   
                 (12) 

( ) ( ) 0
, , 0 ,

i i i i
y f x y y y= =&                 (13) 

( )e sin ,t

i ix A t gα−= −               (14) 

where gi – external action on the i neuron, А – a 

positive constant, α - coefficient determining the 

rate of losing MRC hysteresis properties. The quan-

tizer hysteresis loop (10) with the intermittent input 

xi = 15sin (t) + 80 is shown in Figure 4. 

 
Figure 4: Dynamics of yi with the intermittent input 

As follows from the results [7] MRC is able to ini-

tiate a neural spike during DCT. In other words, 

while the action on the neuron in growing or re-

mains constant, neuron will response to it without 

intermediaries. However, in case of reduction of 

this action the neural spike will be determined by 

MRC. 

 

5. RESULTS 

 

5.1. Research of the fully connected neural net-

work with a ‘weak’ coupling 

Let us consider a neural network consisting of three 

neurons with input actions (12) on each of its ele-

ments, assuming that external actions satisfy the 

condition: 

0 1ig≤ ≤    (15) 

In the example given below these parame-

ters were supposed to be equal to 0.1, 0.5, 0.8, re-

spectively. 

At first let us consider the case when the 

coefficients Dij in the relation (9) are sufficiently 

small, thereby neutralizing the influence of connec-

tion between individual neurons on the network 

dynamics in general. The simulation results are 

demonstrated in the following figure. 

 
Figure 5: Dynamics of membrane potentials of three 

neurons with coupling coefficients   

 

Dij=0.01 

The projections of the phase portrait on the relevant 

planes are given below: 

 

 
Figure 6: Phase portrait projections of (7) system at 

Dij=0.01 

As can be seen in the figures, the effect of 

synchronization is not available within a relatively 

long time period.  In the absence of hysteresis in the 

input action when the external action was deter-

mined by the relation: 

,i iI g=            (16) 

The network dynamics will have the form illustrat-

ed in Figures 7, 8. 
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Figure 7: Dynamics of 3 neurons with the satisfied condi-

tion (16) 

 
Figure 8: Phase portraits of the system (6) with the satis-

fied condition (16) 

The comparison of the graphs 5-6 and 7-8 

demonstrates that the hysteresis during the external 

action introduces the ordering effect in the neural 

network, but the synchronization is observed only 

for sufficiently large periods of the simulation. 

 

5.2. Research of the fully connected neural net-

work with a ‘strong’ constant hysteresis 

coupling  

Let us consider a neural network consisting of three 

neurons defined by the system of differential equa-

tions (7).  Assume the hysteretic connection be-

tween the network elements is active and invaria-

ble, i.e. 

, 0 1.i ik const k= < <  

The results of numerical simulation of the described 

neural network are given below. 

 
Figure 9: Dynamics neural network with input actions  

0, 0.5, 1. 
 

As can be seen in Figure 9, at constant 

hysteretic connection, one of the neurons is syn-

chronized with the other, starting from the 10
th

 se-

cond and full synchronization starts approximately 

from the 90
th

 second. This fact complies with the 

biological data [10] – the neuron with the largest 

external action becomes the central element in the 

network, so the entire network is configured for 

perception of the strongest external action, and the 

other ones are ignored. According to [7] the return 

of the MRC hysteresis nature, and hence the possi-

bility of storing information, occurs during sleep. 

Thus, simulation of the neural network (7) under 

the condition of ,0 1
i i

k const k= < <  may charac-

terize cerebration during sleep. According to [11] 

the main task of the brain during sleep is to consol-

idate the information received during wakefulness, 

and having a sufficiently intensive stimulus, it is 

this stimulus that will be remembered.  

Dynamics of the neural network (7) consisting of 

three neurons at external actions  

g1=1, 

0.4≤ g2 ≤1,                                                       

is illustrated by the Poincare section of phase tra-

jectories with the plane u1=0.4.  

The result is shown in Figure 10 for t >10. 

 
Figure 10: Poincare section for the system of 3 neurons 

with input actions 

The Figure 10 demonstrates that ( ) ( )2 3u t u t≈ . 

Such behavior may be interpreted as occurrence of 

(17) 
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a central element in the network.  It is notable that 

the detailed study of biological aspects of networks 

with a central element is presented in [12]. 
 

6. CONCLUSIONS 
 

The neural network model considered in the paper 

shows that even with small number of neurons its 

dynamics complies with the biological data [13]. A 

weighty advantage of the proposed model is its 

‘ordered’ response to external environment, which 

distinguishes it from the model described in [1]. 

This peculiarity is determined by the hysteretic 

connection between individual neurons, enabling to 

simulate a neural network with a set of elements, at 

the same time achieving neuron synchronization in 

the ensembles [14], [15]. Based on the fact that 

models of pulsed neural networks are effectively 

used in solving applied problems [16], it can be 

believed that the described biological neural net-

work model may find application in the segmenta-

tion tasks and classification with efficiency exceed-

ing standard numerical algorithms of data handling 

[15]. 
 

ACKNOWLEDGEMENTS 

 

The research was supported by the Russian Founda-

tion of Fundamental Research, grants No. 12-07-

00252-а, 13-08-00532-A. 
 

REFERENCES: 

 

[1] S.A. Kashchenko, V.V. Mayorov, "Wave 

Memory Models" (in Russian) – Moscow, 

2009: URSS. ISBN 978-5-397-00444-2, P. 

288. 

[2] R. Fitz Hugh, "Impulses and Physiological 

States in Theoretical Models of Nerve Mem-

brane",  Biophysical journal, Vol.1, No.6, 

1961, pp. 445-466. 

[3] J. Nagumo, S. Arimoto, S. Yoshizawa, "An Ac-

tive Pulse Transmission Line Simulating 

Nerve Axon", Proceedings of the IRE, Vol.50, 

No. 10, 1962, pp. 2061-2070. 

[4] A.L. Hodgkin., A.F., Huxley, "The Dual Effect 

of Membrane Potential on Sodium Conduct-

ance in the Giant Axon of Loligo", The Jour-

nal of physiology, Vol.116, No.4,1952,  pp. 

497-506. 

[5] D. Hansel, G. Mato, C. Meunier, "Phase Dy-

namics for Weakly Coupled Hodgkin-Huxley 

Neurons", EPL (Europhysics Letters). Vol. 23, 

1993, No.5, p. 367. 

[6] G. Yu, J.J. Slotine, "Visual Grouping by Neural 

Oscillators", IEEE Transactions on Neural 

Networks, 20(12), 2009. Retrieved from http:// 

web.mit.edu/nsl/www/preprints/visual_oscillat

ors. pdf 

[7] A.N. Radchenko, "Ionotropic and Metabotropic 

Responses of Neuron as the Instruments of 

Neural Memory" (in Russian), Neiroinformat-

ika, Vol. 1, 2006, pp. 197-227. 

[8] M.A. Krasnosel’skii, A.V. Pokrovskii, "Systems 

with Hysteresis" (in Russian). – Moscow: 

Nauka, 1983, P. 271. 

[9] M.E. Semenov, M.G. Matveev, D.V. Shevlya-

kova O.I. Kanishcheva,  "Zone of Stability 

and Periodic Solutions of the Inverted Pendu-

lum with Hysteretic Control"   (in Russian), 

Mekhatronika, Avtomatizatsiya, Upravlenie, 

No.11, 2012, pp. 8-14. 

[10] Ya. B. Kazanovich, R.M. Borisyuk, "Synchro-

nization in the Neural Network of Phase Os-

cillators with a Central Element" (in Russian), 

Matematicheskoe Modelirovanye, No. 6:8, 

1994, pp. 45-60. 

[11] G.D. Abarbanel, M.I. Rabinovich, A. Selver-

ston,  M.V. Bazhenov, R. Huerta,  "Synchro-

nization in Neural Networks" (in Rus-

sian),Uspekhi Fizicheskikh Nauk, Vol.166, 

No.4, 1996, pp. 363-390. 

[12] Hegumen Theophan, (V.I. Kryukov),  "Atten-

tion and Memory Model Based on the Princi-

ple of Dominanta and Comparator Function of 

Hippocampus" (in Russian), Zhurnal Vysshei 

Nervnoi Deyatelnosti im. I.P. Pavlova, Vol. 

54, No.1, 2004, pp. 11-31. 

[13] M.E. Semenov, D.V. Grachikov, O.I. Kan-

ishcheva, "Synchronization of Neural Ensem-

bles under the Action of MRC" (in Russian), 

XIII International Conference “Informatics: 

Problems, Methodology, Technologies, Voro-

nezh, Vol.1, 2013, pp. 344-346  

[14] Yu.I. Eremenko, D.A. Poleshchenko, A.I. 

Glushchenko, "About the Features of the PID-

neuroregulator with Self-adjustment Scheme 

Practical Realization for Heating Furnaces 

Control" (in Russian), Pribory i Systemy. Up-

ravlenie. Control. Diagnostika,  No.1, 2012, 

pp.25-30.  

[15] V.K. Gulakov, S.N. Ogurtsov, A.O. Trubakov,  

"Segmentation of Landscape Images" (in Rus-

sian), Informatsionnye Tekhnologii, No. 1, 

2013, pp. 40-45. 

[16] I.I. Melnikov, K.A. Demidenkov, I.A. Yemel-

yanov, "Movement Detector Based on Pulsed 

Neural Networks" (in Russian), Infor-

matsonnye Tekhnologii, No. 7, 2013, pp. 57-

60. 

 


