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ABSTRACT 

 

The purpose of the research is to improve the accuracy of the large-scale analysis of signals. This goal can 

be achieved through the use of algebraic systems having the properties of a ring and a field. The paper 

presents the implementation of the discrete Haar wavelet transform in the finite Galois field GF (17). To 

detect and correct the errors that can occur during the operation of a special processor for digital signal 

processing (DSP) due to malfunction and failure of equipment, an algorithm is developed for calculating a 

positional characteristic. The use of new modular technologies in the DSP problems enables, by virtue of 

parallelization at the level of operations and processing the short-bit data, not only to increase the 

calculation accuracy, but also to ensure obtaining the correct result. 

Keywords: Discrete Wavelet Transform Of Signal, Residue Number System, Polynomial System Of Residue 
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1. INTRODUCTION  

 

Acceleration of the process of informatization of 

modern society, as well as the progress in the field 

of computer technology have contributed to the 

widening applications of the methods of digital 

signal processing. To provide a real time scale for 

the primary and secondary processing of the 

received signal, there is proposed to use the 

algebraic structures having the properties of a ring 

and a field, in particular, the nonpositional modular 

codes (MC). 

Presently, when performing digital signal 

processing, the methods and algorithms of the 

large-scale analysis are used. Application of 

modular arithmetic will improve the efficiency of 

the discrete wavelet transformation of signals, 

providing their high precision and speed. Therefore, 

the development of a method of integer-valued 

large-scale signal analysis, based on algebraic 

structures with the properties of a ring and a field, is 

a topical problem. 

 

 

2. METHODS 

2.1. Analysis Of The Main Areas Of Application 

Of Modular Technologies  

The most characteristic feature of recent years is 

the expansion of the application fields of modular 

arithmetic. The conducted analysis allows 

identifying the fundamental directions, where the 

advantages of nonpositional modular codes are 

manifested most vividly. 

The basis of the first direction is the classical 

methods and algorithms of DSP which use 

orthogonal transformations of signals in the field of 

complex numbers [1], [9], [13], [14], [19], [21]. 

Parallel data processing through the computing 

channels, determined by the bases of a residue 

number system (RNS), and the short-bit character 

of residues allow increasing the speed of signal 

processing. However, the special processor for 

digital signal processing, functioning in some RNS, 

must perform also the non-modular operations 

together with the modular ones. In the work [14] 

the algorithms of carrying out both modular and 

non-modular operations are considered in sufficient 

detail. A special attention is paid to the algorithms 
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of direct transformation from a positional code to 

an RNS code, as well as the algorithms of inverse 

transformation from RNS to the positional code. In 

addition, the author presented efficient algorithms 

of scaling, division, multiplication and addition, as 

well as their hardware implementations for the set 

of moduli
12212 +− nnn ,,

. In the paper [12] there 

is presented an algorithm of secondary processing 

of navigation data, which enables to reduce the 

positioning error by virtue of multiple pseudorange 

measurement in the presence of a local area of 

increased ionization in the selected working 

constellation of satellites. To provide the real-time 

secondary signal processing, there is proposed to 

use parallel computing in some RNS. Application 

of the RNS code allows increasing the number of 

measurements, resulting in reducing the error of 

determination of the space-time coordinates of the 

consumer. 

Since the residue number system belongs to non-

positional number systems, then it is necessary to 

carry out both for the efficient operation. 

To provide high accuracy of performance of the 

DSP algorithms, in the works [3], [6], [11] there is 

proposed to use a polynomial system of residue 

classes (PSRC). Moreover, the decrease of error in 

carrying out orthogonal transformations of the 

signal is due to using the integer algebraic systems 

with the properties of a ring and a field. 

The second direction of using the algebraic 

systems with the properties of a ring and a field is 

connected with the construction of cryptographic 

systems. In the work [6] the application is 

demonstrated of the neural network technologies 

and residue number systems in cryptography. The 

author paid a special attention to the questions of 

application of RNS in the cryptographic systems 

with an open and a secret key. There are developed 

some neural network technologies for the systems 

of authentication, steganography and the random 

number generation in cryptographic systems. The 

application of modular algebraic systems allows 

constructing pseudo-random functions (PRF) of 

increased efficiency. For example, in the paper [7] 

there is presented a calculation algorithm for a PRF, 

realized in a finite Galois field 

1
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1

−


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where h is the primitive element of the 

multiplicative group; )s,...,s,g( n1  are the keys of 

the PRF, determining its strength; )x,...,x( n1  is the 

input sequence. 

The conducted studies have shown that the 

cryptostrength of such PRF corresponds to the 

complexity of solving the λ-DDH problem. In the 

works [16], [18], [4] there is shown the expedience 

of the PRF realization in the electronic commercial 

systems. In addition, in the work [Pashintsev, 2014] 

an algorithm is presented for determining the status 

of a satellite of the satellite communication system 

which is used for remote control of environmentally 

hazardous technologies, and this algorithm uses the 

PRF defined by equation (1). 

The foundation of the third direction consists of 

the methods and algorithms for providing fault-

tolerance of the specialized computing devices. The 

introduction of additional redundant bases allows 

detecting and correcting errors that arise in the 

operation of special processors due to malfunctions 

and failures. In the works [18], [10], [2] there are 

presented algorithms and their circuit 

implementations, which allow correcting errors 

with the help of nonpositional modular codes. 

A new direction of application of the algebraic 

systems with the properties of a ring and a field is 

the large-scale analysis of signals. The novelty of 

this approach lies in the fact that the use of RNS 

enables to increase the speed of carrying out the 

discrete wavelet transform and to reduce the 

computation errors through the use of integer 

coefficients of the filters. In addition, RNS can 

correct the errors that may occur during the 

functioning of the special processor for digital 

signal processing due to malfunctions and failures. 

Thus, the development of new modular 

technologies allowing increasing the efficiency of 

carrying out the large-scale analysis of signals is an 

urgent task. 

 

2.2. Realization Of The Discrete Haar Wavelet 

Transform  

In recent years, there begins to take shape a new 

direction of application of nonpositional codes. It is 

related to carrying out the large-scale analysis of 

signals in a finite field GF (р). The increased 

interest to the discrete wavelet transforms (DWT) is 

due to the fact that such orthogonal transformations 

of signals allow calculating the time-frequency 

characteristics of signals with smaller errors. Let us 

consider carrying out the large-scale analysis of 

signals based on the discrete Haar wavelet 
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transform, which is described in the form of 

matrices 

Т
НFНТ = ,     (2) 

where F is the matrix of the signal, H is the matrix 

of the transformation, and T is the result of 

transformation of the signal. 

When constructing the matrices of the discrete 

Haar wavelet transform, there are utilized the basic 

Haar functions hk(z), for which the quantity 

[ ]10,z∈
 is given on a continuous closed interval.  

For k = 0, the value of the basic function is 

defined as  

( ) 1

000

−
== N)z(h)z(h .   (3) 

The calculation of other basic Haar DWT 

functions is carried out as follows  
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where q and l are the values determined by the 

index k = 0, 1,…, N-1; nN 2= ; [ ]10,z∈ . 

 Suppose it is necessary to perform the Haar 

DWT for the sample vector containing 8 points. 

Then the matrix to perform the discrete wavelet 

transform has the following form 
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22000000
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00000022

22220000
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11111111
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8

1
8Н

     (5) 

On the basis of analysis of equality (5) it can be 

concluded that it is possible to perform the Haar 

transform using a finite field GF (р) with the 

characteristic different from two, that is, 
2≠р

. 

This conclusion is based on the possibility of 

integer calculation of 
pmod2

. Thus, there is a 

possibility of transition from the classical Haar 

DWT to the calculation of the Haar wavelet 

transform in a finite field. Such transition should 

ensure the reduction of calculation errors by 

eliminating the use of irrational values of the Haar 

coefficients.  

 

2.3. Realization Of The Integer Discrete Haar 

Wavelet Transform In The Field GF (17) 

As an example, let us take a finite Galois field 

having the characteristic р = 17. Such a choice is 

conditioned by the fact that there exists in this 

field 6172 ≡mod . Hence, the normalizing factor 

of the Haar DWT in GF (17) will be equal 

to
( ) 10178

1
≡

−
mod

. Then the matrix, determining 

the Haar wavelet transform, will assume, according 

to equality (5), the following form 
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    (6) 

Let us perform normalization of matrix (6). Then 

the Haar DWT in the field GF(17) is defined as 
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    (7) 

Moreover, the requirements for the Haar DWT 

are completely fulfilled for this matrix 
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where bjorai ≠≠∀ . 

To perform the Haar DWT in the finite field, we 
use the expression (7). As a result of performing the 

Haar DWT over the input vector having 8 discrete 

samples, we obtain the decomposition of the signal 

in the basis  

 

 

A characteristic feature of any orthogonal 

transformation of signals is its invertibility. Let us 

make use of the invertibility property of the discrete 

Haar wavelet transform for the recovery of the 
original signal. For this purpose we transpose the 

Haar matrix given by the expression (5). 
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The use of modular technologies makes it 

possible not only to obtain highly accurate result of 

transformations of signals, but also provide carrying 

out the procedures of detecting and correcting the 

errors that arise during the operation of specialized 
computing devices implementing the Haar DWT. 

 

2.4. Development Of An Algorithm Of Error 

Correction With The Help Of Redundant 

RNS  

If we select the relevant characteristics of the 

finite field, which can act as bases of the modular 

code, then the Haar DWT can be calculated in the 

RNS. In this case, the code allows correcting the 
single errors. To do this, we choose two redundant 

bases of the residue number system рk+1 and рk+2, 

which should satisfy the following condition 

211 ++− < kkkk pppp ,        (10) 

where k is the number of working bases. 

The code of the residue number system is 

considered permissible, if it belongs to the working 

range of the system  

∏
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Now, the error, transforming the correct 

combination 
)b,...,b,b(A k 221 +=

 of the residue 
number system into a 

combination
)b,...,b

~
,...,b(A

~
ki 21 +=

, where 

ii pmodAb ≡
, iii bbb

~
∆+=

 is a distorted residue 

of the RNS, ib∆
is the depth of the error, which 

carries out the transition of the distorted number 

outside of the working range. Therefore, to correct 
the error, the positional characteristics (PC) are 

used in the codes of the residue number system. 

Among the positional characteristics, a special 

place is occupied by the interval number, which is 

defined as  

[ ]*

int / PAl = .     (12) 

If a number, represented in the RNS, belong to 

the working range, then the value of the interval 
number is equal to zero, i.e. l = 0. When an error in 

the number arises, А will not belong to the working 

range.  

Since the division operation is non-modular, it is 

reduced to a set of modular operations. Let us make 

use of the Chinese Remainder Theorem (CRT), 
with the help of which there is carried out the 

reverse transition from the code of the residue 

number system into a positional representation 

(PR). Then we have the equality 

∑
+

=
++ =+++=

2
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222211

k

i

iikk PmodBbPmodBb...BbBbА
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where ∏
+

+=

=
2

1

k

ki

ipP  is the complete range of the 

ordered redundant residue number system. 

The basis of this algorithm is a similarity 

property of orthogonal bases of the complete and 

non-redundant residue number system, according to 

which there holds the relation  

*
i

*
i PmodBB ≡ ,                    (14) 

where Bi
* are the orthogonal bases of the non-

redundant RNS; Bi are the orthogonal bases of the 

complete RNS. 

Then, using equality (14), we obtain the expression  
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Substituting the last equality into the expression 

(12), we get the following result  
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where R is the rank of the complete system of bases 

of the residue number system.
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composite modulus of the RNS. 

Performing simplifications of the expression 

(16), we have the equality  
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The main shortcoming of this circuit realization 

is the use of the composite modulus Pcont . This 

problem can be solved by the transition to 
multidimensional data processing. Then the 

expression (17) will assume the form  
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3. RESULTS 

3.1. Performing The Direct And Inverse Discrete 

Haar Wavelet Transform In The Field GF 

(17) 

Consider an example of realization of the Haar 
DWT in GF (17). Let there be given the 8-point 

input 

sequence
[ ]10004411 ,,,,,,,)i(Х =

. 
Perform the large-scale analysis of the digital signal 

according to (2). We make use of the normalized 

Haar matrix, defined by the expression (7). Then  
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The remaining components are calculated 
analogously. Using the field GF(17), there are 

obtained the values of the Haar DWT, which can be 

written in the form 
[ ]1400081458 ,,,,,,,)i(W =

. 

The obtained results allow representing the original 
sequence in the basis of the discrete Haar wavelet 

transform  
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Thus, the expression (19) can be represented in 

the form  
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Let us perform the inverse discrete Haar wavelet 

transform, using the expression (9). As the initial 

data, we will use 
[ ]1400081458 ,,,,,,,)i(W =

. 
Then we obtain the following result  

































=

































×

































==

1

0

0

0

4

4

1

1

14

0

0

0

8

14

5

8

1400080710

300080710

0140090710

030090710

00140081010

0030081010

00014091010

0003091010

8 )i(WН)i(X Т

.      

3.2. Searching And Correcting Errors With The 

Help Of A Redundant Code Of The Residue 

Number System  

Consider an example of calculating the interval 

positional characteristic. Let there be given an 

ordered RNS with the working bases р1 = 2, р2 = 3, 

р3 = 5. As the control bases, we will choose the 
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following two bases: р4 = 7 and р5 = 11. Then the 

working range of this RNS will be equal to Pwork = 

30. In this case, the complete range of such system 
Pcomp = 2310. In this complete system the bases of 

orthogonal basic sets 

equal
1155543211 == ppppmВ

; 

1540543122 == ppppmВ
; 

1386542133 == ppppmВ
; 

330532144 == ppppmВ
;

210432155 == ppppmВ

, where mi is the weight of the i-th orthogonal basis 

such that iiii pmod)p(PmВ 11 ≡= −
. 

Let us represent the orthogonal bases of the RNS 

code, according to equality (15) in the following 

form 
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3011330 44 ⋅=== workРКВ ;

307210 55 ⋅=== workРКВ . 

For this RNS the value Pcont= 77. Suppose we 

have the number А = (0, 2, 2, 2, 2) = 2. Let us 

calculate the value of the rank in the non-redundant 

system defined by the bases р1 = 2, р2 = 3, р3 = 5. 

( ) ( )[ ] 13062102150 11
=⋅+⋅+⋅=














= −

=

−

∑
3

1j

**
jj

* PBbR

. 

Then the value of the interval number for this 

combination of the RNS code will be equal to  

0172112462512380*
77

2

1

=+⋅+⋅+⋅+⋅+⋅=+=
+

++

=
∑

contP

k

i

ii RКbl

 

Since the interval equals zero, this combination 

of the RNS does not contain an error and is 

permissible.  

Let an error have occurred with respect to the 

first base and its depth equals Δ b1 = 1. Then the 

modular code has the form А* = (1, 2, 2, 2, 2) = 

1157. Now we calculate the value of the interval 

number for this number. 

We calculate the value of the rank in the non-
redundant system defined by the bases р1 = 2, р2 = 

3, р3 = 5. 

( ) ( )[ ] 13062102151 11
=⋅+⋅+⋅=














= −

=

−

∑
3

1j

**
jj

* PBbR

. 

Then the value of the interval number for this 

combination of the RNS code will be equal to 

38172112462512381*
77

2

1

=+⋅+⋅+⋅+⋅+⋅=+=
+

++

=
∑

contP

k

i

ii RКl α

. 

We use (18) to compute the positional 
characteristic for the number А = (0, 2, 2, 2, 2) = 2. 















=+⋅+⋅+⋅+⋅+⋅=+=

=+⋅+⋅+⋅+⋅+⋅=+=

+
++

=

+
++

=

∑

∑

0172112462512380

0172112462512380

11

2

1

5

7

2

1

4

5

4

p

k

i

ii

p

k

i

ii

*RКbl

*RКbl

. 

Since the interval equals zero, this combination 

of the RNS does not contain an error and is 
permissible.  

Let us carry out the calculation of the positional 

characteristic for the erroneous number А = (1, 2, 2, 

2, 2). 















=+⋅+⋅+⋅+⋅+⋅=+=

=+⋅+⋅+⋅+⋅+⋅=+=

+
++

=

+
++

=

∑

∑

5172112462512381

3172112462512381

11

2

1

5

7

2

1

4

5

4

p

k

i

ii

p

k

i

ii

*RКbl

*RКbl
 

The obtained result is different from zero. It 

means that the combination contains an error. In 

this case, for the bases р4=7, р5=11 the obtained 

interval, defined by the residues l = (3, 5), will be 
equal to 

3877mod565223mod'

55

'

44 =⋅+⋅=+= contPBlBll  

where 4544 1 pmodpmB' ≡=  is the orthogonal 

basis with respect to the control base р4 = 7; 

5455 1 pmodpmB' ≡=  is the orthogonal basis 

with respect to the second control base р5 = 

11.  

4. DISCUSSION 

The results presented in this work indicate the 

possibility of realization of the large-scale analysis 

of signals using algebraic structures having the 

properties of a ring and a field. The transition to the 

integer-valued implementation of the discrete 
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wavelet transformation allows diminishing the 

calculation errors that are caused by the size of the 

bit grid. Moreover, the realization of the Haar DWT 
in the finite field GF (17) has showed that not only 

the direct and inverse transformations can be 

performed with zero error, but it is also possible to 

increase the speed of computations.  

To increase the accuracy of the processed data, 

one can go from one-dimensional to 
multidimensional signal processing, using an 

isomorphism generated by the Chinese remainder 

theorem. If the corresponding characteristics of 

finite fields GF (p) are chosen as the bases the 

residue number system, then the discrete Haar 

wavelet transformation can be represented by the 
following system of equations  

 














=

=

++++

++++

k
kkk p

ppNp

p
ppNp

)i(xH)i(W

)i(xH)i(W

M

1
111

,   

    (22) 

where p1, p2,…, pk are the characteristics of the 
finite Galois fields. 

The representations of (19) and equation (22) are 

equivalent from the mathematical point of view. 

However, if we think about the ease of hardware 

implementation, they are quite different. In the 
works [6], [10], [18] there are presented the results 

of implementation of orthogonal transformations of 

signals in a ring of polynomials, which serve as 

bases of a polynomial modular code. The conducted 

studies have shown the expediency of transition to 

multi-dimensional signal processing. Thus, 
selecting the number of bases and their values, one 

can ensure the required degree of accuracy of the 

Haar DWT, while reducing to zero the calculation 

error. The processing of the short-bit residues via 

parallel computational paths, determined by the 

RNS bases, enhances the speed of computations. If 
we take as the working bases of RNS the numbers 

р1 = 7, р2 = 17, р3 = 23, р4 = 31, then the 

computations in the integer Haar DWT will be in 

the range of Р* = 84847, which corresponds to the 

processing of 16-bit data. In addition, the number of 

bits of the data, entering the computation paths of 
the residue number system, does not exceed 5 bits. 

This example clearly demonstrates the advantage of 

implementation of the integer-valued large-scale 

analysis of signals in the residue number system, 

both from the point of view of ensuring the 

minimum errors and from the point of view of 

providing higher speed of computation of the Haar 
DWT. Moreover, the productivity gain will increase 

with the increase of the number of bits of the 

processed input vector of signal. 

 Along with high speed, the nonpositional 

modular codes allow obtaining the true undistorted 

result of calculations. The application of the 
redundant nonpositional modular code allows 

detecting and correcting errors that occur during the 

operation of special DWT processor because of 

malfunctions and failures of the equipment. Since 

the modular codes are nonpositional, then in order 

to perform this procedure, it is necessary to 
calculate the positional characteristic. Currently, the 

following positional characteristics of nonpositional 

codes of the residue class have the widest 

application.  

 In the works [10], [5] the algorithms are 

presented that allow detecting and correcting errors 
in the code of the residue class using an extension 

procedure for the system of bases. In the foundation 

of this extension procedure, based on the 

calculation of the error syndrome with respect to 

control bases, there is the determination of the 
difference between the values of the remainders 

21 ++ nk b,b
 with respect to the control bases of the 

RNS code 
)b,...,b,b(A k 221 +=
 and the results of 

computing the remainders 
'
k

'
k b,b 21 ++  using the 

working bases. Mathematically, this algorithm can 

be represented by the following expression 









−=

−=

+

+++

+

+++

+

+

2

1

222

111

k

k

p

'
kkk

p

'
kkk

bbv

bbv

   

  (23) 

where 211 ++== k,kj);b,...,b(fb k
'
j ; f is the 

algorithm of computing the remainders with respect 

to the working bases. 

In the paper [20] an algorithm is presented of the 
detection and correction of errors using some 

positional characteristics, namely, the coefficients 

of a generalized polyadic system (GPS). This 

algorithm is based on the calculation of coefficients 

of an intermediate polyadic system, in which the 

number A is represented in the form  

1212213121 ++++++= kk p...ppa...ppapaaA  

    (24) 
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where аi are the coefficients of the generalized 

polyadic system; i = 1, 2,…, k+2. 

If the bases p1, p2, …, pk+1, pk+2 
simultaneously serve as the bases of a residue 

number system and a GPS, then the variation 

intervals of the digits at the same positions will 

coincide. Hence, if we provide matching between 

the bases of the GPS and the bases of the residue 

number system, then the following holds 

]a...,,a,a[)b...,,b,b(A kk 221221 ++ ==
.     (25) 

Using the condition that the value of the working 
range of the RNS is determined by (11), we 

conclude that the expression (19) assumes the form  

.pPaPa...paaA k
*

k
*

k 121121 +++ ++++=  

    (26) 

On the basis of (24) we can claim that if the RNS 
code of the number А belongs to the working range 

Р*, then the leading coefficients of the GPS, 

corresponding to the control bases, must be equal to 

zero  

00 21 == ++ )z(a,a kk .    

  (27) 

In the contrary case, the RNS code of the number 

А contains an error and is outside of the working 

range of the RNS.  

In the paper [8], such positional characteristic as 

the trace of number is used for the error correction 

in the codes of the residue number system. An 

algorithm for computing the trace of number 

consists in successive subtraction from the original 
modular code of some minimum numbers 

represented in the RNS code. These numbers are 

called zero-making constants; here the modular 

code of the number A is successively transformed 

to the form 
)b,b,b,...,b,b,( kkk

1
2

1
1

11
3

1
20 ++ , and then 

into the residue class code 
),b,bb,...,b,,( rkkk

22
1

22
300 ++  

and so forth. Carrying out this procedure during k 

iterations, we obtain the trace of the number, which 

was presented by the code 
)s,s,...,,( kk 2100 ++  of the 

residue number system. 

Application of the classical algorithm for 

computing the trace of number allows successively 

obtaining the smallest number that is, first, a 
multiple of р1, then a number, which is a multiple 

of the product of the first and second bases 21 pp
, 

and, eventually, a number, which is a multiple of 
the working range defined by the expression (11). 

The major shortcoming of this algorithm of 

computing the trace of number is the sequential 

character of the computational process, which does 

not allow its implementing on the basis of a two-
layer neural network. This is due primarily to the 

fact that the zero-making constants are the smallest 

possible numbers, whose values are determined at 

each iteration step. 

To apply the developed parallel algorithm for 

computing the trace of number, it is necessary to 
replace the zero-making constants by the pseudo-

orthogonal numbers. These include orthogonal 

bases, for which orthogonality is broken with 

respect to the control bases. The use of pseudo-

orthogonal bases as zero-making constants allows 

going from the successive realization of the 
algorithm for calculating the trace of number to the 

parallel one. In connection with this, some 

additional opportunities are opened up to reduce the 

realization time of the process of determining the 

location of error and its depth. 

However, the desire to provide high operational 
speed has led to significant hardware expenditures 

in the construction of the error correction block. 

The above algorithms are characterized by 

considerable circuit and time expenses. In this 

paper, an algorithm is proposed which allows 
carrying out error correction under minimal 

redundancy, introduced into the residue number 

system. To eliminate the indicated shortcomings, 

there has been developed an algorithm for 

calculating the interval of number, which uses the 

isomorphism of the Chinese remainder theorem. 
Moreover, the transition to multidimensional 

calculation of the positional characteristic does not 

affect the corrective abilities of the RNS modular 

code. For a given redundancy of the residue number 

system code, the usage of the developed algorithm 

allows correcting all the single errors and over 80 
percent of the double ones, while requiring smaller 

circuit expenditures. 

 In the above example, to correct all single errors 

with respect to the bases of residue classes, the 

introduction of two control bases will be required, 
which can be selected as р5 = 41 и р6 = 47. In the 

realization of the algorithm given by the expression 

(17), the calculation of the number’s interval will be 

performed modulo Рcont = 1927, which 

corresponds to the processing of the operands 

requiring 11 bits for its representation in the binary 
code. The application of the algorithm defined by 

equation (18) allows carrying out an analogous 

procedure while processing 6-bit data. It is obvious 

that the second case will require less of hardware 

and time resources to compute the positional 
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characteristic of the redundant code of the residue 

number system. 

5. CONCLUSION  

The realization of the discrete wavelet transform 

in the algebraic systems having the properties of a 

ring and a field enhances the calculation accuracy 

during carrying out the large-scale analysis of 

signals. The results presented in the paper have 

showed that the use of modular arithmetic enables 
to obtain the approximating and detailing 

coefficients of the expansion of digital signals, the 

calculation errors of which is completely reduced to 

zero. Besides, the application of modular codes 

allows improving the fault-tolerance of the 

specialized DWT processors. In this paper we 
present an algorithm of computing a certain PC, 

namely, the number’s interval, which is 

characterized by minimal circuit and time recourses 

for its implementation. The use of the proposed 

modular technologies will enable to design fault-

tolerant special processors which carry out the 
discrete wavelet transform of signals in real time. 

Concerning the prospects of implementation of 

modular technologies in DSP, we can note the 

following. As the practice shows, in the 

implementation of the large-scale analysis of 
signals, the Daubechies wavelets are widely used. 

The approach of the present paper suggests that the 

use of nonpositional modular codes will improve 

the accuracy and speed of implementation of such 

DWT by virtue of switching to the integer-valued 

parallel computing.  
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