
Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

364

DATA SYNCHRONIZATION BETWEEN MOBILE DEVICES
AND SERVER-SIDE DATABASES: A SYSTEMATIC

LITERATURE REVIEW

1
ABDULLAHI ABUBAKAR IMAM,

 2
SHUIB BASRI,

3
ROHIZA AHMAD

1,2,3Department of Computer and Information Science, Universiti Teknologi PETRONAS Malaysia.

Email: 1aiabubakar3@gmail.com, 2shuib_basri@petronas.com.my, 3rohiza_ahmad@petronas.com.my

ABSTRACT

It is progressively important for mobile device databases to achieve additional coordination of diverse
computerized operations. To do so, many research works have been conducted to attain more
companionable solutions that can be used to synchronize data between the mobile device and the server
side databases. The objective of this study is to survey the state of the art in various aspects of mobile
devices with respect to data sharing and synchronization between mobile device databases and server-side
databases as opposed to the server-to-server synchronizations. To achieve this feat, 5 different electronic
databases were used to identify primary studies using the relevant keywords and search terms related to
mobile data synchronization classified under journals, conferences, symposiums and book chapters. The
study produced interesting results in different areas such as data synchronization, data processing, vendor
dependency, data inconsistency and conflicts resolutions where 19 primary studies were selected from the
search processes. In our conclusion, mobile data synchronization has been significantly discussed in the
domain of databases. In general however, it was discovered that, existing synchronization solutions suffer
from a number of limitations such as lack of consistency among data, resolving conflicts, data processing
responsibility, vendor dependency, data type, bandwidth utilization and network fluctuation during data
transmission. Also the applicability of the existing solutions has not been reported yet.

Keywords: Data Synchronization, Mobile device, Mobile Databases, DBMS, SLR, Heterogeneous.

1. INTRODUCTION

The advancement in the area of computing and

mobile technology have led to the occurrence of a
new computing atmosphere and different categories
of small sized mobile devices such as smart phones,
Personal Digital Assistants (PDA), Handheld PCs
(HPC) and Pocket PCs. Mobile devices have
rapidly evolved from simple devices that merely
make and receive calls and sends messages to
bigger and more sophisticated devices that can also
be used as tools to manage and store personal data.
As various network technologies and enterprise
applications are progressively being associated with
such devices, the data management, processing as
well as manipulation of enterprise business
information can be handy and obtainable using
these mobile devices. As a result, more business
models that are solely dependent on mobile
technologies begin to emerge.

According to [1], [2] and [3], mobile computing
offers the chance to users to access data stored in a

data repository or stationary database of the mobile
devices at anytime and anywhere. Therefore, it is
necessary to establish an effective data sharing and
synchronization between these devices and the
server with maximum consideration of the
following mobile devices limitations [4]:

� Restricted bandwidth of wireless networks.
� Limited resources, e.g, memory.
� Mobility (two types of mobility [2]).

o Terminal (also known as micro) Mobility
o Network (also known as macro) Mobility

� Disconnections.
� Limited power supply.

Mobile devices are battery dependent and do not

have much computing power. In addition,
continuous network access is difficult due to the
narrow bandwidth [2][5][6]. Therefore, processing
large size of data as well as maintain a persistent
and uninterrupted connection to the server-side
database becomes difficult. For these reasons
among others, mobile devices are equipped their

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

365

own databases so that more stable data processing
can be achieved. Various data processing tasks are
handled in an offline mode. For mobility support,
the work becomes crucial on the network
disconnected condition. However, in a disconnected
environment, some inconsistencies between the
mobile database and the server-side database are
inevitable. These discrepancies are sometime
detected using message digest [5][7][8][9] [10][11]
[12] and can also be resolved by synchronization
techniques in order to ensure data integrity.

This brings the need for database
synchronization between mobile database and
server-side database. Based on these, varieties of
data synchronization solutions are provided to solve
the problem. This paper aims to review all previous
related work (with putting much emphasis to 2009-
2015 papers) by outlining their strength and
weaknesses in order to achieve better
synchronization solution for all platforms despite
their individual differences. The exploration of this
area is necessary as we are heading to the
environment where mobile devices are further
diversified and their databases are heterogeneous in
nature.

The remainder of the paper is organized as
follows. Section 2 explains the research method
followed in this review, while Section 3 discusses
the threats to validity. Section 4 provides the results
and the general discussion of the reviewed papers.
Section 5 enumerates the research findings and
outlines some recommendations for further
research, and finally Section 5 which concludes the
study.

2. RESEARCH METHOD

According to Kitchenham et al. [13], both research
and practice in Software Engineering require
evidence based approach which is the synthesis of
scientific studies correlated to a question or topic of
the research. In addition, it is also being agreed by
[14] that, combining empirical studies on a
particular topic greatly ensures the chances of
reliability. Therefore, a secondary study known as
Systematic Literature Review (SLR) is
recommended for aggregating evidences.

The aim of Systematic Literature Review (SLR)
is to institute a formal process for conducting a
literature review, making sure that no biasness and
other eventualities such as thorough investigation
and analysis are administered [15]. SLRs allow the
identification, evaluation and interpretation of all
available and relevant information with respect to
the topic of research [16].

A tertiary study was conducted in order to
evaluate the actual state of Mobile Data
Synchronization. This study was planned and
executed based on the methodology in [17] and the
protocol presented in [13] [14][17] in which the
impact of Systematic Reviews in SE is properly
evaluated.

2.1 Review Protocol Phases

Basing on Kitchenham et al. [13] review protocols,
research questions were defined, search strategy
was outlined and resource/materials to be studied
were identified and selected. These were later
followed by data synthesis to conduct the findings.
Fig. 1 shows the SLR review protocol phases.

2.2 Research Questions

To initiate the study, several research questions
were formulated as follows:

RQ1. What are the existing solutions to Data
Synchronization with respect to Mobile devices?
RQ2. What are the techniques used to resolve data
inconsistencies and records conflicts?
RQ3. What are the methods used to manage Data
processing vendor dependency?
RQ4. What are the processes involved in
implementing synchronization solutions?

Research Questions

Data Synthesis

Search Terms

Search Process

Resources

Search Strategy

Quality Assessment Criteria

Study Selection

Examination Inspection

Fig. 1: Review Protocol Phases

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

366

2.3 Search Strategy

In this section, search terms, literature resources
and search process were elaborated. The following
sub-sections describe each process:

2.2.2 Search Strings

Based on [17][18], we constructed our search terms
as follows:
i. Terms from the research topic.

ii. Major terms from the research questions.
iii. Derivation of keywords from the relevant

books and papers.
iv. Alternative synonyms and spellings from the

major terms.
v. Boolean operator “AND” was incorporated as

a linker between the major terms.
vi. Boolean operator “OR” was incorporated to

join the alternative synonyms and terms. Fig.
2 shows sample of our research string.

2.2.3 Literature Resources

In this research, we used comprehensive and
detailed electronic libraries such as IEEE Xplore,
Science Direct, ACM, Springer, Web of Science,
and Google Scholar to search for the relevant
materials. Out of these libraries we managed to
retrieve journals papers, conference proceedings,
books chapters as well as symposiums.

2.2.4 Search Process

In SLR approach, it becomes mandatory for a
complete systematic literature review to undergo a
comprehensive search of all related sources about
the topic of discussion[19].

For that, we systematically searched through the
databases and scrutinized the results at different
levels as illustrated in Fig. 3 below:

In the figure there are several symbols used on the
arrows. The symbols can be interpreted as follows:

2.4 The Study Selection

Once the process of search is completed, a set of
rules are applied for selection. The publications
were selected for review if they were:

� Tackling any of the research key words.
� Tackling any of the research questions or

attempt to describe its nature.
� Published in, or submitted to, a conference or

journal or were technical reports or book
chapters.

� Written in English.
� Related to topics such as evaluating installed

systems and applications, IT services,
software applications and IT operations, open
source software development, teaching and
education.

(("Mobile Database synchronization" OR "mobile data
synchronization" OR "mobile data sharing" OR
"distributed data synchronization" OR "mobile data
exchange" OR "mobile database communication" OR
"mobile contacts synchronization" OR "mobile device
databases") AND ("algorithm" OR "model" OR
"message digest" OR "systematic review" OR
"systematic literature review" OR "cloud" OR "global
schema" OR "survey" OR "tertiary study"))

Total Papers = 273

IEEE Xplore

Science Direct

ACM Digital Library

Springer

Web of Science

Google Scholar

Relevant Papers = 27

Relevant References = 30
References

Papers Selected 19

 Marks the starting point of the search process
 Duplicate papers removal process
 Scrutiny at title level
 Scrutiny at abstract and conclusion level
 Derive references from relevant papers.
 Additional relevant papers search process
 Application of Assessment Criteria

Related Papers = 95

Fig. 3: Process of Search and Selection

70

9

40

22

110

22

Fig. 2: Sample search string

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

367

On the contrary, the publications were excluded if
they were:

� Papers discussing completely different area

from the research topic.
� Masters and PhD studies which were not

published in refereed conferences or journals.
� Informal literature surveys (no defined search

questions, no search process, no defined data
extraction or data analysis process)

� Papers with no answer relevant to any of the
questions in the research questions.

2.5 Quality Assessment

In this section we adopted the same set of criteria
defined by the Centre for Reviews and
Disseminations (CDR) Database of Abstracts of
Reviews of Effects (DARE), of the York University
[20]. This criteria was also adopted by [13][14] in
their SLR.

The above mentioned criteria are governed by the
following quality assessment questions:

Q1. Are the objectives of the research clear?
Q2. Is the proposed algorithm/model/technique
clearly described?
Q3. Is the experimental setup appropriately
designed?
Q4. Were there enough data sets or adequate case
study for the experiment?
Q5. Does the academia or industrial community
benefited from the research outcome?

We scored the questions by using weighting and
scoring technique proposed by Kitchenham et al.
[13] so as to obtain relevant studies capable of
addressing our research questions. Each question
(listed above) has three options: “Y”, “P” and “N”
which stands for 1, 0.5 and 0 respectively. As a
result, the value of each question for a particular
study are computed and summed to have the
average score which determines whether to include
the study or not. The actual pass marks for each
study is 50% which is 2.5points (since maximum
score possible will be 5). Consequently, in the
process of attaining the maximum credibility,
completeness and relevance of the selected studies,
57 papers were excluded and we were left with 19
papers. Table 1 depicts the quality scores of the
selected study.

3. THREAT TO VALIDITY

According to [21], “there may be at least as many
threats to validity as there are sources of validity
evidence. Any factors that interfere with the
meaningful interpretation of assessment data are a
threat to validity”. However, in this research we
only consider the major sources of validity threats
such as Construct Under-representation (CU) and
Construct-Irrelevant Variance (CIV) [21].

A. Construct under-representation (CU)

Construct under-representation refers to the
undersampling or biased sampling of the content
domain by the assessment instrument or research
papers. Below are the checklists that need to be
fulfilled.

� The previous study was enough to sample the
domain adequately.

� The domain is either directly or indirectly
represented in the retrieved papers and none of
the reported papers was in any way bias to the
idea, instead they always encourage further
researches as summarized in Error! Reference

source not found.

� The journal/conference proceedings and books
though not too many but they are found to be
related to the domain and helpful.

B. Construct-irrelevant variance (CIV)

On the other hand, construct-irrelevant variance
refers to systematic error (rather than random error)
introduced into the assessment data by variables
unrelated to the construct being measured [21]. For
CIV, the following are the checklists:

� The papers almost have the same approach and

format related to the proposed domain.
� The papers are highly secured because almost

all of them were published by IEEE, Science
Direct, ACM, Springer, Web of Science, and
Google Scholar which are all international
journals.

� Score method: Actually our score method is
based on how a paper is related to the domain,
methodology, application, impact of the
research and the percentage at which the
problem was tackled.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

368

� Teaching: We learnt a lot from the previously
written papers which led us having this SLR
prepared properly.

In our study, we perceived that validity is related to
obtaining the same results after the possible
replication of our experiment. It should however be
noted that, Kitchenham Charters [17] proposed
procedure was adopted in this research, which
systematized data selection and extraction and also
possesses well defined stages. On the topic of
validity, we have the following limitations:

a) The entire process of extracting data was

conducted by a single researcher. Although
other authors of this paper as well as some
experienced researchers reviewed the paper,
some eventualities such as biases could have
been included in the process.

b) Our search did not go deep in the technical
aspects of the selected papers, thereby
providing the possibility of missing some
relevant information that could have a positive
impact in the final outcome.

Readers should bear in mind that, as stated by [22],
SLR is limited by: sources and terminologies used
in the search, and the search date. Consequently,
there is every possibility to add more papers when
replicating this study in the future. Our final outputs
of this research are limited by the advancement of
Mobile data Synchronization area and also by the
preceding features.

4. RESULTS AND DISCUSSION

4.1 Overview of the Selected Study

The sub-section presents the results of the search
process and study selection which have been
conducted.

Table 1 shows the quality assessment score given to
19 research materials. For example, the first row
says that for paper [1], the objectives of the research
was clear and related, the description of the
algorithm/model was clearly articulated, the
experimental set up was properly designed, the data
sets or case study was not enough, and it was not
for academic purposes nor benefited any industry.
Hence the overall score of the paper was 3.5.

 It should be noted that, “Y = 1”, “P = 0.5”, “N = 0”
(refer to the quality assessment in sub-section 2.5
for detail explanation)

Table 1: Quality Evaluation Score Results

PID QA1 QA2 QA3 QA4 QA5 Total

S[1] Y Y Y P N 3.5

S[2] Y P P P N 2.5

S[3] Y Y Y Y N 4

S[5] Y Y P P Y 3

S[7] Y Y Y P Y 3.5

S[8] Y P P P N 2.5

S[9] Y Y Y P N 3.5

S[10] Y Y Y Y N 4

S[11] Y Y Y P Y 4.5

S[12] Y Y Y P Y 4.5

S[23] Y Y Y Y N 4

S[24] Y Y P P N 3

S[25] Y Y Y P N 3.5

S[26] Y Y Y P N 3.5

S[27] Y Y Y Y N 4

S[28] Y Y Y Y N 4

S[29] Y P Y P N 3

S[30] Y P P P Y 2.5

The graph below categorized the selected papers
per year of publication as it can be seen that 2002
has the highest number of publication while 2003,
2005 and 2009 have the least number of
publications.

Fig. 4: Number of papers per year of publications

Using the above results, the papers which scored
more or equal to 2.5 were selected for review, and
Table 2 shows some of the results from the review
done. Basically three aspects were reviewed which
are the solution proposed, the strength and the
weaknesses of each of the selected paper.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

369

Table 2: Meta-Analysis of some of the selected papers

Author & Year Solution Strength Weaknesses

(Domingos, Simões, Pereira, Silva,

& Marcelino, 2014)

Synchronization Model No Standard SQL queries RDBMS Only.
Poor extensibility

(Zaia, Messias, Eduardo, &

Olivete, 2014)

MySQLite middleware Based on Timestamp, Trigger

(Sethia, Mehta, Chodhary, Bhatt,

& Bhatnagar, 2014)

Synchronization

Algorithm

Consistency improved Based on Timestamp

(Gopta, Kumar, & Loothra, 2014) Google Account Personal goggle accounts Phone contacts only

(Alhaj, Taha, & Alim, 2013) Algorithm for Wireless

Communication

Wireless based RDBMS Only

(Balakumar & Sakthidevi, 2012) Synchronization

Algorithm Using MD

Uses standard SQL
queries only

Difficult Access.
RDBMS Only.

(Sedivy, Barina, MOrozan, &

Sandu, 2012)

Cloud Synchronization Uses cloud as the storage
area.

Based on Timestamp.
Fixed schemas.

(Choi, Cho, Park, Moon, & Baik,

2010)

SAMD Algorithm Using

MD

Based on only standard
(ISO) SQL queries

Difficult Access.
RDBMS Only.

(Segu, 2011) Contacts

Synchronization

Algorithm

Conflict Resolution
Strategies

• Contacts only.
• User Intervention.
• Several external support

required

(Ahluwalia, Gupta,

Gangopadhyay, & Mcallister,

2010)

Target-Based

Synchronization

Algorithm

• Interoperability
• Scalability.

• Hash collision.
• Limited hash capacity.

4.2 Detail Review on Selected Papers

4.2.1 Data synchronization (RQ1)

Data Synchronization can be defined as record
exchange between two different databases or
coherently keeping replicated copies of a data-set
[23]. In the context of mobile applications, it is the
system that establishes the movement of data
between the mobile device and the server-side
databases [25]. Database synchronization can be a
one-way or a two-way program, and can also be
real time or periodic mode, namely Synchronous

and Asynchronous [31]. Asynchronous is periodic
in nature and happens to be most advantageous for
the disconnected environment where clients are
allowed to disconnect from the network and still
not miss out any item when reconnected. This

technique is the most effective way for bandwidth
utilization.

In the area of communication such process of
exchanging data is characterized as an inherent
asymmetry [32]: where downstream direction
(servers-to-clients) is considered to be much
greater on bandwidth utilization than upstream
direction (clients-to-servers). Since there is usually
inability for data transmission at a very high speed
(such capacity is sometime not even available), this
model was found to fit mobile system excellently.
In addition, these same devices can at a very high
rate receive data.

Fig. 5 shows a typical synchronization model
in the Database Management System (DBMS)
works with a number of clients connected to a

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

370

server via a network, in which there is usually a
server and mobile devices that function as standard
customers.

Fig. 5: Typical Framework of Network Synchronization

[11] [12]

Based on the layout in Fig. 5 above, [11] and
[12] introduced a synchronization algorithms based
on secured message digest (SAMD) as a means of
solving the synchronization problems. The
framework was used to depict synchronization
process in a mobile business environment. It
consists of multiple mobile devices with internal
mobile databases, a database on the server-side, and
also a synchronization server (AnySyn).

The synchronization server (AnySyn) is sited
between the server and the mobile databases to
enable data synchronization as well as manage
some essential information that may be used for an
effective synchronization. Connection pool is used
to minimize the server-side access load on AnySyn
server where policies for synchronization are
established. For mobile device to perform
synchronization, individual toolkits are assigned to
each device to access the AnySyn server via a
wired network. For this type architecture, we
foresee that it may not work perfectly with mobile
devices since mobility is one of the characteristics
of mobile devices and the users store their personal
data on the move.

Some data synchronization solutions adopted
the above technique in solving the issues of data
exchange between mobile device and server-side
databases [5][7]. However, studies such as [9]
proposed slightly different approach by establishing
wireless connection between the mobile device and
the middle tier (sync server). With this, the synch
server can be accessed by mobile device via
wireless connection. A scenario is shown in Fig. 6.

Fig. 6: SWAMD Layout [9]

In the above architecture, all necessary data are

located on the server that hosts the relational
database. On the other hand, the data on the server
is duplicated on mobile databases and finally the
sync server comes in between to do the
synchronization based on the predefined algorithm
(SWAMD). This architecture is good considering
the fact that mobile devices cannot maintain
connection to the server and require databases for
offline storage. The data stored offline, can be
synchronized when the network is back in
operation.

In [25], an API was introduced to primarily
restore the data after a damage. The API is
considered general enough to be accessible from
mobile phone platform and desktop computers. The
API supports all systems that use Google App
Engine (GAE) as back-end.

Although the solution is cloud based, it is
based on the architecture that is similar to those
earlier discussed. However, MCSync is able to
synchronize data between web application that
resides on GAE and mobile platform. In this
approach, there are two databases, one on the client
side and another one on the server-side which is
considered to have the “correct” value of the
database records. So the mobile client can alter the
records on the local copy only based on the
aforementioned approach as depicted in Fig. 7.

Fig. 7: MCSynch Layout [25]

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

371

In [23], only two components are used unlike
the previously discussed studies where three
components are adopted. The two designated
components connect and share information using
the technology known as JSON (see Fig. 8). The
process assumes that for an effective
implementation of the algorithms, all devices have
their respective times. In this regard, a standard
UNIX timestamp is used on either side. During
synchronization, these two timestamps are
compared, anyone that has the most current time is
considered to be the updated version and it’s data
will be transferred to the party that requires it.

This solution is very effective because it uses
only the devices involved without any middle tier,
but the fact that it uses timestamp, it becomes
vendor specific which causes a great limitation to
the databases that do not support timestamp.

Fig. 8: MRDBMS Synchronization Architecture [23]

Even though the framework introduced by [9],
[11] and [12] are similar to the one adopted by [8],
the synchronization flow differed significantly. In
[8], two methods are outlined, namely One-Way
Sync and Two-Way Sync in which the second
option is adopted where in each communication
there is a controller that controls the operation. The
operations are either download from the server or
upload to the server. Using such method, we can
say bidirectional mode of synchronization is solved
although what triggers the event (timestamp) may
not be available with other databases.

In [28], the authors proposed a stateful
synchronous scheme of mobile devices and also
claim that there is no need to compute message
digest values of the databases as the server
maintains the state of clients. According to the
authors, their approach is more effective because
whenever a modification is made at the server side
of a particular client’s data, the client receives an

alert or invalidation message to be able to know
that there is need for synchronization.

On the contrast, in [29], data synchronization

problem is solved using the mobile agents for
distributed databases. The communication between
the systems is done via mobile agents (see Fig. 9)
where aglet is appended with different queries and
routes them to the intended destination. In this
system although the queries are from different
database vendors, they are considered to be the
same when retrieving the data. However, this
approach is for server-to-server communication that
might be hosting different types of databases. It can
also be considered helpful mainly for organizations
that have more than one server with different
database vendors but need their staff to fetch
information from all the different databases. As for
systems which are of different stage or mobility
characteristics, the approach will not be able to be
implemented.

Fig. 9: Server-to-server agent based process [29]

The study in [26] introduced the concept of contact
synchronization between the mobile device and the
server-side database. The system uses Distributed
Version Control System (DVCS) to communicate
and exchange information between mobile device
and the server, although it is also acknowledged
that the DVCS can be used to share data between
mobile device without necessarily using the server
[26]. However, in [27], a different solution for the
same synchronization purpose is provided where
the server-side is considered to host OLAP data
warehouse. Moreover, the main aim is to reduce

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

372

tuples retrieval when both the records on either side
are equivelent. The system partitions the tuples in
both the target’s and source tables horizantally and
make hashed summaries of each. The two hashes
for both partitions are then compared. If they are
the same, then identical asumption is colcluded
otherwise both the summaries are retrieved and
synchronized. Hence make this solution more
suitable for server-to-server communication since it
involves many proceses of creating images,
partitions as well as image comperision which may
not be handy for mobile devecies.

4.2.2 Cloud based solutions (RQ1)

In Mobile Cloud Computing (MCC) the main
activities happen outside of the mobile device such
as data processing and data storage. In MCC, things
like Data storage and other computing powers are
shifted to the mobile cloud as shown in Fig. 10.

Fig. 10: Mobile Cloud [2]

To relate with data synchronization, some

cloud based solutions are provided in which most
of the applications use centralized cloud storage.
However, in [25], Mobile Cloud Synchronization
(MCSync) was introduced in contrast, as a
framework to provide the developers with the
ability to create and maintain distributed databases.
It also allows reliable data storage and
synchronization between mobile device and the
cloud. In addition to functionalities, some
technologies were used such as Android and
SQLite. Android provides full relational database
capabilities through the SQLite library, without
imposing any additional limitations. SQLite, is a
relational database management system found to be
the ideal system for embedded devices like
smartphones.

Using the cloud, applications are transformed
into distributed applications that are partially
running on the cloud and also partially on the

mobile device. This can be considered a drawback
[25] due to the dynamic nature in network
connectivity and mobile devices; the variations
ranges from Wi–Fi to 4G or even to no connectivity
at all. Therefore, it becomes necessary to make each
application configurable to be able to run locally
too, thus; adding more load to the mobile devices
even though data integrity is maintained between
the Web applications and the mobile. In addition, it
also dependents on Google’s distributed file system
which makes it compulsory to adopt the use of
Google app engine server as a server that hosts the
databases. In this case, the use of the protocol
becomes controlled and constrained.

In [28], the solution is not on the cloud but

uses the server that is on cloud in which the data
from the client and the server are pushed into its
database. The main reason for including additional
server in this approach is that, the cloud server uses
a static IP while both the client and the server use
dynamic IP. To further explain the system, the
application on the server is a java socket program
that has the capability to detect an active port
anytime mobile phone gets connected with GPRS.
The server then uses the state of the port and
responds to the client’s request. The
communication between the program and MySQL
database is through JDBC driver. To communicate
with the cloud, SSH (putty) is used after which FTP
can transfer any intended data or file. This approach
achieves the ultimate goal in data synchronization.
However, it has many stages and many external
dependent technologies involved. This contradicts
the idea of reducing stages as many as possible to
fasten and ease the synchronization process.

A research conducted by ABI [2] predicted that
by 2014 the end users that access “mobile cloud”
will be close to one billion. But the cloud still faces
the following challenges:

1) Network Availability and Intermittency: All
services are provided via the Internet [2].

2) Environmental issues: it refers to the spaces in
which the communication is established such as
delays and connectivity. To be precise they are as
follows:

1D Metric Space: Mobile Target Server or Client
on the road network. 2D Metric Space: Mobile
Target Server or Client on the plane. 3D Metric

Space: “System involving control of aircraft or
submarine”. 4D Metric Space: This involves the

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

tracing of device movement where both devices and
environment are mobile such as the sea, in the air,
fast moving wild. This areas are known as incessant
areas [33].

3) Green Cloud: the core concept here is to be able
to perform all computations related to cloud in an
economically and energy efficient environment.
However, it still requires improvements despite all
the proposed architectures in place [33].

4.2.3 Data inconsistency (RQ2)

Data inconsistency refers to a state in which

the subscribed data in the mobile database and the
published data in the server-side database hold
different values due to some modifications at either
side. Operations such as addition, deletion and
modification of data occur on one database
independent of the other database; this makes
inconsistency inevitable.

Table 3 below shows inconsistencies on every
case for a single row as discussed in the research
conducted by [11] and [12].

Table 3: Inconsistency Analysis [11] [12]

In [11] and [12], the inconsistency check
applied was Row Based Inconsistency Check
(RBIC). If we critically look at all the 16 cases in
Table 3, ADD operation is present in Cases 2, 5, 6,
7, 8, 10 and 14 indicated above, which cannot
happen for a single row. These five cases are not
considered in this solution. For example, in Case 7
the modified row at the client is different from the
added row at the server side; therefore, such
scenario cannot be considered an inconsistency.
Case 3 and Case 5 also occur independently as Case
7. Likewise for Cases 6, 8, 10 and 14 some
interpretation can be made using the
synchronization algorithm such as SAMD [11][12],
ISAMD [5], and SWAMD [9].

Unlike the above inconsistency checks where
the checking of consistency is between the client
and the server-side databases at all times, the
solution reported in [23] considered inconsistency

on the server-side first during insertion where
multiple devices try to insert records at the same
time. It is also assumed that a new primary key is
created only to the considered connected mobile
devices. Thus, the insertion process begins as
follows:

The server receives request for a new primary
key, the server retrieves the highest primary key
and it returns the highest + 1 to the requester, the
server prerecord the returned primary key, then the
device likewise use the received primary key to
create a record and finally the required information
is synchronized and can be used anytime in the
future for the same record.

Moreover, the actual inconsistency between the
server and the mobile device is checked using
timestamp in this solution. Each client device keeps
a log of the last_sync_timestamp that is instantiated
with 0 and it continues incrementally on any
successful synchronization. Anytime the user
tempers with the Local Database (LDB), the
timestamp gets updated. If any change is made on
Local Database LDB for any cell, the timestamp
matrix for the cell and last_sync_timestamp is
appended with the content and sent to the server.
The server compares the two timestamps for both
ends, if servre_cell_timestamp >

client_cell_timestamp, means the client has the old
record, thus; the client will receive the updated
version from the server, otherwise the server gets
updated with the client value. Similarly, the reverse
also holds. Fig. 11 shows the sample of the
timestamp.

last_sync_time:

current_time_at_server:

Fig. 11: time stamp algorithm [23]

In [7], a registry in the device is registered with
the new, modified and removed content for the
purpose of sending the fundamental data only. Also
the entire synchronization solution is considered to
be offline by default. Consequently, a variable is
created to store the different state of the data such
as State A: means the record is available on both
side but there is need to remove the one on the

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

client; State B: new record is inserted by the client
but not in the server; State C: means the client
modified the same copy that is on the server; and
State D: means both records are consistent.

In addition, during synchronization, the state of
the data is put forward to compare with the record
presented for the inconsistency check. It should be
noted that the inconsistency check is not from the
row data or its ID only, Actual Message Digest

(hashes business data from the client) is compared
with Last Sync Message Digest (latest hashed
business data from the server). Apart from
inconsistency check, this method helps in checking
the data integrity (data may be lost during
transmission) and also lighten the data for faster
transmission.

Another way of ensuring data consistency is by
adding “transactions”. Using this method, atomicity
is granted to each database content on any
operation [25] which clearly indicate that
transactions must be fully applied. Situation where
parts of the operations are considered is entirely not
welcomed in such approach.

4.2.4 Conflict resolution (RQ2)

One of the main challenges of disconnected
environment is resolving conflicts [30]. For
example, if an upload or download is to be made
to/from the server by many clients, alteration of
data may occur individually in several ways which
makes the data in both sides different. Conflict
comes when two or more clients want to
synchronize with the server at the same time, i.e.,
which data is going to be considered the most
recent data because all the data cannot be applied
correctly into the server, such situation is called
conflict [7][11][12][30].

In [12], several synchronization conflicts are
considered although AnySyn is adopted. AnySyn
detects and resolves possible conflicts
conventionally [34]. According to [7], the main
type of conflict occurs during synchronization of
client devices where different operations must be
performed for the same record. Furthermore, the
conflicts are classified into the following
operations: insert, remove and update of data. Table
4 [11] shows the possibility of creating potential
conflicts on each operation that can be performed to
a single record on online database server.

To make the process work perfectly, conflicts
resolution criteria are predefined by the user (client
device) or by the administrator which would be
used to resolve each conflict that is detected using
the sync manager (AnySyn). The conflict resolution
happens when synchronization process begins to
keep the copy of the data in database of the remote
server. Usually the conflicts occur first then the
action of resolving the conflicts is taken afterwards.
Although this method is found to be effective, but
there is need to enhance the detection mechanism
adopted. This could be done by predicting the
possibility of the conflicts and applying a certain
technique to avoid them to a certain level if not
entirely before they occur. In case of those that
escape the prediction stage, the second method can
be applied to resolve the conflicts using AnySyn.

Generally AnySyn uses automatic conflict
resolution mechanisms in DBMSs such as
modification date or message digest. A message
digest [12][11] is a hash function that generate a
fixed length value from a random length message;
so that if there is any changes in any bit the entire
message digest changes. This message digest is
discussed in section 4.2.7 of this paper.

Table 4: Possible Conflicts [11]

In [35], the rapid growth of source code in
decentralized management system (DSCM) can be
verified. A system (Git) that is used in high-profile
projects is considered in this paper which is a very
popular DSCM system. This system is considered
to have prioritized speed in keeping history and
version tracking. On the subject of conflict, this
system uses operations that search the differences
between the local repository and the current system
after which the edited files are synchronized with
the remote server. However, this system is used to
solve the conflicts among files, and also uses
Version History where the users have to intervene
and choose the preferred version [35].

In [26], two getter methods are used. One is to
get the contacts stored on mobile and the other is to
get the contacts stored on the server. The two (with
their differences and the creation or modification
dates) are then presented to the user for the
appropriate action. Fig. 12 depicts this case:

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

 Fig. 12: User Resolving Conflict [26]

4.2.5 Data processing (RQ3)

In mobile wireless computing environment,
databases will be queried by massive low powered
machines via wireless communication channels in
the nearby future [5]. In addition, mobile devices
have limited resources, therefore, minimizing the
load on these devices during synchronization
become necessary[5][7][11][12].

Fig. 13: Data Processing Architecture [11][12]

Correspondingly, to economize storage space
of the mobile device, the server-side database hosts
all the message digest tables and the actual data
table, as depicted in the Fig. 13 above. In this
solution, the data required for business are
maintained by the server-side database, and the user
(mobile database) can download copies of data
from the server-side.

Despite the fact that there is additional load
caused by network access in the Synchronization 1
in Fig. 13, is considered to be negligible due to the
data size of Mobile client data table (MCDT) which
is usually smaller than the data from the server.

Moreover, the data required for Synchronization 1
(MCDT data) is sent to the server-side database in a
single transmission using an SQL query capable of
batch processing over a wired network. From this
stage, the mobile device becomes relieved and the
major part of the operations are performed at the
server-side database, thus, making the server to
shoulder the data processing responsibility
[5][7][8][9] [11][12].

According to [23], data processing can be
minimized by adopting read-any/write-any
replication scheme. In other words, both the server
and client can read and modify the database,
thereafter, the records are synchronized but the

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

major computations are performed on the server as
well. However, it is believed that data processing
can be handled in another way by utilizing the
Google App Engine that has many features such as
load balancing, caching, and traffic peak [25]. The
GAE is located on the server which makes the
server to be the main coordinator of the
synchronization process. While in [7], a
synchronization model was introduced in which its
main aim is to minimize the use of resources of the
mobile device.

Eventually, the following restrictions are found
to be embraced by majority of the researchers to
have the main operations handled at the server-side
so as to enhance productivity and minimized usage
of resources on the mobile device.

(1) Primary key must be available for every
database. (2) The data table and the message digest
table primary keys have a row identical value. (3)
The primary key of the new row that is inserted into
the mobile database cannot be identical with
another primary key that is newly inserted into the
server-side database. According to [11][12], the
relational database model involves every table
having restrictions (1) and (2). Restriction (3)
implies that between the mobile database and the
server-side database there is no primary key
integrity collision during the synchronization
process. Although both ends can have identical
primary key values, it is not worthy spending too
much time since this problem can be resolved by
synchronization policy or even the application-level
processing.

4.2.6 Vendor dependency (RQ3)

In distributed databases systems and mobile
databases, a solution is considered to be vendor
specific if it is based on a particular functionality or
feature that is not standard across all vendors that
may wish to participate (in data exchange) at any
given time.

On top of that, databases are considered to be
heterogeneous if the local nodes have different
types of operating systems (OS) and computers,
even if all local databases are of the same DBMS
and are based on the same data model [36].

In consideration of the above, several
approaches that are vendor specific as well as
database category specific such as RDBMS only
are described below:

In [5] [9] and [12], the standard SQL query as
certified by the ISO (International Organization for
Standardization) was adopted in their solutions to
enable cross platform synchronization without
having any limitation. However, this does not make
it fully independent to all vendors because it is
applicable only to RDBMS category of databases.
Other databases, such as Analytical Databases,
Operational Databases, FlatFile, XML etc. are not
included in the solution. Whereas in [7], a model
was developed to independently establish
communication between the mobile devices and the
server, the model’s independence makes it
adoptable by any system or platform. Nevertheless,
the solution has some table structure that must be
adopted by both parties that wish to communicate.
In addition, a given function is used to generate
message digest that must be the same for both side
to be able to decode the encoded data.

However, many solutions for mobile data
synchronization happened to be vendor specific
such as the solution in [30] which is based on
Microsoft SQL Server and [8] whose solution is
solely dependent to MySQLite. Furthermore, others
like [23], [25] and [8] voted timestamp database
feature as a means of determining the most current
state of the data on either side of the databases. So
if the timestamp of A is higher than the timestamp
of B, A is considered the most up-to-date data and
it is synchronized with B. Another database feature
that is used by [8] is Trigger which is used to
trigger an event in case of any inconsistency that is
discovered using the timestamp database feature
and thus making all the above not suitable for
databases that are fully heterogeneous in nature.

4.2.7 Message digest (RQ4)

The message digest concept is defined using
the following formula:

h = H (M) where:
h = the message digest
H = the hash function
M = the message of any length

A fixed length message digest h will be
generated after subjecting the message M of any
length through the formula. If the value of M
changes, then it means there is also a corresponding
change in the value of h (message digest) [28].

In [11] and [12], a synchronization algorithm
based on secured message digest (SAMD) was
introduced as a means of solving the

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

synchronization problems. The solution only based
on certified ISO (International Organization for
Standardization) SQL queries. Furthermore, the
design of the algorithm was done bearing in mind
the ubiquitous environment; therefore it is
considered to be an effective solution for
synchronization problems in ubiquitous mobile
databases.

In [5], the study proposed Improved
Synchronization Algorithms based on Message
Digest (ISAMD) as an improved way of giving
solutions to synchronization problems. Similarly, it
uses only standard SQL queries certified by the
ISO. The ISAMD makes the images of the table of
the server-side database and the mobile database
using a message digest algorithm; then the images
and the message digest values are saved in the
message digest tables on both sides. The solution
algorithm then makes comparison between the two
stored images to identify and select the rows
needed for synchronization. If the images of both
side are different (value of message digest), it
means there is change in the duplicated rows which
calls for synchronization using ISAMD.

In [9], Synchronization Wireless Algorithm
based on Message Digest (SWAMD) is presented
as an aid to improve and assist data synchronization
between the server-side database and the mobile
device database. Additionally, SWAMD embed the
concept of wireless connectivity, where the two
databases share information wirelessly. SWAMD
proposes message digest table that will be used to
store images from the server-side database and the
mobile device database in order to make
comparison between the two images so as to isolate
the rows that need synchronization.

Although the solutions discussed above have

so many advantageous functionalities such as
independence of database vendor, avoiding
timestamps, triggers as well as stored procedures,
they are all based on the standard SQL queries or
function which causes a greater operations on the
client because the device need a prior knowledge of
the operation of SQL commands [7]. Mobile
devices are attributed to be battery dependent, and
do not have much computing power. In addition,
continuous network access is difficult due to
narrow bandwidth [5]. Therefore, the above
discussed solutions might be better but not the best
for an effective synchronization because they
require mobile device to collate data (using
temporary table) from various data sources as it

prepares the data for synchronization, thereby
placing more operations on the mobile device.

4.2.8 Governing Algorithms and Implementation

Technologies (RQ4)

In this section, we present and discussed the most
commonly adopted algorithms and also the
technologies or tools used in implementing the
existing synchronization solutions.

4.2.8.1 Algorithms

In 2009, Choi et al. [11] introduced a

synchronization algorithm that is based on message
digest discussed in section 4.2.7 of this paper. The
algorithm is discussed as follows (Note: we will use

Fig. 13 and Fig. 14 to explain the algorithm):

Looking at the algorithm in Fig. 14, steps

S1~S3 substitute the stage of Synchronization 2
depicted in Fig. 13 where dangling rows are used to
identify the DSDT rows for which the application
of Steps S1, S2 and S3 occur. This is when the
DSMDT and DSDT are FullyOuterJoined.

Steps S4~S6 Synchronization 1 steps are

shown in this stage. This is where MCMDT and
MCDT synchronization occurs, and Steps S1~S3
are indistinguishable with the basic algorithm.
However, FullOuterJoin, as in Steps S1~S3, is not
practicable in the internal data table (MCDTT and
MDMDT) because it contains different tables of
different vendors that are separated physically. To
unify the data for MCDT, a temporary table is
created at this level to enable Synchronization 1
copy the data to the server-side. The created table
and its data are later deleted when Synchronization
1 is completed. This is where the independence to
database vendors comes in, using this solution. But
it should be noted that the temporary table must be
able to either receive or retrieve data from various
database vendors that might have different data
structure and different connection interfaces to
which the temporary table may not conform.

Steps S7~S12 indicate the Synchronization 3
stage. This is where the inconsistencies and the
rows that require synchronization are identified
using the dangling rows. Also the flags of
MDCMDT and DSMDT are verified to be able to
synchronize between the DSDT and MCDT. This
happens when FullOuterJoin is applied on DSMDT
and MCMDT.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

The algorithm was found to be efficient and
effective in the area of mobile database
synchronization. Thus, it is adopted by many
subsequent solutions such as [12] in 2010, [5] in
2012, [9] in 2013 respectively. In 2014 two
different approaches came in view.

1) [28] introduced the concept of a stateful

synchronization where data synchronization
between the mobile and the server occur based on
the state of the data in either side. It eliminates the
issue of message digest. According to the study,
using message digest is not required since the
server keeps the state of the client’s data. So in case
of any updates, the server will send the invalidation
message to the relevant client. This means some

client’s information has to be stored in the database
of the server to be able to locate which client
should be targeted. We believe that this should be
avoided, thus, we aim to have a complete
independent solution for everyone everywhere and
every platform.

2) [7] adopted the use of message digest and a

new model with different algorithm was proposed
with the aim of minimizing data before
transmission. This will reduce the bandwidth
consumption and improve the speed of data
transfer. Nonetheless, this model is a bit slow as
compared to the earlier discussed algorithm with
approximately 1.0 seconds in the processing time.

Fig. 14: Synchronization Algorithm [11][12]

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

4.2.8.2 Implementation technologies

The most common technologies adopted to
implement the discussed approaches used in
solving the problem of data synchronization
between mobile device and server-side databases
are categorized and discussed as follows:

4.2.8.3 Mobile-device

In mobile device, Android platform was used to
develop the mobile based application in Java
programming language [5][7][12][24], while [30]
considered a different platform which is .Net 2.0
framework. On the other hand, SQLite was chosen
as a mobile database technology in [23] and [25],
while MySQLite was used in [8]. To add on [25],
Cloud to device messaging (C2DM) protocol was
considered since the central server is located on
cloud. The C2DM is provided by Google. In [28],
GPRS technology is embedded, while in [9], Java 2
Micro Edition (J2ME) was used as a platform for
solution implementation.

4.2.8.4 Server-side

On the server side, the most used databases are
RDBMSs. SQLite is used in [5][7][12][8][25], and
Mircrosoft SQL Server in [30]. In addition, MySQL
server is considered by [9], [23] and [28]. Again in
[25], as there are two servers apart from the client,
Google App Engine was used in the second
centralized server located on cloud. Similarly in
[28], additional server is used that is located on
cloud which receives data from the MySQL
database on the local server. When all computations
are completed the server prepare the data in JSON
file format and return it to the client [25].

4.2.8.5 Connections

For an effective data synchronization there must be
proper communication. In such, several approaches
were used to establish the communication between
mobile application and its local database (internal)
and also between the mobile device and the server
(external). In local connection JDBC (Java
Database Connectivity) was selected in [5], [12]
and [28] while .Net Connector in [30]. In the
external connection, [28] uses SSH (putty) for the
connection and ftp for the transfer of data in which
the main server is cloudily located. In [25],
MCSync REST API was used with a client request
like (GET, POST, PUT, DELETE), and formatted

JSON file is returned to the client. Whereas in [8],
[9] and [23], Hyper Text Transfer Protocol (HTTP)
is adopted. In [7], the communication is completely
via JSON technology.

4.2.8.6 Hashing functions

Some solutions believed that the data to be
transferred should be hashed for many reasons such
as security, data transfer speed and data integrity.
Therefore, [5] and [12] selected JCE (Java
Cryptography Extension) to enable them to easily
generate message digest, while JSON file format is
adopted in [25] for the same purpose. Furthermore,
in [8], mysql2sqlite (Base64) converter is used.
Conclusively, [7], [9] and [23] chose to use MD5
technology to produce the message digest in which
every single bit must remain in its original position
(fixed length). Section 4.8 of this paper explains the
concept of message digest.

5. FINDINGS & RECOMMENDATION

Mobile computing has proven to be a fruitful

area of concentration for researchers most
especially in the field of distributed databases and
data management. The fundamental limitations of
mobile devices as outlined in section 1 create
challenges to the current problems of data
management in the area of distributed databases.

Given the amount of work conducted in the last
five (5) years in this area, it can be concluded that
there are confounding and incredible solutions.
However, many problems remain opened for
research. Hence need to have better approaches and
protocols in the area of data management and
synchronization, good bandwidth utilization, better
connection interfaces, best conflict resolution,
better data processing responsibility assignment and
clever algorithms that exploit the vicinity so as to
have answers to existing queries. Undoubtedly, a
balanced number of research contributions will
continue to flow in the future.

Even though more and more incredible researches
have been done in this area, many challenges still
remain. In this section some of them are pointed:

i. Bandwidth utilization and network fluctuation:

Although more sophisticated mobile devices
are technologically advanced, some
areas mobile network infrastructures are
often still under-developed or prone to some
unavoidable disturbances such as severe
weather, etc. This brings about the issue of

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

poor bandwidth over most networks [37].
Therefore, there is a need to lighten data for
easy and fast transfer.

It is also important to determine whether
data is 100% or partly delivered to the
destination due to possible network breakage at
some point. The data transfer starts over again
when the network comes back in operation,
thus make the process tedious.

ii. Data Inconsistency: More work is needed in
studying real cases where the data in mobile
database become different from the data in the
server-side databases most especially in the
distributed network and databases. In solving
that, many techniques have been suggested,
however, most of them use row based
inconsistency check which is cumbersome
when there are so many columns in a given
row and only one or two columns require
update. Therefore, there is need to enhance the
inconsistency checking by handling the
affected data only.

iii. Conflict Resolution: in this area we can see
that the resolving of conflicts happens after the
occurrence of the conflicts. In the future two
things are needed. 1) To have a solution that
will predict the possible occurrence of conflicts
and mitigate them before they occur. And 2) to
develop a model that will explore all the
sources of conflicts and address them in the
solution.

iv. Data processing: A key issue is to effectively
reduce the data processing such as calculations,
manipulations, version comparison etc. done
by the mobile application. Therefore, there is a
need to migrate the highest percentage of the
operations to either the server or the middle tier
so that mobile device power can be further
utilized, memory can be economized, and
unstable network connection can be optimized.

v. Vendor Dependency: Very little has been done
in discovering the best ways to generalize an
approach such that any mobile device (that is
on different platform, versions, operating
system, databases etc) can communicate with
any server or collection of servers with
heterogeneous databases and share information
seamlessly.

vi. Implementation Technologies: SQLite and
MySQLite are the commonly used
technologies on mobile devices while RDBMS
category is most considered on the server side.
However to make the solutions more
heterogeneous, other databases (that use

different structure, schema and NoSQL) should
be explored.

vii. Prototyping: we have discovered many
theoretical studies, some implemented
proprietary works, experimented or simulated
solutions. However, a full-fledged sample that
incorporates the major area of strength and the
main ideas is still missing.

viii. Data type: this problem is common yet often
overlooked, we can see almost all the solutions
are concerned with the structured data while
there are other types of data such as images,
videos and audios [6] and unstructured or semi
structured data that are found to be very vital to
the users. Clients may need to keep and share
such information as mobile device have the
capabilities of taking pictures, recording audio
as well as video. Some specific issues here are:
a. Database object representation
b. The model and the architecture of Database
c. Retrieval of data efficiently

6. CONCLUSION

Using the approach of SLR, we have managed to
conduct literature study on synchronization between
mobile device and server-side databases effectively.
Relevant literatures have been chosen for reviews
and several aspects have been identified to be either
directly or indirectly involved in synchronization.
The aspects are data synchronization between
mobile device and server-side databases, cloud
based solutions, data inconsistency, conflict
resolution strategies, data processing, vendor
dependency, message digest and the algorithms used
as well as the common tools adopted.

Out of the review, several findings and potential
future works have been discussed. As future work,
we intend to conduct research on data
synchronization, data processing responsibility, data
inconsistency, and vendor dependency.

REFRENCES:

[1] A. Stage, “Synchronization and replication in
the context of mobile applications,” 2005, pp.
1–16.

[2] A. Khan and K. Ahirwar, “Mobile cloud
computing as a future of mobile multimedia
database,” vol. 2, no. 1, pp. 219–221, 2011.

[3] A. Stage, “Synchronization and replication in
the context of mobile applications,” in ICFN

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

’10. Second International Conference on,
2012, p. 98,101.

[4] N. Banivaheb, “Mobile Databases,” Slide

Presentation, 2012. [Online]. Available:
http://www.cse.yorku.ca/~jarek/courses/6421/
F12/presentations/Mobile-Databases_
Presentation.pdf.

[5] V. Balakumar and I. Sakthidevi, “An Efficient
Database Synchronization Algorithm for
Mobile Devices Based on Secured Message
Digest,” 2012 Int. Conf. Comput. Electron.

Electr. Technol. [ICCEET] Messag., pp. 937–
942, 2012.

[6] V. Friderikos, “Balancing Transmission and
Storage Cost for Reducing Energy
Consumption in Mobile Devices,” IEEE

3013, 2013.
[7] J. Domingos, N. Simões, P. Pereira, C. Silva,

and L. Marcelino, “Database Synchronization
Model for Mobile Devices,” 2014.

[8] G. P. Zaia, C. R. C. Messias, R. G. Eduardo,
and C. J. Olivete, “MySQLite Sync :
Middleware for stored data synchronization in

mobile devices and DBMSs,” 2014 XL Lat.

Am. Comput. Conf. 2 agente, pp. 1–7, 2014.
[9] T. A. Alhaj, M. M. Taha, and F. M. Alim,

“Synchronization Wireless Algorithm Based
on Message Digest (SWAMD) For Mobile
Device Database,” 2013 Int. Conf. Comput.

Electr. Electron. Eng. Synchronization, pp.
259–262, 2013.

[10] E. Mohan Das and S. Suresh, “A
Synchronization Algorithm of Mobile
Database by Using SAMD Algorithm,” Int.

Conf. Comput. Control Eng. (IEEEC 2012),
no. 12 & 13, 2012.

[11] M. Choi, E. Cho, D. Park, J. Bae, C. Moon,
and D. Baik, “A Synchronization Algorithm
of Mobile Database for Ubiquitous
Computing,” Fifth Int. Jt. Conf. INC, IMS

IDC, NCM 2009., pp. pp.416,419, 25–27,
2009.

[12] M. Choi, E. Cho, D. Park, C. Moon, and D.
Baik, “A database synchronization algorithm
for mobile devices,” IEEE Trans. Consum.

Electron., vol. 56, no. 2, pp. 392–398, May
2010.

[13] B. Kitchenham, O. P. Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software
engineering – A tertiary study,” Inf. Softw.

Technol., 2010.
[14] B. Kitchenham, O. P. Brereton, D. Budgen,

M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software

engineering – A systematic literature review,”
Inf. Softw. Technol., 2009.

[15] P. Achimugu, A. Selamat, R. Ibrahim, and M.
Naz, “A systematic literature review of
software requirements prioritization
research,” Inf. Softw. Technol., vol. 56, no. 6,
pp. 568–585, 2014.

[16] J. Biolchini, P. Mian, A. Natali, T. e Conte,
and G. H. Travassos, “Scientific research
ontology to support systematic review in
software engineering,” Adv. Eng. Informatics,
pp. 133–151, 2007.

[17] B. e Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews
in software engineering,” EBSE Tech. Rep.

EBSE-2007-01, 2007.
[18] G. K. Hanssen, D. Šmite, and N. B. Moe,

“Signs of Agile Trends in Global Software
Engineering Research: A Tertiary Study,” in
6th Int. Conf. on Global Software

Engineering, 2011, pp. 17–23.
[19] A. B. Marques, R. Rodrigues, and T. Conte,

“Systematic Literature Reviews in Distributed
Software Development : A Tertiary Study,”
2012.

[20] T. Conte, V. Vaz, J. Massolar, E. Mendes, and
G. H. Travassos, “Improving a Web Usability
Inspection Technique Using Qualitative and
Quantitative Data from na Observational
Study,” in XXIII Brazilian Symposium on

Software Engineering, 2009, pp. 227–235.
[21] S. M. Downing and H. M. Thomas, “Validity

Threats: Overcoming Interference with
Proposed Interpretations of Assessment
Data,” Downing. N.p., 30 Jan. 2004, 2015.
[Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1046/j.1
365-2923.2004.01777.x/full#ss2. [Accessed:
05-Jun-2015].

[22] D. Šmite, C. Wohlin, T. Gorschek, and R.
Feldt, “Empirical evidence in global software
engineering: a systematic review,” Empir.

Softw. Eng., 2010.
[23] D. Sethia, S. Mehta, A. Chodhary, K. Bhatt,

and S. Bhatnagar, “MRDMS-Mobile
Replicated Database Management
Synchronization,” 2014 Int. Conf. Signal

Process. Integr. Networks, pp. 624–631,
2014.

[24] K. Gopta, R. Kumar, and S. Loothra,
“Smartphone security and contact
synchronization,” 2014 Fourth Int. Conf.

Commun. Syst. Netw. Technol.

SMARTPHONE?SECURITY?AND?CONTAC

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

T?SYNCHRONIZATION?, pp. 621–625,
2014.

[25] J. Sedivy, T. Barina, I. MOrozan, and A.
Sandu, “MCSync – Distributed ,
Decentralized Database for Mobile Devices,”
IEEE 2012, pp. 0–5, 2012.

[26] V. Segu, “Contact synchronization for the
Android platform,” 2011.

[27] M. Ahluwalia, R. Gupta, A. Gangopadhyay,
and M. Mcallister, “Target-Based Database
Synchronization,” pp. 1643–1647, 2010.

[28] B. S. Ramya, S. B. Koduri, and M. Seetha, “A
Stateful Database Synchronization Approach
for Mobile Devices,” no. 3, pp. 316–320,
2012.

[29] N. Gajjam and S. S. Apte, “Mobile Agent
based Communication Platform for
Heterogeneous Distributed Database,” vol. 2,
no. 9, pp. 203–207, 2013.

[30] S. A. Ajila and A. Al-asaad, “Mobile
Databases - Synchronization & Conflict
Resolution Strategies using SQL Server,”
IEEE IRI 2011, August 3-5, 2011, Las Vegas,

Nevada, USA, pp. 487–489, 2011.
[31] L. Zhenyu, C. Zhang, and L. Zunfeng,

“Optimization of Heterogeneous Databases
Data Synchronization in WAN by Virtual Log
Compression,” Futur. Networks, 2010. ICFN

’10. Second Int. Conf., pp. 98–101, Jan. 2010.
[32] D. Barbará, “Mobile Computing and

Databases A Survey,” vol. 11, no. 1, pp.
108–117, 1999.

[33] L. Gruenwald and F. Olken, “Mobile
Database Research: What Is To Be Done?,”
DOI=web.mst.edu/ ~cswebdb/Workshop-

AFRL/Paper3209559.pdf. .
[34] Thomas Fanghänel, J. S. Karlsson, and C.

Leung, “DB2 Everyplace Database Release
8.1: Architecture and Key Features,”
Datenbank- Spektrum, pp. 1–15, 2003.

[35] C. Bird, P. C. Rigby, E. T. Barr, D. J.
Hamilton, D. M. German, and P. Devanbu,
“The promises and perils of mining git,” Min.

Softw. Repos. 2009. MSR’09. 6th IEEE Int.

Work. Conf. (pp. 1-10). IEEE, 2009.
[36] G. Thomas, G. R. Thompson, C.-W. Chung,

E. Barkmeyer, F. Carter, M. Templeton, S.
Fox, and B. Hartman, “Heterogeneous
Distributed Database Systems for Production
Use,” ACM Comput. Surv. - Spec. issue

Heterog. databases, vol. 22, no. 3, pp. 237–
266, 1990.

[37] M. Fathy, M. Soryani, A. Z. Zonouz, Asad,
and A. Seyrafi, “Some Enhanced Cache
Replacement Policies for Reducing Power in
Mobile Devices,” Int. Symp. Telecommun.,
no. IST 2008, pp. 230–234, 2008.

