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ABSTRACT 

 

Abstract. In this work, an Artificial Neural Network (ANN) model of Finite Element Method (FEM) is 

developed and presented. The proposed method uses Hopfield NN that is able to efficiently represent the 

tetrahedral Finite Element (FE) functional that is formulated to interpolate the field radiation of a microstrip 

patch antenna. This study provide a robust method to combine NN with tetrahedral FE to provide a highly-

reconfigurable memory-saving method, that help in reducing computational complexity of antenna 

radiation problems, and build a real-time analyzer of a reconfigurable antenna system implemented in a 

remote area. The proposed method shows a good match with the measured data and the analytical solutions.  
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1. INTRODUCTION  

 

Microstrip antennas became popular since 1970s, 

due to their ease of fabrication, small size, and their 

broadside radiation characteristics [1-3]. One 

Electromagnetic problem resulting from the 

analysis of microstrip antennas is to estimate the 

radiation pattern and input impedance of the 

antenna. Its solution requires solving Maxwell’s 

equations where the fields should satisfy the 

Sommerfeld radiation condition [4]. Exact solutions 

to Sommerfeld integral formulations are available 

[5], however, they are too complicated to most 

practical applications, and occasionally it is 

necessary to resort to a numerical method such as 

the finite element method to get an approximate 

solution. 

The FEM is a numerical technique for obtaining 

approximate solutions to boundary-value problems. 

The FEM has been applied to the analysis of 

electromagnetic problems for decades [6-8]. FEM is 

a powerful and efficient numerical technique to be 

used to analyze microstrip antennas; this is due to 

the fact that the FEM can handle arbitrary 

boundaries with extreme irregularities. Also, the 

domain of the problem can include media with 

varying material characteristics [9-11]. 

Finite elements can be developed to analyze not 

more than a single antenna and small arrays, where 

the resulting matrix equation can be solved without 

resorting to special solution techniques. However, 

for larger systems, the matrix equation requires 

more size and time to solve, therefore, the use of 

NN can sharply reduce the computational 

complexity of the problem in terms of memory 

usage and time consumption. Besides, the 

incoherent non-linearities connected with antenna 

radiation characteristics make NNs a good 

candidate for solving antenna radiation related 

problems [12]. 

The close topography structures between the 

FEM functional and the NN energy minimization 

formulation resulted in models that combine the 

two methods [12-14]. Modeling FE using ANN by 

minimizing energy functional was used for solving 

electrostatic problems [15,16]. Using feed-forward 

multilayer NN in the nodal finite element 

discretisation, the network is solved using a 

gradient algorithm [17]. Also, a locally connected 

Hopfield Network was constructed by using the 

energy functional of two dimensional FEM as the 

computing energy of the NN [18] for solving 

nonlinear magnetic field problems. A nodal 

rectangular element finite element model was 

embedded in NN along with steepest descent 

algorithm [14]. ANN was used not only in FEM 

formulations but also as a mesh auto-generator for 

nodal two dimensional FE [19-21] as well as for 

tetrahedral FE mesh [22]; these approaches start the 
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solver process by using an initial mesh and refine it 

later by means of an adaptive meshing using NNs. 

In this paper, a NN model for FEM is developed 

to analyse microstrip patch antennas. A nonuniform 

tetrahedral mesh for the antenna geometry is 

generated, and then a FEM functional is formulated 

to represent the mesh. Finally, a neural network is 

built to solve the functional using a memory saving 

technique. Hopfield Neural Networks (HNN) were 

used because of their ability to minimize the stored 

network energy [23], and therefore to minimize the 

energy functional in the finite element problems.  

To show the validity and accuracy of the 

proposed method, several examples are considered 

with results compared to analytical solution or 

measured data. 

2. PROBLEM FORMULATION 

 

     An Electromagnetic problem resulting from 

analysis of microstrip antennas is to predict the 

pattern of the radiated fields and input impedance 

of the antenna. This requires solving Maxwell 

equations along the boundary condition 0ˆ =× En
v

 

on the cavity surface, where n̂  is the normal unit 

vector, and E
v

is the electric field intensity. 

     To ensure the uniqueness of the required 

solution, the fields must satisfy the Sommerfeld 

radiation condition at infinity [4]: 

[ ] 0ˆlim
0

=×+×∇
∞→

ErjkEr
r

wv
               (1) 

     The electromagnetic problem resulting from 

solving Maxwell equations along with boundary 

conditions and Sommerfeld radiation condition is 

very complicated to be solved analytically.  So, the 

FEM is to be used to find a numerical solution. To 

use FEM, this unbound space must first be 

truncated to some finite limit. Therefore, an 

approximate, first-order absorbing boundary 

condition is applied [8]: 

0ˆˆˆ
0

≈××+×∇× EnrjkEn
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                (2) 

where, 
0

k is the free space wavenumber. 

    To use this condition, we multiply the vector 

wave equation for the electric field (the magnetic 

fields can be solved in similar steps) by a testing 

function T
v

 and then integrate over the volume V 

that is enclosed by the truncation surface S: 
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where, 
0

Z is the intrinsic impedance, 
r

µ
t

and 
r
ε
t

 are 

the relative permeability tensor and the relative 

permittivity tensor, respectively, 
ex

J
v

 is the electric 

current density for the excitation current, and 
ex

M
v

is 

the magnetic current density. 

     Applying Gauss’s theorem, equation (2), and 

some mathematical identities to equation (3), 

yields: 
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     To solve this equation using FEM, we divide the 

solution volume V enclosed by the truncation 

surface S into a mesh of N small subdivisions and 

then we associate a function 
i

v  with one 

subdivision such that 
i

v  is nonzero only inside its 

domain of definition. If we make the size of the 

subdivisions small enough, very simple 

interpolating functions can be given to the trial 

formulas since the part of the solution is 

represented. Trial functions 
i

v  are not allowed to 

vary outside their domain of definition. 

    Here, nonuniform tetrahedral meshing is used. 

The longest side of any of the elements is set to not 

exceed one tenth of the wavelength. 

    The field on the six edges of each tetrahedral 

element is [8]: 

( ) ∑
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vv
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where e

i
E  is the electric field at edge number i of 

the tetrahedral element e, and e

i
N
v

 is the vector 

basis function of edge number i within element e. 

    A tetrahedral element has four nodes and six 

edges; we label all the edges with a set of integers, 

and label each node locally (within the element) 

and globally (within the whole mesh) with another 

two sets. In this proposed method, degrees of 

freedom are assigned to the edges of the elements 

(rather than on the nodes); Using vector FEM 



Journal of Theoretical and Applied Information Technology 
 20

th
 November 2015. Vol.81. No.2 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
401 

 

decreases the occurrence of spurious solutions, 

besides, it easily deals with conducting and electric 

edges and corners. Therefore, another two sets are 

needed to number the edges locally and globally. 

Table 1. Nodes numbering within mesh elements 

Edge Start node End node 

1 1 2 

2 1 3 

3 1 4 

4 4 2 

5 2 3 

6 3 4 

 

     Nodes and edges are numbered from top to 

bottom and Counter Clock Wise (CCW) as shown 

in Figure 1. Edge numbers and its associated nodes 

numbers are defined in Table 1. 

    The basis function defined on edge i that 

connects nodes j and k is [24] 

( ) e

ijkkj

e

i
lLLLLN ∇−∇=

v
                     (6) 

where, e

i
l is the length of the edge, 

l
L and 

k
L are the 

coordinates of the nodes of the element with i < k 

(to ensure CCW numbering of the elements). 

     The matrix equation that results from 

formulating the FEM problem requires large 

memory size and time to solve. The use of NN can 

sharply reduce the computational complexity of the 

problem.  

     Neural network architecture has at least three 

layers, one input layer, one output layer, and one or 

several hidden layers. The input layer is the only 

layer exposed to external signals; this layer 

transmits signals to the neurons in the next layer (or 

layers), which is the hidden layer (or layers). The 

hidden layer (or layers).) extracts connected 

features or patterns from the received signals. The 

features or patterns that are interpolated as 

important are then directed to the final layer of the 

network, the output layer. 

     Degrees of freedom are assigned to the edges of 

the mesh elements. Each element is represented by 

three matrices, one connects its edges numbers 

locally and globally with its start and end nodes, 

one that connects elements vertices with their 

coordinates, and one that defines known and 

unknown edges. 

     For edge-based FEM problem, neural units are 

placed on all the FEM edges, and then connect 

them accordingly to the Hopfield NN energy 

function [23] 

∑∑∑ +−=
iijiij

TSSSwP
2

1
                (7) 

where, 
ij

w is the weight of the connection between 

neuron i to neuron j, 
i

S is the state of neuron i, and 

i
T is the threshold. 

     Figure 1b illustrates a neural network model for 

the tetrahedral element presented in Figure 1a. 
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(b) 

Figure 1. Tetrahedral Element. A) Element Edge And 

Node Numbering. B) NN Model Of The Element. 

 

 
3. RESULTS AND DISCUSSIONS 

 

    The First example is a slotted rectangular 

microstrip antenna [25]. The patch has 2 side slots. 

The antenna structure and dimensions are shown in 

Figure 2. 
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    The antenna model is built on SolidMesh 

platform, with the dimensions and the truncation 

boundary determined. This software is capable of 

generating a nonuniform mesh. A Matlab code is 

written to translate the mesh into a Matlab data file. 

The Matlab translator works in two main steps; first 

it reads the information from SolidMesh output file 

and stores these data, then write a data Matlab file.  

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) 

Figure 2. Slotted Rectangular Microstrip Antenna.   

A) Fabricated Model. B) Antenna Structure And 

Dimensions. 

 

In the “read” step, the translator stores the 

general variables information about the mesh, and 

so, it reads: number of nodes, number of volume 

elements, and number of boundary faces. Some 

other variables that are not stored directly in 

SolidMesh file, such as type of tetrahedron element, 

number of nodes per element, will be extracted 

from the mesh itself. 

With mesh data available, the FEM functional 

is formulated. Within each tetrahedral FEM 

element face (four faces for each element) six 

nodes, pointed on its edges, three of them are 

defined at the corners for the axial components 

( )
zzz

HorEφ , and three are defined in the middle of 

each edge for tangential components. To unify the 

edge numbering, y-components of the tangential 

fields are to be considered all positive. This 

numbering will be adopted during the FEM 

formulation. 
     Finally, the NN model is built, the convergence 

criteria are predetermined, and each output unit in 

the NN is activated. Using the back propagation 

algorithm, each error is then fed back to its 

corresponding NN input neuron unit through the 

feedback path. Each unknown edge value is 

updated using the training algorithm until the 

minimum set error is achieved 

Figure 3. shows the S11 vs frequency of the 

antenna for the proposed Neuromodel of the FEM 

solver compared to the measured data of the 

fabricated antenna. 
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Figure 3. Frequency Response Of The Slotted 

Rectangular Microstrip Antenna. Proposed Method 

(Dashed Line), Measured Data (Solid Line)  

 

Another example is a simple rectangular 

microstrip antenna with inset feeding; this one is 

chosen since its response can be calculated 

analytically.  

The antenna has a length mmL 06.9= , a 

width mmW 86.11= , and a substrate height of 

mmh 588.1=  with relative permittivity 2.2=
r
ε . 

The feed point is placed at distance χ from one end 

of the patch. Figure 4. shows the antenna structure 

and dimensions 

 

 

 

 

 

 

 

 

 
Figure 4. Antenna Structure And Dimensions 

 

 

     The FEM mesh has 1847 tetrahedral elements; 

using the NN reduces requirements on storing the 

sparse matrix of FEM functional. The NN model 

L 

W 

χ 



Journal of Theoretical and Applied Information Technology 
 20

th
 November 2015. Vol.81. No.2 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
403 

 

solution converges in 2214 iterations with a stop 

error of 10
-5

. 

     To compare the proposed method to analytical 

solution, the input resistance can be calculated 

using the network model from [26]: 
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where, G and B are the conductance and the 

susceptance of each antenna radiating slots 

respectively, β  is the propagation constant. 

     Figure 5. shows the input impedance versus the 

feed point distance from the antenna edge, for both 

the proposed method and the analytical solution. 
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Figure 5. Input resistance vs feed point distance. 

proposed method (stars), analytical solution (solid line). 

 

 

3. CONCLUSIONS 

 

A new method to analyse microstrip patch 

antennas by using neural network models of edge 

FEM with tetrahedral elements was proposed. The 

method is based on building the FEM functional 

from a nonuniform tetrahedral mesh. The functional 

is then modeled using a HNN. Minimizing the 

energy of the NN is equivalent to solving FEM 

functional. The proposed method showed close 

agreement with the analytical solutions and 

measured data. 

The need for this work is to build a “smart 

antenna controller”. NN-Tetrahedral-FE scheme 

allows a real-time analysis of an antenna system in 

a remote area; where a fault is hard to reach and fix. 

The NN Tetrahedral FE, if implemented on a 

reconfigurable board, can become a “brain” that 

detect faults and re-program itself to re-control the 

switches and overcome the faults. 
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