COMPARISON OF SOFTWARE RELIABILITY ANALYSIS FOR BURR DISTRIBUTION

Dr. G. SRIDEVI, Dr. C.M. SHEELA RANI

1Professor, Dept. of CSE, K.L.University, Vaddeswaram, India.
2Assoc. Professor, Dept. of CSE, K.L.University, Vaddeswaram, India.
E-mail: 1 sridevi.gutta2012@gmail.com, 2 sheelarani_cse@kluniversity.in

ABSTRACT

This model is for Burr type distribution with three parameters which is discussed in two versions - the Burr type III and Burr Type XII. In this paper, we compare the performance of two versions of the suggested model is tested on five real time software failure data sets. The versions perform with variable accuracy, which suggest that no universal “best” among the two versions of the model could be attained.

Keywords: Burr type III Model; Burr type XII Model; NHPP; ML Estimation;

1. INTRODUCTION

The important quality characteristic of software is software reliability, which can evaluate and estimate the operational quality of a software system during its development. Software Reliability is the probability of failure free operation of software in a specified environment for a specified period of time (Lyu, 1996) (Musa et al., 1987). SRGM is a mathematical model of how the software reliability improves as faults are detected and required (Quadri and Ahmad, 2010). Among all SRGMs developed so far a large family of stochastic reliability models based on a Non-Homogeneous Poisson Process known as NHPP reliability model has been widely used. The main objective is to develop a reliability growth model that can be used to provide quantitative measure for software performance assessment. There is several software reliability growth models exist, one can predict the reliability of software and the number of errors in the software systems. During the past three decades research on software reliability engineering has been conducted and developed numerous statistical models for estimating software reliability. Most existing models for predicting software reliability are based purely on the observation of software product failures where they require a considerable amount of failure data to obtain an accurate reliability prediction. The concept of Probability, distribution function, probability distribution plays an important role in building the software reliability growth model.

2. RELATED RESEARCH

Burr type XII distribution was first introduced in 1942 by Irving W. Burr. Since the corresponding density functions have a wide variety of shapes, this system is useful for approximating histograms. The Burr XII (BXII) distribution, having logistic and Weibull as special sub models, is a very popular distribution for modelling lifetime data and for modelling phenomenon with monotone failure rates. It has been applied in the field of reliability studies and failure time modelling. This section presents the theory that underlies the proposed distributions and maximum likelihood estimation for complete data. If ‘t’ is a continuous random variable with pdf: \(f(t; \theta_1, \theta_2, \ldots, \theta_k) \). Where \(\theta_1, \theta_2, \ldots, \theta_k \) are k unknown constant parameters which need to be estimated, and CDF: \(F(t) \)

Where, the mathematical relationship between the PDF and CDF is given by:

\[
\frac{d(F(t))}{dt} = f(t) = \frac{df(t)}{dt}.
\]

Let ‘a’ denote the number of expected faults that would be detected given infinite testing time in case of finite failure NHPP models. Then, the mean value function of the finite failure NHPP models can be written as:

\[
m(t) = aF(t) + bt^2.
\]
cumulative distributive function. The failure intensity function \(\lambda(t) \) in case of the finite failure NHPP models is given by: \(\lambda(t) = aF'(t) \) (Pham, 2006).

3. NHPP MODEL

There are several software reliability growth models available for use according to probabilistic assumptions. The first one is the Markovian model which is the failure process represented by Markov. The second one is the fault counting model which describes the failure phenomenon by stochastic process like Homogeneous Poisson Process (HPP), Non Homogeneous Poisson Process (NHPP) and Compound Poisson Process. The Non Homogenous Poisson Process (NHPP) based software reliability growth models are proved to be quite successful in practical software reliability engineering [4]. Model parameters can be estimated by using maximum Likelihood Estimation (MLE). The formulation of NHPP model is described in the following lines.

A software system is subject to failures at random times caused by errors present in the system. Let \(\{N(t), t \geq 0\} \) be the cumulative number of software failures by time ‘t’, where \(t \) is the failure intensity function, which is proportional to the residual fault content. As there will be no errors at \(t=0 \) we have

\[N(t) = 0 \]

Let \(m(t) \) represent the expected number of software failures by time ‘\(t \)’. As the expected number of errors remaining in the system is finite, the mean value function \(m(t) \) is finite.

\[m(t) = \begin{cases}
0, & t = 0 \\
 a, & t \to \infty
\end{cases} \]

Where ‘\(a \)’ is the expected number of software errors to be eventually detected.

Suppose \(N(t) \) is known to have a Poisson probability mass function with parameters \(m(t) \) i.e.,

\[P\{N(t) = n\} = \frac{(m(t))^n \cdot e^{-m(t)}}{n!}, n = 0, 1, 2, \ldots \infty \]

Where \(N(t) \) is the cumulative number of failures observed by time ‘\(t \)’, \(N(t) \) can be modeled as a Poisson Process with a time dependent failure rate. Thus the stochastic behavior of software failure phenomena can be described through the \(N(t) \) process. Various time domain models have developed in the literature (Kantam & Subbarao, 2009) that describes the stochastic failure process by an NHPP which differ in the mean value function \(m(t) \).

4. DESCRIPTIONS OF BURR TYPE MODELS

In this section, we propose two variations of Burr type distribution models. The Burr distribution has a flexible shape and controllable scale and location which makes it appealing to fit to data. It is frequently used to model insurance claim sizes [5].

4.1 Burr type III Model Development

The mean value function of Burr type III model is given by [17]

\[m(t) = a \left[1 + t^{-c} \right]^{-b} \]

(1)

To assess the software reliability, the parameter values ‘\(a \)’, ‘\(b \)’ and ‘\(c \)’ are estimated from software failure data. To estimate the parameter values for the Burr type III model, expressions are derived as mentioned below. Assuming that the data are given for the occurrence times of the failures or the times of successive failures, i.e., the realization of random variables \(T_j \) for \(j = 1, 2, \ldots n \).

Parameter Estimation – Mathematical Derivation for Burr type III model

Given the recorded data on the time of failures, the Log likelihood function (LLF) takes on the following form[17]:

\[LLF = \sum_{i=1}^{n} \log \left[\lambda(t_i) \right] - m(t_n) \]

(2)
Accordingly parameters ‘a’, ‘b’ and ‘c’ would be solutions of the equations

\[\frac{\partial \log L}{\partial a} = 0 \]

\[\Rightarrow a = n \left(1 + t_n^{-c} \right)^b \]

\[\frac{\partial \log L}{\partial b} = 0 \]

\[\Rightarrow b = \frac{n}{\sum_{i=1}^{n} \log \left(1 + t_i^{-c} \right) - n \log \left(1 + t_n^{-1} \right)} \]

The value of the parameter ‘c’ is estimated by Newton-Raphson iterative method using

\[c_{i+1} = c_i - \frac{g(c_i)}{g'(c_i)} \]

where \(g(c) \) and \(g'(c) \) are expressed as

\[\frac{\partial \log L}{\partial c} = 0 \]

\[\Rightarrow g(c) = \frac{-n \log(t_n^{-c})}{1 + t_n^{-c}} + n \frac{c}{1 + t_n^{-1}} \]

\[\sum_{i=1}^{n} \log t_i \left[\frac{2}{1 + t_i^{-1}} \right] \]

\[\frac{\partial^2 \log L}{\partial c^2} = 0 \]

\[\Rightarrow g'(c) = \frac{n \left(\log(t_n)^2 t_n^{-1} \right) - n}{(c^2 - 2c^1)} \]

\[\sum_{i=1}^{n} \frac{2t_i^{-1} \left(\log(t_i) \right)^2}{(t_i^{-c} + 1)^2} \]

The value of ‘c’ in the above equations (7) & (8) can be obtained using Newton-Raphson iterative method.

4.2 Burr Type XII Model Development

The Cumulative distributive function (CDF) for Burr type XII is given by[18]

\[m(t) = \int_0^t \lambda(t) \, dt = a \left[1 - \left(1 + t^{-c} \right)^b \right] \]

\[= a F(t) \]

The Probability Density Function (PDF) of Burr XII distribution are given, respectively by

\[\lambda(t) = a \left(c b t^{c-1} \right) \left(1 + t^{-c} \right)^{b+1} = a f(t) \]

The mean value function of Burr type XII model is given by

\[m(t) = a \left[1 - \left(1 + t^{-c} \right)^b \right], \quad t \geq 0 \]

Parameter Estimation – Mathematical Derivation for Burr type XII model

We conduct an experiment and obtain N independent observations \(t_1, t_2, \ldots, t_n \). The likelihood function for time domain data (Pham, 2003) is given by[18]

\[L = e^{-m(t)} \prod_{i=1}^{n} \lambda(t_i) \]
\[
L = \prod_{i=1}^{N} abc_{i}e^{- \frac{b+t_{i}^{c}}{(1+t_{i}^{c})^{b}}} \]

\[
\log L = -a + a(1 + t_{i}^{c})^{-b} + \sum_{i=1}^{n} \left(\log a + \log b + \log c + (c-1) \log t_{i} - (b+1) \log(1 + t_{i}^{c}) \right)
\]

Taking the Partial derivative with respect to ‘a’ and equating to ‘0’.

(i.e., \(\frac{\partial \log L}{\partial a} = 0 \)).

\[
\therefore a = \frac{n(1+t_{i}^{c})^{b}}{(1+t_{i}^{c})^{b} - 1}
\]

The parameter ‘b’ is estimated by iterative Newton Raphson Method using \(b_{n+1} = b_{n} - \frac{g(b)}{g'(b)} \), Where \(g(b) \) and \(g'(b) \) are expressed as follows.

\[
g(b) = \frac{\partial \log L}{\partial b} = 0
\]

\[
\frac{\partial \log L}{\partial b} = g(b) = \frac{n \log \left(\frac{1}{t+1} \right)}{(t+1)^{b} - 1} + \frac{n}{b} - \sum_{i=1}^{n} \log(t_{i}+1)
\]

\[
g'(b) = \frac{\partial^{2} \log L}{\partial b^{2}} = 0
\]

\[
\frac{\partial^{2} \log L}{\partial b^{2}} = g'(b) = -n \left(\log \left(\frac{1}{t+1} \right) \right) \left(\frac{(t+1)^{b} \log(t_{i}+1)}{(t+1)^{b} - 1} \right)
\]

Let \(S_{k} \) be the time between \((k-1)^{th}\) and \(k^{th}\) failure of the software product. Let \(X_{k} \) be the time up to the \(k^{th}\) failure. Let us find out the probability that time between \((k-1)^{th}\) and \(k^{th}\) failures, i.e., \(S_{k} \) exceeds a real number ‘s’ given that the total time up to the \((k-1)^{th}\) failure is equal to x.

\[
i.e., \ P[S_{k} > \frac{s}{X_{k-1}} = x]
\]

\[
R_{S_{k}}/X_{k-1}(s/x) = e^{-[m(x+s)-m(s)]}
\]

This Expression is called Software Reliability.

5. DATA ANALYSIS

In this section we evaluate the method of performance based on the considered mean value function for five different data sets of the above form, borrowed from (Xie, 2002), (Pham, 2006), IBM (Ohba, 1984) and (SONATA, 2010). From the above specified equations the values of ‘b’ and ‘c’ in can be obtained using iterative Newton Raphson Method. Solving these equations simultaneously, yields the point estimates of the parameters a, b and c. These equations are to be solved iteratively and their solutions in turn when substituted in the log likelihood equation of ‘a’ would give analytical solution for the MLE of ‘a’. The values of b and c are obtained by applying
numerical methods. The parameter estimates are presented in Table I.

Table 1: Parameters Estimated through MLE

<table>
<thead>
<tr>
<th>Version</th>
<th>Datasets</th>
<th>No of Samples</th>
<th>Estimated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>Burr Type III</td>
<td>NTDS</td>
<td>26</td>
<td>34.46570</td>
</tr>
<tr>
<td></td>
<td>AT & T</td>
<td>22</td>
<td>26.83982</td>
</tr>
<tr>
<td></td>
<td>Xie</td>
<td>30</td>
<td>33.31042</td>
</tr>
<tr>
<td></td>
<td>SONATA</td>
<td>30</td>
<td>79.83135</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
<td>15</td>
<td>20.62478</td>
</tr>
</tbody>
</table>

Burr Type XII	NTDS	26	26.10527	0.99889	0.99890
	AT & T	22	22.03246	0.99985	0.99961
	Xie	30	30.04080	0.99982	0.99961
	SONATA	30	30.01639	0.99995	0.99992
	IBM	15	15.05104	0.99953	0.99919

6. METHOD OF PERFORMANCE ANALYSIS

The performance of SRGM is judged by its ability to fit the software failure data. The term goodness of fit denotes the question of “How good does a mathematical model fit to the data?”. In order to validate the model under study and to assess its performance, experiments on a set of actual software failure data have been performed. The performance evaluation of software reliability growth model is generally measured with sum of square errors (SSE) and correlation index of regression curve equation (R-squared). Among them, the model performance is better when SSE is smaller and R-square is close to 1.

SSE is used to describe the distance between actual and estimated number of faults detected totally, which is defined as

\[SSE = \sum_{i=1}^{n} (y_i - m(t_i))^2 \]

Where \(n \) denotes the number of failure samples in failure data set, \(y_i \) denotes the number of faults observed to the moment \(t_i \), and \(m(t_i) \) denotes the estimated number of faults detected to the time \(t_i \) according to the proposed model. The model can provide a better goodness-of-fit when the value of SSE is smaller.

The equation of calculating the value R-square is written as:

\[R^{\text{ squared}} = \frac{\sum_{i=1}^{n} (y - m(t_i))^2}{\sum_{i=1}^{n} (y - \bar{y})^2} \]

Where \(\bar{y} \) denotes the mean value of faults detected. The model can provide a better goodness-of-fit when the value of R-squared is close to 1.

We compare the reliabilities of both Burr type III and Burr type XII software failure data sets that are presented in Table II and method of performance analysis is given in Table III.

Table 2: Reliabilities Of Different Datasets

<table>
<thead>
<tr>
<th>Version</th>
<th>Datasets</th>
<th>No. of Samples</th>
<th>Reliability ((t_n + x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burr Type III</td>
<td>NTDS</td>
<td>26</td>
<td>0.999221</td>
</tr>
<tr>
<td></td>
<td>AT & T</td>
<td>22</td>
<td>0.995543</td>
</tr>
<tr>
<td></td>
<td>XIE</td>
<td>30</td>
<td>0.999247</td>
</tr>
<tr>
<td></td>
<td>SONATA</td>
<td>30</td>
<td>0.917342</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
<td>15</td>
<td>0.998116</td>
</tr>
<tr>
<td>Burr Type XII</td>
<td>NTDS</td>
<td>26</td>
<td>0.982699</td>
</tr>
<tr>
<td></td>
<td>AT & T</td>
<td>22</td>
<td>0.995733</td>
</tr>
<tr>
<td></td>
<td>XIE</td>
<td>30</td>
<td>0.996163</td>
</tr>
<tr>
<td></td>
<td>SONATA</td>
<td>30</td>
<td>0.997002</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
<td>15</td>
<td>0.988413</td>
</tr>
</tbody>
</table>
Table 3: Method Of Performance Analysis

<table>
<thead>
<tr>
<th>Version</th>
<th>Datasets</th>
<th>SSE</th>
<th>R-Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burr Type III</td>
<td>NTDS</td>
<td>207873.68</td>
<td>0.893299</td>
</tr>
<tr>
<td></td>
<td>AT & T</td>
<td>1795108.55</td>
<td>1.114142</td>
</tr>
<tr>
<td></td>
<td>XIE</td>
<td>2643026</td>
<td>0.937608</td>
</tr>
<tr>
<td></td>
<td>SONATA</td>
<td>29162065.81</td>
<td>2.213800</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
<td>272918.63</td>
<td>1.380632</td>
</tr>
<tr>
<td>Burr Type XII</td>
<td>NTDS</td>
<td>237127.57</td>
<td>1.165665</td>
</tr>
<tr>
<td></td>
<td>AT & T</td>
<td>1838993.61</td>
<td>1.161281</td>
</tr>
<tr>
<td></td>
<td>XIE</td>
<td>2684707.24</td>
<td>0.968715</td>
</tr>
<tr>
<td></td>
<td>SONATA</td>
<td>31286816.43</td>
<td>2.426521</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
<td>290810.07</td>
<td>1.537804</td>
</tr>
</tbody>
</table>

From Table III it can be seen that the value of SSE is smaller and the value of R-squared is more close to 1. The results indicate that our NHPP Burr type III & Burr type XII model based on fault detection rate fits the data in the given datasets, best and predicts the number of residual faults in software most accurately.

7. CONCLUSION

Software reliability growth model can estimate the optimal software release time and the cost of testing efforts [13]. And SRGM can help project managers to determine the testing resources and manpower needed to achieve desired reliability requirements. So more accurate model is needed to decrease the testing cost and increase the profit of releasing software [11][14][15]. In this paper the fault detection rate is calculated with the number of faults remaining in the software. Considering the two factors jointly the fault detection rate is more realistic and accurate. Moreover, we have discussed the performances of 5 datasets using Burr type III & Burr type XII SRGMs. The experiment result shows that the NTDS data set of Burr type III can provide a better goodness-of-fit compared with other datasets are given in Table III. The reliability of the model over Xie data of Burr type III is high among the data sets which were considered.

REFERENCES:

[14] Changjie Ma, Guochang Gu, Jing Zhao, “ANovel Software Reliability Assessment Approach based on Neural Network in

