
Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

NEW MODEL OF FRAMEWORK FOR TASK SCHEDULING

BASED ON MOBILE AGENTS

1
YOUNES HAJOUI,

2
MOHAMED YOUSSFI,

3
OMAR BOUATTANE,

4
ELHOCEIN

ILLOUSSAMEN

Laboratory SSDIA

ENSET Mohammedia, University Hassan II of Casablanca, Morocco

E-mail:
1
hajouiyounes@gmail.com ,

2
med@youssfi.net,

 3
o.bouattane@gmail.com,

4
illous@hotmail.com

ABSTRACT

Compute-intensive applications and applications with high volume of data need strong processing power

and considerable storage resources. To reach the required performance, multiple machines should be

associated in order to handle the distributed tasks. In this paper, we propose a new framework for task

distribution based on mobile agents. In the proposed model, a dispatcher agent is used to distribute parallel

tasks to worker agents. Each worker agent is deployed in a node of the distributed system according to the

load balancing system. The proposed framework is build using three layers which are the user task

producer, the scheduling load balancing layer and the workers layer. After presenting the architecture and

the structure of the proposed model, an example of application, relating to the distributed image processing,

is presented to improve the performance of this framework.

Keywords: Task scheduling; Parallel Computing; Distributed System; Framework; Multi-Agent system;

Load balancing.

1. INTRODUCTION

In the intensive computation domain, the

applications need more powerful processing models

and high storage resources availability and

computing. As examples, we find: weather

forecasts, financial projects, scientific simulations

of mechanical, aerodynamic, electrical or molecular

biology problems, and other application of high

volume of data such as image processing,

multimedia and video games. In this domain, the

use of a single processor machines proves the

performance limit of these sequential models. Since

the technologies of microprocessors, the data

storage units, and the networking systems, are

continuously evolving, the limits of the obtained

supercomputers are quickly bounded by the large

amount of data and processing applications.

Subsequently, it is necessary to combine the

performance of several processing and storage units

to overcome these limitations. Parallel and

distributed models became the natural solutions for

several types of computational systems.

Several studies are published in the literature on

the scheduling tasks on distributed system and

scheduling policies in grid computing. It has been

shown that scheduling has a great influence and

impact on the performance and cost-efficiency

[1,4].

In [5] authors define a task routing model

allowing the use of shared resources. In this model,

tasks are scheduled on the assigned workstation to

exploit the considerable power of the distributed

system. Two routing policies are defined: static and

adaptive. In the static policy distributed jobs are

based on using information about the average

behavior of the system. In the adaptive policies, the

scheduler use information about processor queues

to take decision about load scheduling.

 In the static policy, two techniques are

used: deterministic and probabilistic. In

deterministic policies, a routing algorithm is applied

when tasks are ready and specified [5]. In the

probabilistic case, tasks are sent to workstations in

an arbitrary manner, the machines have the same

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

probability of receiving these tasks from the

scheduler.

Scheduling algorithms are also classified into

immediate and delayed/batch modes. In the

immediate mode, the algorithm transmits arrivals

tasks as soon as possible to the workstations

designed to perform distributed jobs [6]. While in

the batch mode, algorithms distribute all tasks of a

job queued in the scheduler [7].

To exploit the considerable power of the

distributed system, jobs must be partitioned into

several tasks using algorithms evaluated in [8, 9].

These tasks are distributed to multiple machines

aiming to reduce the cost of communication latency

and of execution time.

In this paper, we propose a new framework for

task distribution based on mobile agents. In the

proposed model, a dispatcher agent is used to

distribute parallel tasks to worker agents. Each

worker agent is deployed in a node of the

distributed system according to the load balancing

system. The proposed framework is build using

three layers which are the user task producer, the

scheduling load balancing layer and the workers

layer. In this work we will present an

implementation based on JADE [10] multi agent

system framework.

The structure of this paper is as follows. In the

second section, we describe the architecture of the

proposed model. In this part we also present the

load balancing system used in task routing. In

Section III, an example of application using

Multiple Program Multiple Data (MPMD)

architecture and, relating to the distributed image

processing, is presented to improve the performance

of this framework. In the last section, conclusions

and perspective are presented.

2. PROPOSED FRAMEWORK

2.1 Architecture of Framework

The proposed load distribution system aims to

use the agent characteristics to create an

autonomous system. A real multi-agent system is

implemented using the JADE platform (Java Agent

Development Framework). It simplifies the

implementation of multi-agent systems

The solution that we propose aims to develop a

multi-agent system to distribute tasks on a cluster

of heterogeneous distributed machines, using

intelligent agents or software entities which can

delegate specific tasks.

These mobile agents are distributed in different

nodes of the system and can dynamically collect the

performance of grid nodes to calculate and execute

the tasks that they receive. They do not know in

advance what code or when they will run it. These

same agents co-operate processors of different

nodes to move the load of overloaded ones to those

that are less loaded.

As shown in Figure 1, the system goes through

three main stages, our proposed Framework is

based on 3 layers: User Producer, Task Distribution

- Load Balancing, and Layer3: Workers. Each layer

will be detailed later in this article.

Figure 1 : The layers of our Framework

We distinguished 5 different types of intelligent

agents in our proposal:

1. Producer Agent

2. Dispatcher Agent

3. Tester Agent

4. Controller Agent

5. Worker Agent

Layer 1: User Producer

In this first layer, users prepare the tasks they

want to perform. Then these tasks migrate to layer

2 via: Producer Agent. The layer 2 is preoccupied

with these tasks and sends them to Layer 3 via the

Dispatcher agent, this agent checks the status of

availability of workers machines then it affects

Workers agent of layer 3 to received tasks. The

results are then returned to the client applications:

Producers Agent.

The preparation of tasks is made by extending

from abstract class AbstractTask, the developer is

asked to define the algorithm and the instructions to

execute, and define the data needed by extending

from the class AbstractTaskDataObject.

The following class diagram illustrates the

preparation of a task by the user.

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

Figure 2: Class diagram illustrating preparation of a

Task
Before beginning scheduling tasks to the worker

machines, the first step consists to determine the

performance and the cost of communication:

Latency of these nodes, this will allow the

distribution algorithm to take scheduling decisions.

For this, a reference task T0 is performed before

starting the distribution process by the VPU

(Virtual Processing Unit) Controller of all Workers.

Each VPU Controller communicates to Layer 2

these parameters: Performance and latency, which

will allow the Framework to optimize the

distribution.

Latency θLi is the cost of communication time

taken by the task T0; since his departure from the

producer agent, through the Dispatcher that

determines where it will go, until his return after its

execution by the worker.

θPi(TK): Processing duration of the task TK, by

the node i.

θLi(TK): Communication Latency required to

perform the Task TK, in the node i.

θi(TK): Total Time required to perform the task

TK .

The communication Latency of each node Ni,

can be easily calculated by :θLi=θi-θPi .

The following use case diagram illustrates the

phase of referencing with the task T0:

Figure 3: Sequence diagram of referencing phase

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

Layer 2: Task Distribution - Load Balancing

At this layer, the Dispatcher Agent aims to

distribute and schedule tasks. It receives them from

the layer 1, measures them with a Tester Agent, and

then checks the status of availability of Worker

processors of layer 3. Next, it sends them to be

performed. The Dispatcher agent orders tasks

following rules defined by the distribution

algorithm which is based on a data structure that

logs exchanges with Workers.

According to this history, the Dispatcher takes

decisions to schedule and send tasks that will be

received and performed by the VPUs. Figure 7

shows use case of the scheduling of tasks by the

Dispatcher.

Layer 3: Workers

In this layer, a cluster of Worker machines which

are referenced by the layer 2 are ready to contribute

to the parallel computing and to execute the tasks

received from the Dispatcher.

Each node is represented by a VPU called

Controller, this Controller, as cited in layer 1,

performs a reference task T0 to determine the

performance of the node to which it belongs and

determine the cost of communication: latency.

After the referencing phase, the controllers

periodically collect the state of the processor node

Workers. This is done through the communication

of each controller, using the located VPUs. These

parameters are communicated to the Dispatcher by

the ACL messages; the latter uses these parameters

to feed the distribution algorithm.

The Dispatcher performs in a periodic manner

the distribution algorithm. This algorithm assigns

each received task, Based on its evaluation with the

Tester Agent, to adequate Worker. In parallel this

Dispatcher decides if it is necessary to perform a

load balancing program.

Figure 8 illustrates our conceptual description of

the Framework for Parallel task distribution.

2.1 Load Balancing

Load balancing is the important objective for

multi-objective optimization in the task scheduling

problem in the grid. It aims to optimize resource

use, maximize throughput, minimize response time,

and avoid the overload of any single resource. The

authors have used in [11] a mobile agent, which

migrates the loads from overloaded nodes to

under loaded ones, Each task in the distributed

system should be assigned to a VPU.

The VPUs can communicate with each other

asynchronously by exchanging through their ports

ACL messages. These messages contain data and

tasks to be performed.

As already mentioned in the layer 3, Worker

machines are referenced periodically by layer 2,

these latter are ready to contribute in parallel

computing and execute tasks which are sent by the

Dispatcher. After the referencing phase, the

Controllers Agent periodically collects the state of

Worker processors based on their communication

with different VPUs deployed in these machines,

and then the Controllers communicate the status of

the processors and latency to the Dispatcher via the

ACL messages which decides if it is necessary to

perform a load balancing. In case of imbalance, it

determines the overloaded nodes (sources) and the

under-loaded ones (receivers).

Migration task is one of the techniques used in

load balancing problems, Agent migration is

adopted to support load balance in multi-agent

systems. Before taking decisions of migration, the

Dispatcher must take the following decisions:

• Which agent should be migrated?

• Where should this agent go?

Then it starts the transfer of tasks to establish the

balancing of the system, this transfer is done by the

migration of VPUs from overloaded nodes to

under-loaded ones

If the selection is made with care, migrant agent

will not cause an overload on the destination node

and the cost of migration and balancing will be

Optimal.

3. APPLICATION AND REULTS

To test the proposed Framework of distribution,

a multi-agent system is implemented to analyze the

results obtained by our parallel design, and our

distribution algorithm. We worked on a grid of 8

heterogeneous machines.

The referencing of Worker machines is done by a

reference task T0 in order to determine the latency

and power of each machine. Next, it allows the

distribution algorithm, the knowledge of the

network topology of the platform and reduces

scheduling to the slower machines as well as to

those which have the most expensive

communications. Table 1 above shows the latencies

calculated during this referencing phase:

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

Node i θi (Total

Time)

(ms)

θPi(Processing

duration by

node i)(ms)

θLi

(Latency)

(ms)

1
2690 2595 95

2
2700 2570 130

3
2830 2688 142

4
2845 2694 151

5
2910 2751 159

6
2870 2700 170

7
3000 2810 190

8
2900 2700 200

Table 1: Referencing phase

The curve of Figure 4 shows the latencies of

different machines employed in this work. This

parameter is calculated by the following formula:

θLi = θi – θPi .

The diagram of Figure 5 shows the Performance

of those machines. These parameters are considered

very important to take the scheduling decisions by

the Load Balancer Algorithm.

Figure 4: Latency diagram of different machines in Grid

Figure 5: Performance diagram of different machines in

Grid

After the referencing phase, that's aims the

knowledge and classification of nodes in the grid

according to their powers and their latencies, we

start the distribution of tasks, it is launching the

parallel execution of 300 tasks on a grid of 1, 3,5,

and 8 machines. As shown in Table 2, this

distribute system, allows reducing the overall

execution time of these 300 tasks compared to the

sequential system. The tasks that we are distributed

are prepared by the extending of the AbstractTask

class, the data of these tasks are defined by the

extending of AbstractTaskDataObject class; in

this case the algorithm that we have chosen to do

the test, is Sobel ,for detecting the contour, on the

list of 300 images.

Number of Machines

Sequential

1

Machine

3

Machines

5

machines

8

machines

execution

duration(ms)

(90 images)

300 131 73 47

execution

duration(ms)

(300

images)

1000 400 250 180

Table 2: The execution time in different grid

Figure 6 above shows that the curve of the

running time is decreasing; with more machines we

optimize the distribution.

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

Figure 6: Curve of the execution time in different grid

4. CONCLUSION

In this paper we have proposed a new framework

for parallel distribution based on mobile agents, this

latter is based on agents deployed on every node of

the distributed system that’s provides dynamically,

from their respective nodes, to the

Dispatcher/Scheduler agent, all information needed

to make scheduling decisions in a way that

maximizes the system performance and minimizes

execution time.

As perspective, we intend to complete our work

in order to optimize the work of scheduler to

maximize the use of all resources and minimize the

overall maximum execution time, the scheduler will

become a load balancer, which will cooperates

different processors and will start the migration

tasks from under loaded nodes to the overloaded

ones.

Load Balancing

 checks the status of

processors:queue of processors

runTask(Tn)

runTask(Tj)

State of processor n

Call for state of processor n

State of processor j

Call for state of processor j

State of processor n

Call for state of processor n

checks the status of avai labi lity of

processors

LoadData(Dn)

NotifyLoadingData()

runTask(Dn)

LoadData(Dn)

LoadResult()

LoadResult()

runTask(Dj)
LoadData(Dj)

NotifyLoadingData() LoadData(Dj)

runTask(Di)
LoadData(Di)

NotifyLoadingData()
LoadData(Di)

runTask(Ti)

Start Dispatching Task

Using Load Distribution

Node2Node1Dispatcher Node n

loop

seq

Collect the state of all

nodes

runTask(Tn)

runTask(Tj)

State of processor n

Call for state of processor n

State of processor j

Call for state of processor j

State of processor n

Call for state of processor n

checks the status of avai labi lity of

processors

LoadData(Dn)

NotifyLoadingData()

runTask(Dn)

LoadData(Dn)

LoadResult()

LoadResult()

runTask(Dj)
LoadData(Dj)

NotifyLoadingData() LoadData(Dj)

runTask(Di)
LoadData(Di)

NotifyLoadingData()
LoadData(Di)

runTask(Ti)

Figure 7: Sequence diagram of Tasks distribution phase

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

REFERENCES

[1] A. Chowdhury, L.D. Nicklas, S.K. Setia, E.L.

White, Supporting dynamic space-sharing on

clustersof non-dedicated workstations, in:

Proceedings of the 17th International

Conference on Distributed Computing Systems

(ICDS ’97), IEEE, Baltimore, MD, 28–30 May

1997, pp. 149–158.

[2] H.D. Karatza, Task Scheduling Performance in

Distributed Systems with Time Varying

Workload, Neural, Parallel & Scientific

Computations, Dynamic Publishers, Atlanta,

10 (3) (2002) 325–338.

[3] M.S. Squillante, Y. Zhang, A.

Sivasubramaniam, N. Gautam, H. Franke, J.

Moreira, Modeling and analysis of dynamic

coscheduling in parallel and distributed

environments, in: Proceedings of the Joint

International Conference on Measurement and

Modeling of Computer Systems, ACM, New

York, NY, 2002, pp. 43–54.

[4] Y. Zhang, A. Sivasubramaniam, Scheduling

best-effort and real-time pipelined applications

on timeshared clusters, in: Proceedings of the

13th Annual ACM Symposium on Parallel

algorithms and Architectures, Crete Island,

Greece, 2001, pp. 209–219.

[5] S.P. Dandamudi, Performance implications of

task routing and task scheduling strategies for

multiprocessor systems, in: Proceedings of the

IEEE Euromicro Conference on Massively

Parallel Computing Systems, Ischia, Italy, May

1994, pp. 348–353.

[6] F. Xhafa, L. Barolli, A. Durresi, Immediate

mode scheduling of independent jobs in

computational grids, in: Proceedings of the

21st International Conference on Advanced

Networking and Applications (AINA’07), May

2007, IEEE, 2007, pp. 970–977.

[7] F. Xhafa, L. Barolli, A. Durresi, Batch mode

scheduling in grid systems, International

Journal of Web and Grid Services 3 (1) (2007)

19–37

[8] J. Aguilar, E. Gelenbe, Task assignment and

transaction clustering heuristics for distributed

systems, Information Sciences, vol. 97,

Elsevier Science, Amsterdam, Netherlands,

1997, pp. 199–219.

[9] Ming Wu, Xian-He Sun, Memory conscious

task partition and scheduling in grid

environments, in: Fifth IEEE/ACM

International Workshop on Grid Computing

(GRID’04), 2004, pp. 138–145

Figure 8: Conceptual description of the Framework for Parallel task distribution

Journal of Theoretical and Applied Information Technology
 10

th
 November 2015. Vol.81. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

[10] F. L. Bellifemine, G.Caire, and D.

Greenwood, “Developing MultiAgent

Systems with JADE”. Wiley, 2007.

[11] Mohamed Youssfi, Omar Bouattane, Jamila

Bakkoury, Mohammed Ouadi Bensalah, “A

new massively parallel and distributed virtual

machine model using mobile agents “ IEEE

International Conference on Multimedia

Computing and Systems (ICMCS), 2014, 14-

16 April 2014, pp.407 – 414, ISBN: 978-1-

4799-3823-0 Marrakech, Morocco DOI:

10.1109/ ICMCS.2014.6911306.

