
Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

419

DYNAMIC ALLOCATION OF MEMORY BLOCKS OF THE

SAME SIZE

ALEKSANDR BORISOVICH VAVRENYUK

National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe highway, 31, Moscow, 115409, Russia

IGOR VLADIMIROVICH KARLINSKIY

Karlsruhe Institute of Technology (KIT)

Kaiserstraße, 12, Karlsruhe, 76131, Germany

ARKADY PAVLOVICH KLARIN

National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe highway, 31, Moscow, 115409, Russia

VIKTOR VALENTINOVICH MAKAROV

National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe highway, 31, Moscow, 115409, Russia

VIKTOR ALEХANDROVICH SHURYGIN

National Research Nuclear University MEPhI

(Moscow Engineering Physics Institute)

Kashirskoe highway, 31, Moscow, 115409, Russia

ABSTRACT

The problem of allocating and freeing operative memory in multiprogramming is relevant for all modern

operating systems. The algorithms of almost all memory managers (allocators) used, claiming being

universal, either lead to decreasing efficiency of memory usage, or require significant CPU time. This

article describes the allocator algorithm proposed by the authors that makes it possible to achieve greater

efficiency in using memory when blocks of the same size are allocated. An allocation testing method has

been described, and the results of comparing the proposed allocator to a standard allocator of a UNIX

system GNU C library have been described.

Keywords: Allocator, Memory Manager, Bit Matrix, Memory Fragmentation, Operating Systems

1. INTRODUCTION

Today, multiprogramming mode is implemented

virtually in all modern operating systems. This

inevitably raises the problem of rational use of PC

RAM. At the same time, practice shows that it is

essentially impossible to design a universal

algorithm for controlling memory. The desire to

utilize available memory capacity to the bigger

extent inevitably leads to additional CPU time

usage during execution of the corresponding

memory manager ("allocator") and, vice versa,

faster algorithms lead to additional usage of

memory for storing own data structures.

Design of "optimal" allocators has been the

subject of quite a lot of works of domestic and

foreign authors [2], [4], [7], [8], [10]. The result of

collective efforts of many authors was standard

allocator glibc of the GNU C library [9]. This

allocator uses many modern allocation ideas, e.g.,

the "paired tags algorithm", "twin system", use of

"bit matrices", etc.

One of the main problems for any algorithm of

the allocator is fighting memory fragmentation [12].

Another important problem is significant cost of

CPU time for running allocator's own data

structures [15].

There are interesting publications about the

problems of memory allocation for real-time

systems, which require, above all, reducing CPU

time in performing all functions of the allocator

[19], [20].

Several authors propose a method for automatic

optimization of memory managers [18].

However, due to the possibility to quickly change

allocators in modern operating systems, adapting to

current needs of the computational process,

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

420

depending on the characteristics of the tasks solved

in the system, it seems appropriate to design an

allocator for using it in the system with certain

requirements from a mixture of tasks being

resolved.

This paper presents the results of studying one of

possible algorithms for allocating and deallocating

RAM proposed by the authors, in response to

requests for fixed size memory areas from

applications. In practice, such requests may occur,

e.g., when solving large-scale homogeneous

computing tasks in the system.

2. DEVELOPMENT OF AN ALTERNATIVE

MEMORY MANAGER

If an application always requires blocks of the

same size, it makes sense to use an allocator for this

very task. In work [5] a method of managing blocks

of the same size using bit matrices was shown. The

use of bit matrices has an advantage over lists of

free blocks, namely, smaller size of service

information.

In order to organize a bit matrix, it is necessary to

know the approximate number of blocks that it will

manage. Since memory is allocated to applications

in pages, defining the number of blocks may be

made as follows (Fig.1):

If block size allows placing eight or more blocks

on one page, their approximate number is equal to

the page size divided by block size, and the

operating system will be asked for one page.

If block size does not allow placing eight more

blocks on one page, their number is taken as a

minimum (eight blocks minus one byte), and the

operating system will be asked for a certain number

of pages required to placing eight blocks.

Requests for memory allocation from the

operating system may be arranged in portions,

dimensions of which are calculated on the basis of

the size of one block. Each such area will manage a

certain number of blocks; it will be a "container"

for blocks. If all units are occupied in one such

container, and there is the need to place additional

blocks, it is necessary to allocate another container.

If the container is empty, it can be destroyed, and

the used memory may be returned to the operating

system. In order to manage containers, it is logical

to use a double-linked list, which will make it

possible to quickly navigate between them when

searching for a free block.

Each container should store the following service

information:

• a pointer to the previous container;

• a pointer to the next container;

• the number of occupied blocks;

• the number of bytes in the bit matrix used;

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

421

• the number of the byte with free blocks in

the bit matrix;

It is convenient to store this information at the

beginning of each container, and it can be defined

as container header. The address space of each

container would then have the form shown in

Figure 2.

Now it is possible to determine the exact size of

the container and the exact number of blocks in it,

considering the title of the container, and on the

basis of the matrix size. When calculating the

number of blocks, the size of the page will be taken

into account with consideration of the header and

one byte of the bit matrix. After defining container

size, there will be an additional test, so that when

placing eight objects into the container, place

remained for the header and one byte of the bit

matrix. If there is no space left for service

information, the size of the container is increased

by one page. The complete version of the algorithm

for calculating container size is shown in Figure 3

.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

422

All division operations on the flow chart are

integers, i.e. after division only the integer part is

taken (no rounding), and the fraction is discarded.

After the container is separated, it is necessary to

initiate the header: pointers to next and previous

containers are set in accordance with the list of

containers; the number of the occupied units and

the number of bytes in which there are free blocks

are set to zero; and the number of bytes in the bit

matrix is calculated on the basis of the block size.

The exact number of bytes in the bit matrix is

calculated in the following sequence:

1. First, the guaranteed free area in the container

is calculated (1). The size of the header and the size

of the bit matrix required to accommodate the

maximum number of blocks in the container is

subtracted from the size of the container.

8/_/____ SBLOCKSAREASHEADERSAREAFREEAREA −−=

(1)

2. Then, on the basis of the guaranteed free area

in the container, the exact size of the bit matrix is

calculated (2). The number of blocks is taken to be

a multiple of 8, so that the bit matrix uses all bits of

each byte.

8/_/__ SBLOCKFREEAREASIZEBITMATR =

 (2)

This mechanism of calculating size of the bitmap

makes it possible to properly place the header, the

bit matrix and the blocks themselves in the

container. Of course, for such computation, not all

memory of the container may be used, but we can

guarantee that all blocks are placed in the container,

and a correct bit matrix will be created for

managing them.

A free block to be allocated to an application is

searched for in several stages. At the first stage

there is a container with free blocks. The presence

of free blocks in a container may be determined in

several ways. The container is occupied if the

number of occupied blocks is equal to the number

of bytes in the bit matrix multiplied by eight (3),

since each byte addresses exactly eight blocks, and

calculation of the bitmap size ruled out the use of

"incomplete" bytes.

8*__ SIZEBITMATRCOUNTBUZY =

 (3)

The second method is checking the number of

the "free" byte in the header of the container. The

numbering of the bytes is zero-based, for filling

each byte of the bit matrix, the number of the "free"

byte is found anew, and if no free blocks are

available, it is equated to the bit matrix size (the

next byte after the last one in the bit matrix).

Thus, the availability of free blocks in the

container is found by simple comparison of the bit

matrix size and the number of free bytes, whose

values are stored in the container header. If the

values are equal, the container is completely

occupied, otherwise there are free blocks. It is

better to define the status of the container this way,

since there is no need to perform multiplication, as

in (3).

If the container is fully occupied, the next

container is considered according to the link in the

header of the container. If the end of the containers

list is reached, the allocator tries to request memory

from the operating system for placing another

container. If memory allocation was successful, a

new container is added to the end of the list, and

a free clock is allocated to the application in it. The

algorithm of containers management is shown in

Figure 4.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

423

After successful definition of the container with a

free block, it is necessary to find the address of the

free block and invert the bit value responsible for

this block in the bit matrix. The number of the byte

with the free block is shown in the header of the

container. Let us take value "1" for an occupied

block, and "0" for a free block. The byte of the bit

matrix contains position of the first free bit, starting

with the most significant bit, and the value of this

bit is inverted (set to "1"). The block address is

easily defined by calculating its shift from the end

of the matrix (4).

BITPOSBYTEFREENUMSBLOCKSHIFT ___*)8*_(+=

 (4)

(4)

where:

SHIFT is the shift from to the end of the bit matrix,

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

424

BLOCK_S is the size of one block;

NUM_FREE_BYTE is the number of the byte in a

bit matrix with a free block,

POS_BIT is the position of the bit in the byte,

corresponding to the free block.

After the container is separated, it is necessary to

initiate the header: pointersto the next and previous

containers are set in accordance with the list of

containers; the number of the occupied units and

the number of bytes in which there are free blocks

are set to zero; and the number of bytes in the bit

matrix is calculated on the basis of the block size.

The procedure of "removing" an occupied block

is similar to the searching procedure, but in this

case it is necessary to find container number from

block address, the number of the byte in the bit

matrix and the bit position. Since all containers are

arranged in the same manner, and are placed in the

list consecutively (in address ascending order),

precise positions are determined using simple

formulas.

Starting with the first container, the shift of block

address is calculated, relative to the starting address

of the container. If the offset is greater than the size

of one container, it means that the block searched

for is in the following containers, and the system

goes to the next container.

Thus, the offset in each container is calculated

until the unit's belonging to a specific container is

found. After finding the container that contains this

block, the offset in blocks is calculated relative to

the beginning of the container, i.e. block's sequence

number within the container (5).

SBLOCKADDRSTARTADDRBLOCKBLOCKSHIFT _/)__(_ −=

 (5)

where:

SHIFT_BLOCK is the block number in the list of

blocks,

BLOCK_ADDR is the address of released block,

START_ADDR is the start address of the

container,

BLOCK_S is the size of one block.

The number of the byte that is responsible for

this block in the bit matrix is obtained simply by

dividing the block "shift" by eight, and the bit order

in "control" byte will be equal to the remainder of

division of block "shift" by eight (6).

8%_;8/__ SHIFTBITNUMBLOCKSHIFTBYTENUM ==

 (6)

The received bit is inverted (set to 0); the number

of occupied blocks in the container is reduced by

one. If the number of occupied blocks is equal to

zero, and the container is the "last" (located at the

end of the list of containers), and not the first, then

the memory allocated for this container can be

returned to the system. The algorithm of block

deallocation is shown in Figure 5.

The used algorithms and principles are quite

simple to understand and implement in the form of

software code in any programming language. In

writing this allocator in the C programming

language, in order to search for a free block and

deallocate the occupied blocks, recursive function

to cycle to the next container have been

implemented in the list of containers.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

Some limitations should be noted in using the

allocator described, due to the fact that the size of

each container is a multiple of memory page size,

and for certain block sizes internal fragmentation

(unused area in the container) can be quite large.

However, for certain block size, container memory

is used nearly completely, and the efficiency of

memory usage is generally higher than in case of

organizing the allocator with the use of lists of free

blocks.

3. IMPLEMENTATION FEATURES IN THE

C PROGRAMMING LANGUAGE

On various platforms data types may have

different size, for example, a pointer may take four

bytes on one platform and eight on another. To

avoid possible errors in compilation of the source

code on different platforms platform-specific data

types were used, such as size_t or ssize_t. On

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

426

different platforms such data types are overridden

by using the #define compiler directive in header

files, for example in stddef.h.

In calculating addresses shifts, to support

correctness of compilation and work on various

platforms, the use of constant values is excluded.

For example, if we know that address A stores a

value of type int (4 bytes), the address after this

value will be equal to A + 4. But if on another

platform type int takes 8 bytes, addressing to A + 4

would be erroneous. Moreover, the program may be

compiled without errors, and even may work

properly for some time, but this "overwriting" of a

part of the variable can lead to unexpected errors,

which are difficult to identify and to eliminate. In

order to eliminate these errors when calculating the

correct offset, the sizeof operator is used, which

calculates the correct size of data type. Replacing

calculation of address A + 4 with A + sizeof(int)

ensures correct memory access when the program is

compiled on different platforms.

The main purpose of the allocator is work with

memory, and in the C programming language,

pointers are used for these purposes. A pointer

holds the memory address value, and the pointer

may be used to gain access to the data stored at this

address. Since in allocator development data is

mainly unstructured (it is not always possible to use

a pointer to data structure for obtaining specific

values), the programmer has to remember what data

is stored in memory, and where exactly. Mainly,

pointers of types void * and void ** (pointer to

pointer) are used, and for obtaining data, explicit

type indication is used. For example, if a pointer to

A (type void *) points to data of type int, the access

can be obtained with the help of operations of

dereference (operation *) and type casting: * (int *)

A. And if the pointer A points to a data structure

(struct data), the access to the fields of the structure

is obtained by using operations of indirect selection

(operator ->) and type conversion: ((struct data *)

A)->member.

4. COMPARATIVE TESTING OF

ALLOCATORS

Comparison of various allocators is quite a

challenging task. There are even works where

preliminary modeling of various allocators is

proposed in order to identify the most suitable ones

for certain applications [13]. In practice, however,

programmers prefer to use standard allocators, or

write an allocator their own, if the standard one is

not suitable by some criteria.

The main criteria are speed and efficiency of

memory usage, which decreases due to the presence

of external and internal fragmentation. Operation

speed refers to the time of block allocation and

deallocation (ideally, the number of operations

executed by the processor should be compared).

Memory efficiency is understood as the relationship

between requested memory size and the size of a

memory used by the allocator for completing the

request, including data and service information.

Work of each allocator depends on many factors,

such as the platform, allocator scope of application,

the sequence in which memory the allocation and

deallocation requests come, the size of requested

blocks, etc. It is necessary to take into account the

fact that many allocators permit making additional

settings that affect their execution. Therefore,

comparative testing of allocators shows general

issues, and in different tasks and in different

platforms, the test results may vary significantly.

It is worth remembering that for any allocator

that does not move occupied blocks, there is such a

sequence of requests for memory allocation and

deallocation that leads to the impossibility of

allocating enough free memory (the problem of

external fragmentation). Due to this fact, situations

may develop, where the allocator is suitable in all

aspects of the performance and efficiency of

memory usage, on the basis of general tests, but in

specific task it proves to be ineffective.

In this work, all allocators were tested with the

use of the same testing program described in book

[6] with various input data and on various

platforms. A standard library allocator will be used

with default settings, except for the M_TOP_PAD

option, which will be set to 4,096 bytes. This is

necessary for correct assessment of memory usage

efficiency in case of small total size of all blocks.

The essence of the test is to perform a specified

number of iterations, with the following operations

within each iteration.

If possible, a memory block of certain size is

allocated.

Life time, i.e., the number of total iterations is set

for the allocated block.

If there are blocks with expired lifetime, they are

deallocated.

The life time of all the remaining blocks is

reduced.

The size of the allocated block is either constant

and predetermined, or is selected randomly from a

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

427

predefined range. Block lifetime is also defined

randomly from a predefined range.

In order to check correctness of the allocator

running from the point of view of data safety, a

certain value with the same byte size is chosen in

allocated blocks, and the allocated area is populated

with this value. Before deleting the allocated area,

the contents of the area will be checked for

mismatches with the recorded value. If at least one

mismatch is detected, it means that the data in the

allocated area was overwritten during allocator

execution, and the algorithm of the allocator

contains an error.

The maximum number of blocks, maximum

block size, maximum lifetime of the block and the

number of iterations are to be set before the test.

Also, the address of the end of the data segment

(sbrk(0)) before using the allocator, and the

timestamp retrieved by the clock() function, are

memorized prior to the main cycle.

After all iterations of the main cycle, a certain

number of blocks remain in the program memory.

Based on these blocks, efficiency of memory usage

is calculated, namely, the total size of occupied area

to the memory of the allocator rate is calculated.

The running time is defined as the difference

between the timestamps obtained before the main

cycle, and after its completion.

Next, all remaining occupied blocks are

deallocated, and allocator memory is checked again

for returning the deallocated memory to the

operating system.

For each occupied block, the following structure

is used:

struct Elem{

char *addr; a pointer to the beginning of the

block allocated.

int size; size of the block allocated.

int live; the lifetime of the block allocated.

charval; the value written to the block allocated.

}

With such an algorithm of testing, the system is,

after a certain number of iterations, in "equilibrium

state", the number of allocated blocks for each

iteration is approximately the same. Therefore,

increasing the number of iterations with the same

values of the maximum number of allocated blocks,

of the maximum lifetime and the maximum size

leads only to an increasing external fragmentation,

but not to increasing the number of occupied blocks

and the memory used by them. A sufficiently large

number of iterations imitates operation of

continuously running programs for a long time,

where the problem of fragmentation after dynamic

memory allocation is most important.

It should be noted that this test program makes it

possible to obtain only an approximate idea about

the allocator being tested, but cannot guarantee the

same behavior of the allocator in case of specific

tasks on specific hardware platforms.

5. A TEST WITH ALLOCATION OF

CONSTANT SIZE BLOCKS (X86)

After tests with allocation of random size blocks,

allocators were tested for allocating blocks of

constant size. The need for such test can be

explained by the following factors:

When allocating blocks of the same size,

methods of searching for a free block (the methods

of the first suitable, the best suitable, etc.) become

equally valuable, since any free block will always

be the best match. Viewing the entire list in order to

find the best suitable one would be an unnecessary

operation in this case.

There is no need to store the size of each block,

as they all are of the same size. This factor greatly

influences the efficiency of memory usage in case

of many free and occupied blocks.

The need of garbage collection is partially

eliminated, since when a new block is added, the

free parts are scanned from the beginning of the

area of allocator allocation, and the allocated blocks

will be grouped in the beginning of this area, which

is done by the garbage collection operation itself.

Disadvantages of allocators in allocating fixed

size blocks are most evident in case of relatively

small blocks, since the size of service data may be

too large, compared to the size of the blocks.

Testing was performed on the x86 architecture,

standard version of the glibc 2.13 library. Input data

for tests:

number of iterations: 50,000

the maximum number of allocated blocks: 5,000

the maximum lifetime of an allocated block:

 5,000

the constant size of an allocated block: 32

bytes

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

428

The results of testing a standard library allocator

(malloc) and an allocator of blocks with the same

size (osalloc) are shown in tables 1 and 2

respectively.

Table 1. The results of testing the malloc allocator

Test

No.
Run time

(msec)

Number of

blocks

Block

size

(bytes)

Area size

(bytes)

Efficiency, (%) Area size after

deallocation

(bytes)

1 8,080 2,476 79,232 106,496 74.40 106,496

2 8,160 2,512 80,384 106,496 75.48 106,496

3 7,350 2,462 79,424 106,496 74.58 106,496

4 8,190 2,506 80,192 106,496 75.30 106,496

5 8,080 2,483 79,456 106,496 74.61 106,496

Total: 7,972 2,488 79,738 106,496 74.87 106,496

Table 2. Results of testing the osalloc allocator (32

bytes block size)

Test

No.

Run

time

(msec)

Number

of blocks

Block

size

(bytes)

Area size

(bytes)

Efficiency.

(%)

Area size after

deallocation

(bytes)

1 7,380 2,473 79,136 86,016 92.00 81,920

2 7,220 2,488 79,616 86,016 92.56 81,920

3 7,170 2,517 80,544 90,112 89.38 86,016

4 7,150 2,516 80,512 90,112 89.35 86,016

5 7,200 2,489 79,648 90,112 88.39 86,016

Total: 7,224 2,497 79,891 88,474 90.34 84,378

6. CONCLUSIONS

The test results show that standard library

allocators feature rather low efficiency of memory

usage. These values are explained by the fact that

for every allocated memory block, the size of

service data is quite large.

The allocator for blocks with the same size

showed better results, due to the use of bit matrices

for managing free and occupied blocks. It also

showed better runtime results. However, the

disadvantage of this allocator is incomplete

memory return to the operating system after all

occupied blocks are deallocated.

The developed allocator was tested using the

testing program [6]. Test results showed that

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

429

the developed allocator can be competitive with the

memory manager of the standard C language

library, and advantages of the allocator are

manifested in various tasks. Test results also

showed that the performance and the efficiency of

memory usage by allocators depend not only on

their algorithms, but on many other factors as well,

such as the architecture of the computing system,

size of the blocks allocated, duration of memory

allocation and deallocation operations. Therefore, it

is wrong to categorically state that one allocator is

better than the other. In choosing an allocator for a

specific task, it is necessary to perform a number of

tests and to identify the most suitable one.

The described allocator is not ideal for all tasks

of dynamic memory allocation, and it may be

improved for completing certain tasks due to minor

changes in the algorithm, or optimizing the code for

a specific architecture. Besides, with minor changes

in the source code, the proposed allocator can be

used not only in UNIX operating systems, but in

other platforms as well: both software and

hardware-based ones.

The tests have proven practicability of using

special allocators intended for allocating blocks of

constant size. In the future, it is advisable to study

the dependence between the memory usage

efficiency and the execution time for different

hardware platforms, with appropriate testing of the

proposed allocator.

7. AFTERWORD

The results of the proposed study may be useful

for resolving the following common practical

problems:

• selecting the most appropriate allocator for

solving a mixture of problems known in advance,

within a certain operating system;

• assess performance of the allocator using

the proposed method with regard to the parameters

of hardware and software used in the operating

system;

• defining the optimal block size and

container size when memory is allocated for a

specific task;

• assessing efficiency of memory usage in

multi-threaded mode when large amounts of data

are processed in SMP systems.

The main characteristics of the allocators (query

execution time and efficiency of memory usage) are

largely determined by the size of the allocated

block; therefore, in order to choose a specific

allocator, one should study the dependencies of

these characteristics on the size of the block.

In addition, since all listed results were obtained in

course of developing allocators for the x86

architecture, it is advisable to perform similar

studies for the 64-bit architecture that is widely

used at the moment.

REFERENCES:

 [1] Robachevsky, A.M., Nemnugin, S.A., &Stesik,

O.L. (2008). UNIX operating system (2nd ed.,

revised and amended, pp. 656). Saint

Petersburg: BHV - Petersburg.

[2] Tannenbaum, E. (2010). Modern operating

systems (3rd ed, pp. 1120). Saint Petersburg:

Piter.

[3] Love, R. (2008). Linux. System programming

(pp. 416). Saint Petersburg: Piter.

[4] Glass, G., &Ables, K. (2004). UNIX for

Programmers and Users (3rd ed., revised and

amended, pp. 848). Saint Petersburg: BHV –

Petersburg.

[5] Irtegov, D. (2008). Introduction to Operating

Systems (2nd ed., pp. 1040). Saint Petersburg:

BHV - Petersburg.

[6] Knuth, D.E. (2005). The art of programming,

volume 1. Main algorithms (3rd ed.: Translation

from English, pp. 720). Moscow: "Williams"

Publishing House.

[7] Lee, D. (2011, April 10). A Memory Allocator.

Doug Lee’s Home Page. Retrieved from

http://gee.cs.oswego.edu/dl/html/malloc.html.

[8] The GNU C Library. Virtual Memory

Allocation and Paging. The GNU Operating

System (2011, April 22). Retrieved from

http://www.gnu.org/software/libc/manual/html_

node/Memory.html

[9] GNU C Library Source Code. The GNU

Operating System (2011, May 3). Retrieved

from http://ftp.gnu.org/gnu/glibc/glibc-

2.13.tar.gz.

[10] Tim Jones, M. (2011, May 3). Anatomy of

Linux dynamic libraries. IBM developer Works

[11] Retrieved from

http://www.ibm.com/developerworks/ru/library/

l-dynamic-libraries/index.html.

[12] Mamagkakis, S., Baloukas, Ch., Atienza, D.,

Catthoor, F., Soudris, D., &Thanailakis, A.

(2006, August). Reducing memory

fragmentation in network applications with

dynamic memory allocators optimized for

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

430

performance.Computer Communications,

Volume 29, 13–14, 2612-

2620.http://dx.doi.org/10.1016/j.comcom.2006.

01.031

[13] Risco-Martín, J.L., Manuel Colmenar, J.,

Atienza, D., & Ignacio Hidalgo, J. (2011,

November).

[14] Simulation of high-performance memory

allocators. Microprocessors and Microsystems,

Volume 35, 8, 755-765.

[15] Hasan, Y., & Chang, M. (2005, April). A study

of best-fit memory allocators. Computer

Languages, Systems & Structures, Volume 31,

1, 35-

48.http://dx.doi.org/10.1016/j.cl.2004.06.001

[16] Risco-Martín, J.L., Manuel Colmenar, J.,

Ignacio Hidalgo, J., Lanchares, J., &Díaz, J.

(2014). A methodology to automatically

optimize dynamic memory managers applying

grammatical evolution. Journal of Systems and

Software, 91, 109-

123.http://dx.doi.org/10.1016/j.jss.2013.12.044

[17] Rezaei, M., &Kavi, K.M. (2006). Intelligent

memory manager: Reducing cache pollution due

to memory management functions. Journal of

Systems Architecture, Volume 52, 1, 41-

5.http://dx.doi.org/10.1016/j.sysarc.2005.02.004

[18] Risco-Martín, J.L., Manuel Colmenar, J.,

Atienza, D., & Ignacio Hidalgo, J. (2011,

November). Simulation of high-performance

memory allocators. Microprocessors and

Microsystems, Volume 35, 8, 755-765.

[19] Masmano, M., Ripoll, I., Real, J., Crespo1, A.,

&Wellings, A.J. (August 2008). Implementation

of a constant-time dynamic storage allocator.

Software: Practice and Experience, Volume 38,

10, 995–1026. DOI: 10.1002/spe.858

[20] Masmano, M., Ripoll, I., Balbastre, P., &

Crespo, A. (2007). A constant-time dynamic

storage allocator for real-time systems. ISSN:

09226443 DOI: 10.1007/s11241-008-9052-7

