
Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

RDB2XSD: AUTOMATIC SCHEMA MAPPING

FROM RDB INTO XML

1
LARBI ALAOUI,

 2
OUSSAMA EL HAJJAMY,

3
MOHAMED BAHAJ

1
International University of Rabat, 11100 Sala Al Jadida, Morocco

2, 3
University Hassan I, FSTS Settat, Morocco

E-mail:
1
larbi.alaoui@hotmail.de,

2
elhajjamyoussama@gmail.com,

3
mohamedbahaj@gmail.com

ABSTRACT

Extensible Markup Language (XML) is nowadays one of the most important standard media used for

exchanging data on the internet. Massive data is still however treated, transferred and stored using

relational database systems (RDBs). Therefore, there is a need for an integrated method that deals with

database migration from RDB schema to XML schema. In this paper we provide and develop a new

solution called RDB2XSD that migrates the conceptual schema of RDB into XSD through a MA

(multidimensional array) model. This solution takes an existing RDB as input and extracts its metadata with

as much constraints as possible, creates the MA model to capture the semantics of the relational database

and applies our mapping algorithm to generate the hierarchical XSD schema. For the implementation of

our approach we developed a tool based on java and tested it using Oracle and Mysql databases. Our

experimental results based on this tool show that our mapping strategy is feasible and efficient.

Keywords: XML, XSD, Relational Database RDB, Schema Conversion, MA Model

1. INTRODUCTION

The use of XML schema is rapidly increasing to

represent structured and unstructured data in the

Internet. However, very large volumes of data are

always stocked in relational databases. So, in order

to exchange data between relational database

(RDB) and XML, a translation algorithm is

necessary.

Currently, there are two options recommended by

theW3C for defining an XML schema. One is the

Document Type Definition (DTD) and the other is

the XML Schema (XSD). We choose XML Schema

because:

• it has a powerful set of types and constraints

which leads to a better translation;

• it provides us with a more flexible and powerful

mechanism through “key” and “keyref"

constructs;

• and with XSD we are able to model composite,

multi-valued attributes and complex cardinality

constraints.

Our aim in this paper is to tackle the problem of

translation of relational database schema models to

XML schema models. As it is detailed in section 2

the existing works in this sense do not provide a

complete solution, and so far there still be no

effective proposals that could be considered as a

standard method that preserves the whole original

structure and constraints of the relational database.

For a complete and efficient translation we

provide a mapping strategy that takes into account

several issues in order to preserve all details related

to the relational structure of a relational database so

that all its static and semantic information will be

reflected by the resulting XML schema. In order to

achieve such a complete mapping our approach first

extracts the metadata of the considered database,

generates the multi dimensional model (MA model)

to capture the semantics of the source RDB and

apply our algorithm to build the XML structure.

Our mapping algorithm uses a set of transformation

rules that we give according to a categorization of

the types of relations and the types of the

constraints we are dealing with in a relational

database following some ideas we gave in our

previous works [1-2] that are related to mapping

RDB to OWL (Ontology Web Language). To

validate our solution we have developed a prototype

that implements this algorithm and tested its

effectiveness using concrete examples.

 The rest of the paper is organized as follows. In

section 2 we review the existing RDB to XML

transformation works. Needful terminology and

several rules to convert a relational database

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

schema into XML schema along with a

corresponding categorization of the RDB relations

and attributes are given in Section 3. Section 4

discusses the methods for extracting semantics

using the MA model and provides our mapping

algorithm based on the list of rules. It also presents

a result of the performance test of our developed

mapping tool. Section 5 concludes this paper.

2. RELATED WORK

The conversion from relational database to XML

has recently received significant attention and

become an active research domain. Various

algorithms have been developed to reflect

information about relational database using

transformations into XML documents.

The first works associating RDB with XML were

either XML views based or DTDs based. The XML

views based methods consisted in presenting XML

views of RDB data without providing any schema

for the structure of such views. Users should

therefore have a better knowledge of what the

obtained views represent, in order to be able to

query such views. Among these works we cite

Silkroute in [6] that aims at publishing relational

data as XML views using a transformation

language RXL. Users can then issue queries against

these views. In this sense we can also mention the

works in [3-4], [15], [18-19] and [20].

The DTDs based methods dealt with the mapping

of RDB schemas into DTD schemas providing the

users with conceptual structures of the considered

RDB relations. These were the starting point for the

upcoming transformations that map RDB schemas

into XSD schemas. It is however preferable for the

reasons mentioned in the previous section to have

an XSD schema representation of the RDB schema

rather than a DTD one.

Among the RDB to DTD transformations we cite

the work in [11] that mainly considers the static

constraints on attributes and do not handle the

functional dependencies between relations. Another

RDB to DTD mapping technique is given in [8] and

consists in joining normalized relations into tables

that are mapped into DOMs that are then integrated

into a user specified XML document trees which

are converted into XML DTDs. As DTD-based

translation algorithms we also mention Nesting-

based Translation (NeT) and Constraints-based

Translation (CoT) algorithms [12-14]. However,

NeT does not support any referential integrity

constraint. COT considers the structural part of

RDB schema such as cardinality and only a

restrained semantic part such as foreign key

constraint. In [17] an algorithm NeT-FD is also

proposed for an RDB to DTD mapping that takes

into account the functional dependencies and keys.

To come up with solutions to the limitations of

DTD some mapping techniques have appeared to

transform RDB schemas into XSD (XML schema).

The work in |7] gave an approach in this sense that

does not handles semantic details and uses a

transformation into Extended Entity Relationship

model and an XSD graph as intermediary steps. In

[10] VP-T (Values Pattern-based translation) and

QP-T (Query Pattern-based translation) algorithms

have been proposed to resolve the problem of CoT.

However, both have a critical restriction that cannot

extract a semantic relationship between column

titles. Another approach is given in [5] but uses

intermediary adjacency matrix and oriented graph.

In the same sense transformation approaches were

proposed in [16] and [21] but they do not handle all

details and they respectively use a reference graph

and an ER model as intermediary steps. Also a so-

called holistic transformation algorithm is proposed

in [22] to transform relational database into a

nested XML schema without building a reference

graph. This solution classifies relations into three

categories (base relation, single related relation and

multi related relation according to the number of

foreign keys in the relation tables) and gives

transformation rules to map these categories.

However, marking dominant relations for circular

relations and dominant participant relations for

multi-related relations based on queried data can

provide different XML schema results when an

update of the data is performed on the source

relational database. Therefore, this solution cannot

guarantee an exact XML document creation.

Another technique was presented in [9] where the

authors consider the case where referential integrity

constraints are not included in the RDB schema due

the designer’s fault or old and poor documentation

and extract such constraints from users’ queries.

All the aforementioned XSD based

transformation present limitations in treating

various important RDB elements related to the art

of either relations or attributes such as composite

keys, composite foreign keys, self referenced

relations and cyclic relations. In the following

section we give a more concise and complete

categorization of RDB relations that reflects all

associated static and semantic details. This

categorization will be the basis of our mapping

algorithm we are presenting in section 4. We

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

assume that all relations in the RDB schema are at

least in 3NF.

3. RDB TO XML SCHEMA MAPPING

RULES

In this section we give a complete list of rules for

building the XML schema from the RDB source.

To this end we consider relevant categorizations

related to the various constraints in a relational

database. The first categorization aims at

classifying the relations in the database into four

categories based on different types of the foreign

keys. This classification is as follows:

• NormalRel(R): R is a relation with no foreign

keys;

• PKAndFKRel(R): the primary key of R also acts

as a foreign key;

• OneFKRel(R): R is a relation with one foreign

key;

• MoreThanOneFKRel(R): R is a relation with

more than one foreign key.

Then, to preserve the semantics contained in the

database source we take into account all the

integrity constraints, such as primary keys, foreign

keys, not null and unique characteristics:

• NormalAttr(A, R): A is an attribute in relation R

that is not part of a primary or foreign key and

that is not declared as unique or as not null;

• PK(x, R): x is a single or composite primary key

of the relation R;

• FK(x, R, y, S): x is a single or composite foreign

key in relation R that references y in relation S;

• Unique(x, R): x is declared as a unique attribute;

• NotNull(x, R): x is declared as not null attribute.

Finally we capture all circular relations in the

database source and find a way to convert it to a

hierarchical XML schema. Circular relationships

are divided into two categories:

• SelfRefRelation(R): the relation R has a foreign

key x referencing itself and we denote it by

SelfRefAttribute(R, x).

• CyclicRel: A cyclic relation is defined as a set of

relations R1, ..., Rn (n > 1), where Ri is referenced

by Ri+1 (1 ≤ i ≤ n) and Rn is referenced by R1.

With all these categorizations we are now ready

to give the associated mapping rules.

3.1. Mapping relations

Based on the categorization of relations we gave

in the previous section with respect to their types

and to the various related constraints we are now

able to list in the following the associated mapping

rules for the transformation of RDB schema into

XML schema.

Rule 1. XML schema root element: To ensure the

XML Schema has a single root, we need to prepare

our XSD schema by creating a root element. The

root element is created using the name of the

database source.

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="targetNamespaceURI"

xmlns="targetNamespaceURI"

elementFormDefault="qualified">

 <xsd:element name="DatabaseName">

 <xsd:complexType>

 <xsd:sequence>

 <!--mapped relational schema is here -->

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd>

Rule 2. NormalRel(R): For every normal relation

R, we create an element named R as a child of the

root element.

<xsd:element name="R">

 <xsd:complexType>

 <!-- details of attributes in R -->

 </xsd:complexType>

</xsd:element>

Rule 3. OneFKRel(R): If a relation S with one

foreign key references another relation R, then the

generated element from S must be a sub-element of

the generated element from R. In this case we have

a 0:n relationship. So we add the minOccur="0"

and the maxOccurs="unbounded" constraints to the

relation S (maxOccurs = "unbounded" indicates the

element S may appear more than once).

<xsd:element name="R">

 <xsd:complexType>

 <xsd:sequence>

 < xsd:element name="S" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:sequence>

 </xsd:complexType>

</xsd:element>

Rule 4. PKAndFKRel(R): If the primary key of a

relation S is at the same time a foreign key that is

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

referencing a field in another relation R, then the

generated element from S must be a sub-element of

the generated element from R. In this case we have

a 0:1 relationship, so we add the minOccur="0" and

the maxOccurs="1" to relation S.

<xsd:element name="R">

 <xsd:complexType>

 <xsd:sequence>

 < xsd:element name="S" minOccurs="0"

 maxOccurs="1"/>

 <xsd:sequence>

 </xsd:complexType>

</xsd:element>

Rule 5. MoreThanOneFKRel(R): If a relation R

with more than one foreign key and reference R1…

Rn relations with (n>1), then, to preserve the

integrity constraints, we add “keyRef” element for

each foreign key attribute in R as follow:

<xsd:element name="R">

 <xsd:complexType>

 <xsd:attribute name="FK1" type="xsd:TypeOfFK1" />

 ……………………………....

 <xsd:attribute name="FKn" type="xsd:TypeOfFKn" />

 </xsd:complexType>

</xsd:element>

<xsd:keyref name="R_Ref_R1" refer="R1_y1">

 <xsd:selector xpath="R"/>

 <xsd:field xpath="FK1"/>

</xsd:keyref>

 …………………………………

<xsd:keyref name="R_Ref_Rn" refer="Rn_yn">

 <xsd:selector xpath="R"/>

 <xsd:field xpath="FKn"/>

</xsd:keyref>

3.2. Mapping attributes

Rule 6. NormalAttr(x, R): For each normal

attribute x in relation R, we create an "attribute"

element with the XSD type corresponding to the

type of the field in the RDB.

<xsd:attribute name="x" type="xsd:TypeOfx" />

Rule 7. PK(x, R): A primary key is transformed

into a "key" element with a selector to select the

XPath of its relation.

To ensure the uniqueness of the key element name

we propose to give for each of them a name

obtained by concatenating the name of the Relation

and the primary key value corresponding to the

converted record.

<xsd:key name="R_x">

 <xsd:selector xpath="R"/>

 <xsd:field xpath="x"/>

</xsd:key>

Rule 8. FK(x, R, y, S): To capture the reference

relationship between two relations, a foreign key is

converted to a "keyRef" element. Note that the

foreign key of a OneFKRel(R) is not converted to a

"keyRef" element.

<xsd:keyref name="R_Ref_S" refer="S_y">

 <xsd:selector xpath="R"/>

 <xsd:field xpath="x"/>

</xsd:keyref>

3.3. Mapping Constraints

Rule 9. Unique(x, R): For each attribute declared as

UNIQUE we create a "unique" element with a

selector to select the XPath of the element and a

field to specify the attribute that must be unique.

<xsd:unique name="UniqueR">

 <xsd:selector xpath="R"/>

 <xsd:field xpath="x"/>

</xsd:unique>

Rule 10. NotNull(x, R): If the attribute is declared

as NOT NULL, we add use=”required” into the

mapped attribute element.

<xsd:attribute name="x" type="xsd:TypeOfx"

 use="required"/>

Rule 11. For attributes with the special constraints

Length, CHECK VALUES or CHECK IN we treat

them as follows:

• To limit the length of a value in an attribute we

can use the xsd:maxLength.

<xsd:simpleType name="LimitedString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="100" />

 </xsd:restriction>

</xsd:simpleType>

<!--So we declare the attribute as follows-->

<xsd:attribute name="A" type="LimitedString" />

• CHECK VALUE x: denotes all values that x can

take. In this case we use the facets

xsd:minInclusive, xsd:maxInclusive,

xsd:minExclusive or xsd:maxExclusive.

<xsd:element name="CheckValue">

 <xsd:simpleType>

 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="0"/>

 <xsd:maxInclusive value="120"/>

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

 </xsd:restriction>

 </xsd:simpleType>

</xsd:element>

<!--So we declare the attribute as follows-->

<xsd:attribute name="A" type="CheckValue " />

• CHECK IN constraint on a column allows only

certain values for this column: In this case we use

the facet xsd:enumeration.

<xsd:simpleType name="CheckIn">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="A1"/>

 <xsd:enumeration value="A2"/>

 <xsd:enumeration value="An"/>

 </xsd:restriction>

</xsd:simpleType>

<!--So we declare the attribute as follows-->

<xsd:attribute name="A" type="CheckIn" />

3.4. Mapping Circular Relations

Rule 12. SelfRefRelation(R): In this case we

consider the SelfRefAttribute(R, x) as a normal

attribute, we apply the relation mapping rules to

convert R (rule 1-5) and we add the following

element:

<xsd: element name=”R” type="typeR"/>

For example, consider the following Relation

"Author" with "NameChefProj" as foreign key

referencing "NameAuthor" in the same relation

"Author":

 Author(NameAuthor, TitlePaper, #NameChefProj)

The corresponding transformation rule is:

 <xsd:element name="Author" type="typeAutor"/>

 <xsd:complexType name="typeAutor">

 <xsd:sequence>

 <xsd:element name=" Author " type="xsd:string"/>

 </xsd:sequence>

 <!-- details of attributes in Author -->

 </xsd:complexType>

Rule 13. CyclicRel: In this case it is important, in

this cyclic relation, to make at least one element (or

a reference to an element) as optional. Otherwise an

infinite loop will occur and an error will be thrown

while validating the XML schema.

For example, for a cyclic relationship (R1�R2�

R3�R1) we get the following transformation:

<xsd:element name="R1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="R2" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="R2">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="R3" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name="R3">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="R1" minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

4. OUR METHODOLOGY FOR MAPPING

Our approach aims to define a correspondence

between the RDB and XML schema using a

multidimensional array model (MA) to build the

XML structure. Our approach consists of three

separate phases, as shown in figure 1. The first

phase extracts tables, fields, relationships and

metadata (MTRDB) from the relational database

using java database connectivity (JDBC)

components. In the second phase a

multidimensional array model is generated to

facilitate the migration process. Once the MA

model is created we apply our algorithm based on

the list of rules to create the equivalent XML

schema.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

Figure 1: Relational Database Schema Overview

4.1. Extraction MetaData of RDB schema

Our process starts by extracting the metadata

from the relational database including fields and

relations, by using Java Database Connectivity

(JDBC) components.

MTRDB = {RN, RRef, RRefby, RType, NbrFK, Type, F}

RN: The relation name

RRef: All relation referenced by RN

RRefby: All relations that reference RN

NbrFK: Number of foreign key in RN

Type: (PFK) if the primary key of R also acts as a

foreign key, (SelfR) if R is a SelfRefRel and

(Simple) else

F: List of the fields of the relation RN

F= {FN, FT, FKey, FU, FNull}

FN: The field name

FT: The field type

FKey: (PK) if the field is a primary key, (FK) foreign

key, (PFK) if act as both PK and FK or (CFK) if

foreign key in a cyclic relation that references

another field in the same cyclic relation

FU: (Uq) for unique constraint

FNull: (N) for Not null constraints

4.2. The multidimensional Array model of the

RDB schema

The next step of our mapping approach consists

in generating the MA model based on classification

of elements extracted from MTRDB to facilitate the

migration process.

MA model is a set of array elements that defines

the list of relations taken from RDB schema with

the necessary metadata for our mapping algorithm.

To illustrate the MA model we will use the

following examples of relational database schema.

Underlined attributes represent primary keys.

Attributes endowed with a "#" represent foreign

keys. The first example is given without any

circular relation (SelfRefRel or CyclicRel) and its

equivalent MA model is represented in Table 1:

Communication(idCom, CName)

Country(idCountry, CountName)

City(idCity, CityName, #idCountry)

Company(idCompany, CompName, #idCity)

University(idUniversity, UnivName)

Author(idAuthor, name, #idUniversity, #idCity)

Professor(#idProfessor, Grade)

Address(idAddress, Address)

PrivateAddress(#idPAddress, Type)

Student(#idStudent, Age, #idAddress)

Department(idDept, DeptName, #idChefDept)

Paper(idPaper, PaperTitle, Year)

WritePaper(#idPaper, #idAuthor)

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

Table 1: Representation Of MA Model For Example 1

RN RRef RRefBy NbrFK Type
Fields

FN FT FKey FU FNull
Communication 0 Simple idCom Int PK U N

CName VarChar N

Country City 0 Simple idCountry Int PK U N

CountName VarChar U N

City Country Author 1 Simple idCity Int PK U N

Company CityName VarChar N

idCountry Int FK N

Company City 1 Simple idCompany Int PK U N

CompName VarChar N

idCity Int FK N

University Author 0 Simple idUniversity Int PK U N

UnivName VarChar N

Author City Department 2 Simple idAuthor Int PK U N

Professor Name VarChar N

Univer-

sity

Student idUniversity Int FK

WritePaper idCity Int FK N

Professor Author 0 PFK idProfessor Int PFK U N

Grade VarChar

Address Student 0 Simple idAddress Int PK U N

PrivateAdress Address VarChar U N
PrivateAdress Address 1 PFK idPAddress Int PFK U N

Type VarChar N

Student Address 2 PFK idStudent Int PFK U N

Author Age Int N

idAddress Int FK N

Department Author 1 Simple idDept Int PK U N

DeptName VarChar N

idChefDept Int FK N

Paper WritePaper 0 Simple idPaper Int PK U N

PaperTitle VarChar

Year Date

WritePaper Author 2 PFK idPaper Int PFK N

Paper idAuthor Int PFK N

 In the second example we illustrate how to

represent a SelfRefRel in MA model.

Employee(idEmp, nameEmp, Job, #Chef, #idDept)

The attribute "Chef" is a foreign key that

reference idEmp in the same table. In this case we

present "Chef" as a normal attribute and we put

"SelfR" in the type Column of our MA model

(Table 2).

Table 2: Representation Of MA Model For Example 2

RN RRef RRefBy NbrF

K

Type Fields

FN FT FKey FU FNull

Employee Departement Employee 1 SelfR idEmployee Int PK U N

nameEmp VarChar N

Job VarChar

Chef Int

idDept Int FK

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

 Finally we illustrate a MA model representation

for a CyclicRel example:

City(idCity, NameCity, #idCountry)

Country(idCountry, NameCountry, #idUniversity)

University(idUniversity, NameUniversity, #idCity)

To resolve and extract all cyclic relations in the

database source we use the

MappingCircularRelation() algorithm in our

previous work done in [1]. This algorithm uses a

recursive function to detect if there is any cyclic

relation in RDB schema and produces a list of

cyclic relations as output.

We put "CFK" in FKey column for every foreign

key in a cyclic relation that references another field

in the same cyclic relation.

Table 3: Representation Of MA Model For Cyclic Relationship Example

RN RRef RRefBy NbrFK Type Fields

FN FT FKey FU FNull

City Country University 1 Simple idCity Int PK U N

NameCity VarChar

idCountry Int CFK

Country University City 1 Simple idCountry Int PK U N

NameCountry VarChar

idUniversity Int CFK

University City Country 1 Simple idUniversity Int PK U N

NameUniversity VarChar

idCity Int CFK

4.3. Mapping Algorithm

 In this section, we present our algorithm for the

automatic construction of XML schema from a

relational database. This algorithm takes into

consideration all the aforementioned conversion

rules.

 Given a MA model as input, the algorithm

captures all relations types in order to assemble the

mapped XML schema into a reasonable tree pattern

MapRelation() - Algorithm for mapping relations

Input: The MA model

Output: The corresponding XML schema

Begin

Step 1: Apply rule 1: Create the XML schema root element

Step 2: For each RN (R) in MA model loop

 If (RRefBy(R) = null and NbrFK(R) = 0) then

 Apply rule 2: create element as a child of the root element

 add R to MapRelationList

 MapAttribute of R

 End If

 End loop

Step 3: For each RN(R) in MA model loop

 If (RRefBy(R) != null and NbrFK(R) = 0) then

 create element R as a child of the root element

 add R to MapRelationList

 MapAttribute of R

 Step 3-1: For each RN(Ri’) in MA model loop // Ri’ is a RRefBy(R)

 If (NbrFK(Ri’) = 1 and Type(Ri’) = Simple) then

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

The algorithm used by "MapRelation()" for

mapping attributes is as follows:

Apply rule 3: create element Ri’ as a child of R with minOccurs = 0

 and maxOccurs = unbounded

 add Ri’ to MapRelationList

 MapAttribute of Ri’

 If (RRefBy(Ri’) != null) then

 Apply step 3-1 for all RRefBy(Ri’)

 End If

 Else If (NbrFK(Ri’ = 1 and Type(Ri’) = PFK) then

Apply rule 4: create element Ri’ as a child of R with minOccurs = 0

 and maxOccurs = 1

 add Ri’ to MapRelationList

 MapAttribute of Ri’

 If (RRefBy (Ri’) != null) then

 Apply step 3-1 for all RRefBy (Ri’)

 End If

 Else If(NbrFK(Ri’) = 1 and Type(Ri’) = SelfR) then

 Apply rule 12 for self referenced relation

 MapAttribute of Ri’

 If (RRefBy (Ri’) != null) then

 Apply step 3-1 for all RRefBy (Ri’)

 End If

 Else if(NbrFK(Ri’) > 1) then

 Add Ri’ FKMoreThanOneList

 End if

 End loop

 End If

 End loop

Step 4: For each R in FKMoreThanOneList loop

 create element R as a child of the root element

 add R to MapRelationList

 MapAttribute of R

 For each RN(Si) in MA model loop // Si is a RRef(R)

 If(Type(Si) =PFK) then

 Apply rule 5: create element R_ Si as a child of R with minOccurs = 1

 and maxOccurs = 1

 Else

 Apply rule 5: create element R_ Si as a child of R with minOccurs = 0

 and maxOccurs = unbounded

 End If

 End loop

 For each RN(Ri’) in MA model loop // Ri’ is a RRefBy(R)

 Apply step 3-1 for all RRefBy(Ri’)

 End loop

End

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

4.4. Implementation and validation

 To demonstrate the effectiveness and validity of

our approach a tool has been developed (figure 2 &

3). This tool takes as input an RDB, then extracts

its MTRDB, creates the corresponding MA model

and applies our algorithm to create the resulting

XML schema document.

 To develop our prototype, we used Java as a

programming language, and to store the data and

metadata we used Mysql DBMS which contains

system tables that define the structure of the

database (including names of tables, columns,

constraints ...). Our implementation can however

also work with any other relational database

system. We used the JDBC-API to establish the

connection with the database. This API allows full

access to relational database metadata and quickly

retrieves a description of the tables and constraints

of the database from data dictionaries.

 For the example of a relational database schema

considered above Fig. 2 and Fig. 3 at the end of the

paper show the obtained XML schema and the

conversion of the cyclic relationship of Table 3.

MapAttribute() - Algorithm for mapping attributes and constraints

Input: Relation R

Output: The corresponding XML schema

Begin

 For each Fields in R loop

 If (FNull = N) then

 Apply rule 10: Create attribute with use="required"

 Else

 Apply rule 6: Create a normal attribute

 End If

 If (FKey = PK) then

 Apply rule 7: add a xsd:key element

 Else if (FKey = FK) then

 Apply rule 8: add a xsd:keyRef element

 Else if (FKey =CFK) then

 Apply rule 13 for a cyclic relation

 End If

 If (FU = U) then

 Apply rule 9: add a xsd:Unique element

 End If

End

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

Figure 2: Mapping result of RDB schema

Figure 3: Mapping result of cyclic relation

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

5. CONCLUSION

 In this paper, we have presented a new mapping

process for converting relational database schema

into XML schema. This process handles the

mapping of the static and semantic constraints

based on a well chosen categorization of the

relations in the starting relational database. This

categorization takes into accounts various aspects

with respect to the referential integrity properties

and to the various constraints on attributes. The

mapping process first extracts the metadata from

the RDB source, then a multidimensional array

model (MA model) is generated automatically to

capture the categorization structural designs and

comes up with a complete and well structured

hierarchical XML schema reflects all details in the

initial relational database schema. The results

obtained from our implementation prove the

accuracy and performance of our mapping strategy.

REFRENCES:

[1] L. Alaoui, O. EL Hajjamy, and M. Bahaj,

“RDB2OWL2: Schema and Data Conversion

from RDB into OWL2,” International Journal of

Engineering Research & Technology (IJERT),

vol. 3, Issue. 11, November 2014

[2] L. Alaoui, O. EL Hajjamy, and M. Bahaj,

"Automatic Mapping of Relational Databases to

OWL Antology," Int. J. Engineering &

Research Technology IJERT, Vol. 3, Issue 4

(April, 2014)

[3] C. Baru, “XViews: XML Views of Relational

Schemas.” In Proceedings of DEXA Workshop,

1999, pp. 700–705

[4] M. Carey, J. Kiernan, J. Shanmugasundaram, E.

Shekita, and S. Subramanian, “XPERANTO:

Middleware for Publishing Object-Relational

Data as XML Documents.” In Proceedings of

VLDB, 2000, pp. 646–648

[5] A. Duta, K. Barker, and R. Alhajj, "Converting

relationships to XML nested structures"Journal

of information and organizational sciences,

Volume 28, Numberl- 2 (2004)

[6] M. Fernandez, W. Tan and D. Suciu, SilkRoute,

Trading between Relations and XML,

Computer Networks, Vol. 33 (Elsevier Science,

2000), pp. 723–745

[7] J. Fong, S. K. Cheung, "Translating relational

schema into XML schema definition with data

semantic preservation and XSD graph"

Information and Software Technology, Volume

47, Issue 7, 15 May 2005, Pages 437–462

[8] J. Fong, H.K. Wong, Z. Cheng, "Converting

relational database into XML documents with

DOM" Information and Software Technology,

Volume 45, Issue 6, 15 April 2003, Pages 335–

355

[9] J. Kim, D. Jeong, and D. K. Baik, “A Translation

Algorithm for Effective RDB-to-XML Schema

Conversion Considering Referential Integrity

Information,” Journal of Information Science

and Engineering 25, 137-166, 2009

[10] J. Kim, D. Jeong, and D. K. Baik, “An

algorithm for automatic inference of referential

integrities during translation from relational

database to XML schema,” in Proceedings of

the International Conference on Computational

Intelligence and Security, LNCS 3802, 2005,

pp. 725-730.

[11] C. Kleiner and U. Lipeck, “Automatic

generation of XML DTDs from conceptual

database schemas”, GI Jahrestagung (1) 2001,

pp.396-405

[12] D. Lee, M. Mani, F. Chiu, W. W. Chu,

“Schema conversion methods between XML

and relational models” in Knowledge

Transformation for the Semantic Web, pp. 1–17

(2003)

[13] D. Lee, M. Mani, F. Chiu, W. W. Chu, “Net &

cot: translating relational schemas to XML

schemas using semantic constraints” in CIKM

CIKM’02, November 4–9, 2002, McLean,

Virginia, USA (2002)

[14] D. Lee, M. Mani, F. Chiu, and W. Chu,

“Nesting-Based Relational-to-XML Schema

Translation.” In Proceedings of the WebDB,

2001, pp. 61–66

[15] C. Liu, M. Vincent, J. Liu, and M. Guo, “A

Virtual XML Database Engine for Relational

Databases.” In Proceedings of XSYM, 2003,

pp. 37–51

[16] Ch. Liu, W. Vincent and J. Liu, "Constraint

Preserving Transformation from Relational

Schema to XML Schema" , World Wide Web:

Internet and Web Information Systems, 9, 93–

110, 2006

[17] T. Lv, P. Yan, “Schema Conversion from

Relation to XML with Semantic Constraints”,

Fourth International Conference on Fuzzy

Systems and Knowledge Discovery, 2007 -

FSKD 2007. (Vol. 4), pp. 619 – 623

[18] J. Shanmugasundaram, J. Kiernan, E. Shekita,

C. Fan, and J. Funderburk, “Querying XML

Views of Relational Data.” In Proceedings of

VLDB, 2001, pp. 261–270

Journal of Theoretical and Applied Information Technology
 20

th
 November 2015. Vol.81. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

[19] J. Shanmugasundaram, E. Shekita, R. Barr, M.

Carey, B. Lindsay, H. Pira-hesh, and B.

Reinwald, “Efficiently Publishing Relational

Data as XML Documents.” In Proceedings of

VLDB, 2000, pp. 65–76

[20] V. Turau, “A framework for automatic

generation of web-based data entry applications

based on XML,” in Proceedings of ACM

Symposium on Applied Computing, 2002, pp.

1121-1126

[21] C.Wang, A. Lo, R. Alhajj, K. Barker, “Reverse

engineering based approach for transferring

lagacy relational databases into xml” in

Proceedings of the 6th International Conference

on Enterprise lnformation Systems, lCEIS2004,

Porto, Portugal, April 4 -17, 2004

[22] R. Zhou, Ch. Liu, and J. Li, "Holistic

Constraint-Preserving Transformation from

Relational Schema into XML Schema",

DASFAA 2008, LNCS 4947, pp. 4–18, 2008

