
Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

IDENTIFYING SIMILAR PATTERN OF POTENTIAL ASPECT

ORIENTED FUNCTIONALITIES IN SOFTWARE

DEVELOPMENT LIFE CYCLE

1
MAZEN ISMAEEL GHAREB,

 2
GARY ALLEN

L
ecturer Assistant., Department of Computer Science, College of Science and Technology, University of

Human Development

2
Assoc. Prof., Department Computing and Engineering , School of Computing and Engineering,,

University of Huddersfield

E-mail:
1
u1152287@hud.ac.uk ,

 1
mazen.ismaeel@uhd.edu.iq,

2
g.allen@hud.ac.uk

ABSTRACT

Aspect Aspect-oriented programming is known as a technique for modularizing crosscutting concerns.

However, there are no clear rules to help detect and implement Aspects in the software development

lifecycle. Consequently, class developers face changeability, parallel development and comprehensibility

problems, because they must be aware of aspects whenever they develop or maintain a class. These

problems can be mitigated by using adequate design rules between classes and aspects in the design stage

and then in implementation process. We need to define a similar pattern of aspect for many systems to

explore. This pattern will help development process from the initial phases, especially with the aim of

supporting modular development of classes and aspects. Adding to that shows some design patterns

relationships with aspects. We discuss how several languages improve crosscutting modularity without

breaking class modularity. We evaluate our approach using a real case study and compare it with other

approaches to detect the Aspect Oriented in Design phase of software developments.

Keywords: Aspect Oriented Programming; ASDL (Aspect Oriented Design language),cross cutting

concern, modeling ,Design pattern.

1. INTRODUCTION

A In the software development process,

Aspects are difficult to identify because they are

usually tangled and scattered across the entire

system. Some aspects are obvious can be identify

but others are more subtle difficult to identify. This

makes it complex to locate all points of the system

where aspects should be applied. To address these

aspects in the software development lifecycle,

developers need more support to find and analyze

aspects in requirements documentation. AODL

(Aspect Oriented design language) is a notation

used to show the interaction between traditional

UML models of base (Object Oriented) code and

Aspect extensions, such as point cuts, join points

and advice. The challenge of this study is to find

similar pattern of aspect for many systems to

explore its benefits from the initial phases of the

development process and find the relationship

between design patterns and aspect oriented

programming to meet a modular solution for

specific issue in the software engineering field.

Many studies have been conducted on Aspect

programming developments during recent years.

One of the aspect viewpoint according to [1]

defines Aspect, as “aspects tend not to be the

system's functional decomposition, but rather to be

properties that affect the performance or the

semantics of the components in a systematic way”

Kiczales attempts to differentiate between the

aspects and components [1]. Another meaning of

Aspect Oriented Programming is to conquer the

issues emerging from crosscutting concern. It helps

engineers to change the Object Oriented model

progressively, so the crosscutting improves code

reuse rate and practicality [2]. Aspect Oriented

programming helps designers to conquer the issues

connected with code scatterning and tangling over

numerous framework units by lessening the

duplication the code. Its backings a few crosscut

concerns, for example, join points, point cuts, and

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

advice. A Join point is one of the few purposes of

the framework where concern crosscut a strategy or

constructor, while a point cut is an inquiry about

selecting obliged join points. Thusly, the guidance

is the development that makes a move where the

join point coordinated: some time recently, after

and around in the particular framework [3]. This

exploration will examine to utilize AODL aspect

Oriented Design Language notations to symbolize

the systems in the design stage and potential

viewpoint in requirement stage and advancement

stage also. Gary Allen and Saqib Iqbal [11] propose

these documentations . This documentation

represent the aspect and regular object utilizing

UML documentations and models. Adding to that if

would we be able to recognizing the Aspects in

right on time outlines it is conceivable by applying

it on Design designs. There were a few works

research this issue utilizing the contextual analysis

of the Car Crash management framework [11]. As

indicated by [5] studies have demonstrated

implementations of six GOF outline designs

(Observer, Mediator, Prototype, Strategy, State and

Abstract Factory) with viewpoint executions, the

outcomes that shows most aspect-oriented

programming enhances the configuration of base

item arranged code. In next section will explain the

previous work on Aspect Oriented Programming .

our Idea is to detect the Aspect in requirements

stage using approaches combines the view points ,

goal based and them approaches to find the

potential aspect in early stage of software design .

The remainder of this paper will be structured as

follows. In Section 2 we describe the state of the art

about AOP technology. In Section 3, we introduce

UML Language AOP Notation. In Section 4, we

describe AOP and its relationship with design

patterns. In Section 5 we described the

methodology approach to identify aspects. Section

6 we show the result of our survey. In Section 7 we

shows our conclusion and future work.

2. STATE OF ART

2.1 Invintion of AOP

Aspect Oriented programming (AOP) was

found quite a while prior, before Demeter group. In

1997, Aspect arranged writing computer programs

was authoritatively uncovered by Gregor Kiczales,

with his partners in gathering name ECOOP97 [4].

AOP Aspect Oriented programming created

approachs called Subject Oriented Programming.

As per [6] AOP is an advancement method reduces

that enhances capturing so as to program

improvement the space related procedures in the

framework, to better fit genuine area issues into

code; in this manner it decrease troubleshooting

time and expands clarity.

2.2 Introduction to Aspect Oriented Modelling

Engineers ought to be mindful of, and

comprehend the product displaying or structural

planning before gazing actualizing AOP. AOM

(Aspect Oriented Modeling) is a way to deal with

produce a sensible viewpoint arranged structural

model. Early utilization of AOM being developed

stage will lessen the product advancement danger

of contentions and undesirable conduct rising amid

usage. The cross cutting component is normal in

AOP and AOM, however the distinction is between

the stratagems versus source code, it could rise

contrast method in speaking to it. Case in point, the

code can speak to in single usefulness, while a

model can speak to the framework with distinctive

graph sees. Another contrast in the middle of AOP

and AOM in code is viewpoint weaving is basically

concerned with embeddings usefulness at system

execution. AOM module comprises of real

segments: essential model, angle model and

arrangement model Fig.1[7] beneath demonstrates

this model.

Fig 1 (AOM Approach Components)

Fig1 demonstrates an essential model, for example,

an UML chart to depict a fundamental building

design class outline and intelligent graph. The

viewpoint model depicts a consistent compositional

arrangement. An Aspect Oriented Architecture

Model is an intelligent perspective of programming

structural engineering. Another meaning of Aspect

Oriented Allowing so as to program is rearranging

of the advancement process detachment of

formative undertakings. Likewise, Aspect Oriented

Making so as to model enhances an object oriented

application it more measured. AOP takes care of

the code scattering issue in OOP. Diffusing means

the issue of shared the usefulness of an application

spread among numerous classes, which has a

tendency to ease off the application and make it

hard to keep up. Along these lines, AOP tackles this

issue by uniting the scattered code in the

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

perspective. A perspective is a cross cutting

structure. It executes the usefulness, for example,

security, logging and industriousness and non

functional requirements.

2.3 Aspect-Oriented language development

AspectJ used to execute AOP, which is a basic

viewpoint situated programming augmentation for

the Java language. It is an open source

programming expansion of Eclipse. Also, it will

bolster measured usage of a scope of crosscutting

concerns [9]. An AspectJ system comprises of two

noteworthy parts, the first part is the base code, for

example, classes and interfaces to do a fundamental

usefulness of the project, and the second part is the

viewpoint code, which incorporates the angles for

catching crosscutting concerns in the system [5].

Perspective backings the primary AOP develops of

join points, point cuts and aspects. A join points is a

dynamic execution point in the system. Point cuts

comprise of an accumulation of join focuses. An

Advice is a to some degree extraordinary technique

joined to the point cuts. At long last, an angle is a

particular unit of AOP. Fig. 2 demonstrates the

procedure of viewpoint improvement strategy [10].

Fig. 2 (Process Of Aspect-Oriented Development Stages)

Late research demonstrates that there is not an

apparatus to bolster a aspect oriented programming

, for example, UML (Unified Modeling Language) .

One of the ways to deal with outline an aspect

documentation is to extend the UML

documentation to bolster Aspect oriented units

called Aspect Oriented Design model AODM.

Accordingly, this methodology will help to

demonstrate the angle programming weaving

component and spoke to in UML, which will help

engineers to create perspective programming

documentation dialect [11]. AODM may

demonstrate a Aspects as a secluded unit of

crosscutting execution, which goes about as a

compartment of the given individuals in the bit of

source code [12].

As indicated by Stein "AspectJ is a usage for

perspective situated programming in Java language

", including that cross cutting is a piece of the

aspect that determines where the crosscutting code

has been woven into base classes. Join Points in

AspectJ are standard focuses in executable element

programs. Join points present numerous activities,

for example, calls to constructors and system

execution. Likewise, they call classes and item

instatement. In AspectJ Point cuts comprise of joint

focuses. It indicates at which of the join focuses

specific crosscutting conduct ought to execute. As

far as a designator point cuts are 'if', 'this',

'objective', 'inclinations, or 'stream'. Designers will

choose Join focuses relying upon the dynamic

setting amid execution of the base code[13] . The

creator ought to indicate at what time on the

execution the guidance is to execute for example

some time recently, after, or around particular

source code. Another essential unit in Aspect J is

presenting an extra part sort of classes, for example,

strategies, constructor and another field for the

class. What's more, it may change the super class

kind of super interface by embeddings new

introduction and speculation relationship to the

class structure. Until this point there are so many

research work need to identify aspect in design

phase and development of software lifecycle but

without any clear and bold guidelines to identify

the Aspect Oriented model.

3. UML LANGUAGE VS NEW AOP

NOTATION:

UML language is item arranged programming

documentation language. UML gives the

fundamental building pieces to model programming

frameworks, for example, abstraction, relationships

and charts. Adding to UML will give broadened

UML documentation, for example, labeled qualities

used to connect self-assertive data to a model

component. Other than that, the augmentation

absolutely bolsters new building obstructs that

drive from existing ones. This new building called

stereotyping, have the same structure (properties,

association and operations) as the base framework

obstruct that flourish with it.

In this manner, an UML augmentation has the

capacity speak to an AspectJ fundamental

reflection, for example, a Join points, Point cut and

advice. Fig.3 delineates an UML representation for

Join Points just, and demonstrates the

correspondence connections to make or decimate an

occurrence. In this manner, UML can't relegate or

speak to the Join Point. AODM recommends

representing so as to take care of this issue the

correspondence as a pseudo operation that can just

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

compose and read for a particular field. This

verifies no execution may happen without calling a

constructor or the instatement. Fig.4 demonstrates

that UML could speak to a message that go

between two cases. As it appears that the join

focuses demonstrate the unique sorts of

generalizations, for example,set ,get,execute, and

initialize.

In AODM, point cuts are spoken to as unique

generalization operations named as Pointcuts. As it

is indicated in Fig. 3 (Stein, D., Hanenberg, and S.

And Unland R., 2002).

Fig. 3 (Model Of Aspect Oriented Design)

While in UML notation point cuts have an

operational definition that has an arbitrary number

of (output-only) parameters and their declaration

and implementations as it shows in Fig. 4.

Fig. 4(Points Cut In Aspect And Similar To Operation In

UML)

Like Point cuts, Advice can be spoken to as an

operation, however one semantic distinction is that

Advice does not have an extraordinary identifier.

Hence, this may be a major clash in Aspect. Along

these lines, AODM has illuminated this issue by

characterizing by pseudo identifier that can't be

overdriven. As it shows up in Fig. 5 .

Fig. 5 (Advice And Operation Similarities)

In Gary and Iqbal the creators propose

another documentation of AODL Aspect Oriented

Design Language, this Language serves to show the

Aspect with their properties and attributes

alongside a conventional UML article chart. We

will attempt to utilize this documentation in this
paper . Both Aspect and Object can be utilized

inside of an outline for single structure. This

diminishes architect working expense to work with

two distinct stages. In this manner, engineers

picked UML to stretch out to contain Aspect for

some reasons. One essential reason is that UML is

most utilized apparatus for demonstrating.

Furthermore, it is less demanding for designers to

utilize one device rather two instruments together.

At last, it is anything but difficult to utilize UML

extensibility to plan Perspectives in light of the fact

that it is anything but difficult to characterize

another documentation and utilization them with

the center documentation. In AODL utilizes an

aspect documentation like class documentation in

UML to display different segments, for example,

aspects and point cuts. In any case, there is a

connection between these parts. Case in point, point

cuts contain the join point which guidance

straightforwardly relies on upon. Accordingly,

every part has its own qualities; subsequently [4]

claim that AODL ought to speak to every

documentation as one of a kind documentation, as

demonstrated underneath in Fig.6:

Fig. 6 (AODL proposed component notations)

In the AODL outline documentation, join

points are spoken to as a snare. They unite alternate

parts of the system with the point cuts. Point cuts

are clarified as a rectangle box with a gathering of

related join points. The container image is utilized

for Aspects as a result of them having comparative

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

qualities to classes in their conduct, as it shows

above. Aspect documentation looks like class

documentation likewise it has same similitude’s of

class and the cross circle demonstrates the cross

cutting concern of the perspective. Code weaving is

related which join the aspects with classes where

aspect code is woven in. In addition, there are two

models to plan weaving procedure, aspect static

outline and aspect dynamic graph. Aspect

Programming needs to demonstrate the join focuses

in the programming. Arrangement graph in UML

will demonstrate the join point in right on time

configuration stage. This chart called a join point

distinguishing proof graph. The conduct of join

points is displayed utilizing a movement outline,

which demonstrates the spot of join points and the

framework action. Fig. 7 demonstrates to them

beneath.

Fig. 7 (Sequence And Activity Diagram With New

Notation Of AODL)

The fundamental AODL documentation is the

Aspect documentation, which is spoken to as a

major rectangle with numerous characteristics and

operations. It has the aspect name at the top and

circle cross to demonstrate the cross concern

conduct. Fig.8 demonstrates a regular

representation of an Aspect in AODL.

Fig. 8 (Aspect Representation In AODL)

aspects can be recognized in the early phases of

improvement development using use case outlines,

as demonstrated by Ivor Jacobson [10].

Nonetheless, Ivor contended that aspects couldn't

be executed using use case diagram in light of the

fact that tangling issues of the part in the use case

outline. While Iqbal recommends that to repetitive

the calling other part of utilization case and create

utilization case segment independently. In this way,

it is easy to find a crosscutting concern in use a case

study [5]. Along these lines, it is anything but

difficult to locate a crosscutting concern being used

a contextual analysis [14]. He has demonstrated an

illustration of ATM framework the withdraw

money utilization case needs to add logging angle

to the ATM use case as shows up in Fig.9.

Fig. 9 (Atm Use Case)

When Draw this use case diagram of with cash

draw with sequence diagram it show the

interaction with all parts of aspects joint point ,

point cuts and aspects. It could identify the aspects

and also can show aspect characteristics such as

calling joint point and point cut (before, after and

around)[5] .The aspect identification and showing

properties of it in Fig.10.

Fig. 10 (Sequence Diagram In AODL Notation Proposed

Language)

4. POTENSTAIL ASPECTS IN DESIGN

PATTERN

Berkane expressed that Aspect oriented

giving to program supplements the Object oriented

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

496

programming effective develops to handle structure

and measured quality. This will help add to the best

particularity of outline examples of these concerns.

The examples comprise of two sections, section one

recognized the aspects, classes, connections and

operations identified with the arrangement. Second

part is concerned with the quantity of implying

practices and basic relations between segments. For

example, in the connector outline design there are

two classes, which cannot utilize the same interface

that share parts, while an Aspect oriented, model

will permit that by developing the interface of the

Adoptee as is indicated Fig. 11 [15].

Fig. 11 (Adapter Pattern In Aspect Class Diagram)

5. OUR NEW METHOD TO IDENTIFY

ASPECT CASE STUDY:

In this paper we try to identify Aspect in early

development stage. We will use a case study of

ATM machine the withdraw money part in

Portuguese toll collection system. our approaches is

use view point, use case and scenario-based and

theme approaches to identify aspects in

requirements stages so the main focus is that in all

these approaches we could find common aspects for

each approaches in System Requirement

Specification SRS and then could be assure that is

the potential aspect to impalement as it is shown in

fig12.

Figure 12 Proposed Approaches To Identify Aspects

First step examine the viewpoint approach,

viewpoint based methodologies give a genuinely

better approach for speaking to and abstracting

necessities. We may additionally call them

speaking to necessities on the parts of stakeholder,

which bodes well on the grounds that every part's

point of view and use is not quite the same as that

of others. Catching the right point of view can bring

about prerequisite fulfillment and convenience. In

[19], prerequisites have been exhibited in Preview-

like viewpoint which make prerequisites in XML

based documentations. Aspects have likewise been

spoken to in the same XML documentation cross-

cutting relating viewpoints. The accompanying

illustration, taken from [19], presents perspective-

based representation. It shows a concentrate of a

Portuguese toll accumulation framework in which a

gadget called gizmo is introduced in a car and is

initiated to pay tolls as the car passes the toll

entryway as it is appears in fig13.

Figure 13 Viewpoint Approaches Identification Of

Aspect

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

497

The result of the viewpoint approached have

shown the potential aspect could be found in the

ATM machine part as it is shows in table1 [19]

below:

Table 1 View Points Approaches Part Of ATM Part Of

The System

Second approaches is use case scenario based

approaches,

Ivor Jacobson in [20] states that execution of

utilization cases crosscut the arrangement of

segments and segment based systems neglect to

accomplish utilization case measured quality. A bit

of code of a segment may contain code of different

utilization cases which will bring about code

tangling issue and correspondingly on the off

chance that we execute an utilization case, an

arrangement of segments will constitute its usage

which is a crosscutting property.

there are a few Aspects which are considered of

course with each application, for example,

execution, security, and adaptation to internal

failure. These Aspects can be brought up in the

Framework Requirements Specification (SRS).

There are too application-related Aspects, for

example, security Aspects for security basic

frameworks, adaptation to internal failure Aspects

for frameworks which should be running

constantly, and synchronization Aspects for

frameworks containing different running strings.

We can distinguish these Aspects as competitor

Perspectives from necessities of the framework

amid the necessities designing stage. When we

have recorded some of the hopeful Aspects we can

call attention to those utilization cases which may

have cooperation with these cross-cutting concerns

(Aspects).

For instance in an ATM framework indicated in

Figure 14, we can call attention to that the

utilization case "withdraw money" will oblige

contribution of a "logging" Aspect, adding to that

for different clients as same time need

"management" aspect for controlling clients

activities . Therefore, we can highlight this

utilization case to demonstrate that its further

outline and usage will be influenced by the cross-

cutting concerns, and it ought to be taken care of

diversely contrasted with other utilization cases.

Figure 14 Use Case Diagram For ATM System

to distinguish aspects in an arrangement of

necessities and how to model them in UML style

outlines. The procedure we present here is the

Theme way to deal with examination and

configuration. we use is a hybrid of the symmetrical

and asymmetrical paradigms. The word subject

ought not be viewed as an equivalent word for

aspect. Theme are more broad than aspects and all

the more nearly include concerns as depicted above

for the symmetric methodology. We see every bit

of usefulness, aspect, or concern a designer may

have as a different topic to be pandered to in the

framework [21].

In Theme approach we will go throw withdraw

cash from ATM . as shown in table below :

R1 User can login to the

system .

R2 User Can withdraw

money from the ATM .

R3 :Admin user can

manage all system

request and maintance .

R4: user can check

balance and genral

informations.

R5:User can modify

personal information ,

password .
Table 2 Theme Approch For ATM Case Study

So to identify the potential aspect we have found

that two requirement that all the system component

will depend on such as cross cutting. R1 potential

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

498

login aspect, R3 management potential Aspect as it

is shown in Figure 15 below:

Figure 15 Cross Cutting Concern Potential Aspects

6. RESULTS

This research tries to investigate and find

the best approach to identifying Aspects in the early

stage of software design. Therefore the results

shows that in these three approaches find potential

aspects for ATM case study hve common Aspects

and all agreed on Login Aspect and Managements

Aspect as it is shown in table3 below :

Table 3 Aspect In Three Different Approaches For ATM

System

The thought is to make a worldwide principle

or regulation to make it methodical over all aspects

arranged segments and programming outline. Case

in point, in requirement stage either from the

stockholder or business investigation. These

prerequisites are utilitarian necessities, for example,

the activities of the business needs. Be that as it

may, there are other non-Functional necessities, for

example, logging, security, execution and exchange

administration which ought to be considered amid

the advancement stage. AOP can execute these

non-practical acquirements independently and can

compass over the whole plan of action. This makes

it simpler to change or keep up this part later in the

framework life-cycle [17]. Another approach to

identifying aspects is to define stakeholder

concerns, refine the stakeholder related concerns,

define cross cutting concern, separate cross cutting

concern and finally weave these cross cutting

concern across the system [18]. There are also

several other approaches that we have mentioned in

state of art section, they also show that it is

possible to identify cross cutting in UML design

diagrams in the design stage. However, there is not

a unique approach to identify ,where Aspects

should be or when they should be triggered.

7. CONCLUSION AND FUTURE WORK

In this paper, we displayed starting

points of examinations concerning

distinguishing Aspects in programming design

stage. The exploration demonstrates that there

are numerous ways to deal with recognizing

Aspect in Software development stages,

however not all methodologies are connected

in all cases or have particular principles or

gauges that can without much of a stretch

discovered cross cutting concern in any

framework effectively , we have conclude that

from each approaches we can identify part of

Aspect then we can combine all in one

framework . In future work we will eximine

our approach to several case study and

implement them using AspectJ then try to

evaluate our approach by finding the different

from the traditional Object Oriented

implementation. .

8. ACKNOWLEDGMENT

We thank University of Human Development Staff

and Huddersfield University. Thanks to Dr. Gary

for his support.

REFRENCES:

[1] Kiczales, Gregor, Erik Hilsdale, Jim Hugunin,

Mik Kersten, Jeffrey Palm, and William

Griswold. “Getting Started with AspectJ.”

Communications of the ACM 44, no. 10

(2001): 59–65.

[2] Li, Hui, Mingji Zhou, GuiJun Xu, and Lingling

Si. “Aspect-Oriented Programming for MVC

Framework.” In Biomedical Engineering and

Computer Science (ICBECS), 2010

International Conference on, 1–4, 2010.

[3] Gradecki, Joseph D, and Nicholas Lesiecki.

Mastering AspectJ: Aspect-Oriented

Programming in Java. John Wiley \& Sons,

2003.

[4] Iqbal, Saqib, and Gary Allen. “Designing

Aspects with AODL.” International Journal of

Software Engineering 4, no. 2 (2011): 3–18.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2015. Vol.80. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

499

[5] Sant’Anna, Cláudio, Alessandro Garcia, Uirá

Kulesza, Carlos Lucena, and Arndt von Staa.

“Design Patterns as Aspects: A Quantitative

Assessment.” Journal of the Brazilian

Computer Society 10, no. 2 (2004): 42–55.

[6] Kiczales, Gregor, John Lamping, Anurag

Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-

Oriented Programming. Springer, 1997.

[7] France, Robert, Indrakshi Ray, Geri Georg, and

Sudipto Ghosh. “Aspect-Oriented Approach to

Early Design Modelling.” IEE Proceedings-

Software 151, no. 4 (2004): 173–85.

[8] Pawlak, Renaud, Lionel Seinturier, Jean-

Philippe Retaillé, and Houman Younessi.

Foundations of AOP for J2EE Development.

Springer, 2005.

[9] Kiczales, Gregor, Erik Hilsdale, Jim Hugunin,

Mik Kersten, Jeffrey Palm, and William G

Griswold. “An Overview of AspectJ.” In

ECOOP 2001—Object-Oriented Programming,

327–54. Springer, 2001.

[10] Jacobson, Ivar. “Use Cases and Aspects-

Working Seamlessly Together.” Journal of

Object Technology 2, no. 4 (2003): 7–28.

[11] Iqbal, Saqib. “Aspects and Objects: A Unified

Software Design Framework,” 2013.

[12] Stein, Dominik, Stefan Hanenberg, and Rainer

Unland. “A UML-Based Aspect-Oriented

Design Notation for AspectJ.” In Proceedings

of the 1st International Conference on Aspect-

Oriented Software Development, 106–12,

2002.

[13] Khan, Shaukat Ali, and Aamer Nadeem.

“UML Extensions for Modeling of Aspect

Oriented Software: A Survey.” In Proceedings

of the 2010 National Software Engineering

Conference, 5, 2010.

[14] Iqbal, Saqib, and Gary Allen. “On Identifying

and Representing Aspects.” In Software

Engineering Research and Practice, 497–501,

2009.

[15] Berkane, ML, M Boufaida, and L Seinturier.

“Reasoning about Design Patterns with an

Aspect-Oriented Approach.” In Information

Technology and E-Services (ICITeS), 2012

International Conference on, 1–7, 2012.

[16] Bernardi, Mario L, and Giuseppe A Di Lucca.

“Improving Design Patterns Modularity Using

Aspect Orientation.” STEP 2005, 2005, 209.

[17] Sirbi, Kotrappa, and Prakash Jayanth

Kulkarni. “Stronger Enforcement of Security

Using Aop and Spring Aop.” arXiv Preprint

arXiv:1006.4550, 2010.

[18] Rashid, Awais. “Aspect-Oriented

Requirements Engineering: An Introduction.”

In International Requirements Engineering,

2008. RE’08. 16th IEEE, 306–9, 2008.

[19] Rashid, Awais, Ana Moreira, and Jo\=ao

Araújo. “Modularisation and Composition of

Aspectual Requirements.” In Proceedings of

the 2nd International Conference on Aspect-

Oriented Software Development, 11–20, 2003.

[20] Jacobson, Ivar. “Use Cases and Aspects-

Working Seamlessly Together.” Journal of

Object Technology 2, no. 4 (2003): 7–28.

[21] Baniassad, Elisa, and Siobhan Clarke. “Theme:

An Approach for Aspect-Oriented Analysis

and Design.” In Proceedings of the 26th

International Conference on Software

Engineering, 158–67, 2004.

