
Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

 A NEW PARALLEL AND DISTRIBUTED FRAMEWORK

BASED ON MOBILE AGENTS FOR HPC:

SPMD APPLICATIONS

1FATÉMA ZAHRA BENCHARA, 2MOHAMED YOUSSFI, 3OMAR BOUATTANE,
4HASSAN OUAJJI

1
Laboratory SSDIA , ENSET Mohammedia, Hassan II University of Casablanca, Morocco

2
Laboratory SSDIA , ENSET Mohammedia, Hassan II University of Casablanca, Morocco

3
Laboratory SSDIA , ENSET Mohammedia, Hassan II University of Casablanca, Morocco

4
Laboratory SSDIA , ENSET Mohammedia, Hassan II University of Casablanca, Morocco

E-mail:
1 benchara.fatemazahra@gmail.com,

2
med@youssfi.net,

3
 o.bouattane@gmail.com,

4
 ouajji@enset-media.ac.ma

ABSTRACT

This paper proposes a new distributed framework and its main components for HPC (High Performance

Computing). It is based on a cooperative mobile agents model which implements the team works strategies

to perform parallel programs execution as distributed one. The program and data to be performed is

encapsulated on team leader agent which deploys its worker agents AVPUs (Agent Virtual Processing

Units). All the AVPUs have to move to a specific node and perform and provide their computational

results. Consider the great number of data and of the AVPUs to be managed by the team leader agent and

which alter negatively the HPC. In this work we focused on introducing a specific mobile agent the MPA

(Mobile Provider Agent) which implements some mechanisms for the management of data and tasks and

the AVPUs to ensure a load balancing model. It applies also some additional strategies to maintain the

others performance keys thanks to the mobile agents several skills.

Keywords: High Performance Computing, Distributed Computing Environment, SPMD Applications,

Mobile Agents, Big Data Processing

1. INTRODUCTION

Nowadays, everyone need to get information,

results and achieve tasks in real time. So it is

possible by the use of the computer science

technologies which make the complex tasks easy in

order to perform these. For example running an

application of weather predictions which is based

on a big number of data and complex simulations

using just one or two processors can be a hard task

for the machine and sometime impossible to

achieve the results. Consider these applications

requirements. We need to introduce cooperation

amongst processing power of different machines.

The Parallel Computing [1] is widely exploited to

overcome these challenges with its flexible and

extensible architectures such as: SIMD (Single

Instruction multiple Data) and MIMD (Multiple

Instruction Multiple Data); and topologies such as:

2D Mesh. Many fast parallel machines are

developed in order to be flexible with the

applications needs but they presented another

challenges according to their high cost and to their

limitation on the test and validation of new parallel

algorithms. So the use of the PVM (Parallel Virtual

Machine) [1] is considered as a suitable solution for

these needs. This PVM machine is constituted over

a grid computing using a set of heterogeneous

machines connected with each other by the

middleware. In [2], the authors proposed a virtual

machine using mesh connected computer MCC

which becomes mesh with multiple broadcast in [3]

and polymorphic torus in [4] and a reconfigurable

mesh computer RMC with integrated network for

each processing element in [5],[6],[10],[11] and

which are improved in [12] by assigning a set of

distributed VPEs (Virtual Processing Elements)

objects for each processing element in the grid; and

recently by the use of GPUs and FPGAs in [7],[8],

[9]. We can say that by introducing the concept of

the grid and especially the middleware, the parallel

computing are converged to the parallel and

distributed one where the computing performance

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

depends on the quality and the performance of the

middleware. The question now is how to achieve

the HPC. For the load balancing problem some

algorithms have been designed for distributed

systems [13],[14],[15],[16],[17]. To move the loads

in a distributed system, the authors have used in

[18] mobile agents which migrate loads from

overloaded nodes to the lightly loaded ones and

considering that all the grid nodes are

homogeneous.

In this context, related to all these previous works

we are focused on the use of the middleware which

is based on the mobile agents. It is considered as a

new grateful computer science technology which is

used in [19] in order to propose a new model for

automatic construction of business processes based

on multi agent systems. And also in [20] to improve

the management, the flexibility and the reusability

of grid like parallel computing architecture; and the

time efficiency of a medical reasoning system in

[21]. So Thanks to the several interesting mobile

agents skills, we design and implement a parallel

and distributed environment composed by the

middleware which assigns and orchestrates a set of

mobile agents as AVPUs (Agent Virtual Processing

Units) for each physical processor in

heterogeneous parallel and distributed grid

computing. It implements some interesting

mechanisms for load balancing, fault tolerance, and

to reduce the communication cost in order to have a

control about all the parallel and distributed

computing challenges and ensure the HPC. This

paper is organized as follows:

• We will describe the proposed model for

parallel and distributed computing, its main

components which are: the mobile Team leader

agents and the mobile Team worker agents and the

MPA agent (Mobile Provider Agent) in the section

2.

• The section 3 is focused on presenting

several mechanisms used by the Mobile Provider

Agent in order to perform a load balancing

middleware and a high performance parallel and

distributed computing.

• Some interesting results performed by

implementing the c-means and the fuzzy c-means

algorithm in this model will be presented in section

4.

2. DISTRIBUTED COMPUTING
ENVIRONMENT ARCHITECTURE

2.1 Distributed Computing Environment Model

Distributed Computing Environment is a new

scalable and robustness model for performing

distributed HPC of parallel programs as distributed

one on a distributed system. It constitutes a parallel

and distributed grid computing which is flexible

with different topologies: 2D Mesh, 3D Mesh…

and architectures: SIMD, SPMD (Single Program

Multiple Data), MIMD, MPMD (Multiple Program

Multiple Data)... It is based on a cooperative mobile

agent team works as (AVPUs) deployed in each

machine in order to perform parallel and distributed

tasks. For example in Figure 1, in order to perform

big data image segmentation, the fine grained c-

means clustering algorithm is performed with

SPMD architecture. It is implemented according to

the distributed implementation in [26]. The Team

leader (AVPU) divides the big data into elementary

data and distributes them to their AVPUs. All the

AVPUs perform in parallel the distributed image

segmentation tasks and send the results to their

Team leader agent to perform the big data

segmented output images.

The distributed computing in this grid needs to

be managed in order to ensure the HPC

performance keys. This model has been extended

by introducing the MPA agent which implements

interesting mechanisms for managing the mobile

agents team works.

Figure 1: 2D Mesh Grid Computing for distributed

image segmentation based on (AVPUs)

2.2 Model Main Components Overview
This distributed computing environment in

Figure 2, is based on the power of the middleware

and the mobile agents. The HPC of the parallel

programs is performed in this environment by it

cooperative main components which are created in

these different environment states:

• Launching state: The middleware creates

the Node Agent Container for each involved

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

machine in the distributed computing and connects

each of it in order to constitute the grid computing.

We distinguish two particular nodes: the Node Host

Agent Container created for the first machine

responsible for launching this environment; and the

Node Provider Agent Container where the MPA

agent will be deployed.

• Deployment state: When the parallel

program is deployed, the middleware deploys the

MPA agent and the Team leader AVPU for each

node which encapsulates tasks and creates their

Team workers AVPUs. We can have one or two

Team leader AVPU in the same node according to

the number of the parallel programs deployed in

this environment. Also each AVPU are autonomous

and can decide to replicate itself in order to ensure a

fault tolerance environment.

• Running state: When the parallel program

is running, the team leader AVPU sends the tasks

and data to the MPA agent in order to manage and

provide them to the Team workers AVPUs by

ensuring the load balancing of tasks execution in

the grid computing. At the end, the MPA agent

sends the results to the Team leader AVPU in order

to perform the final results and return it to the MPA

agent in order to be broadcasted for different nodes

in the grid.

3. FROM PARALLEL TO DISTRIBUTED
COMPUTING

3.1 A Fast Distributed Computing
Middleware

As this environment is constituted over

heterogeneous machines with different degree of

performance, we need some additional component

in our model which is the MPA agent presented in

Figure 3. The MPA agent is responsible for

managing the pool of tasks and data and the results.

It is an intelligent mediator between the Team

leader AVPU and the Team workers AVPUs. This

MPA agent has the knowledge of the number of

team workers and its nodes performance. It

manages a set of distributed pools by introducing

the priority of the execution and the agent AID

(Agent Identifier) for each tasks and data in these

pools. So the team workers AVPUs can easily

follow their data and tasks when they move to the

MPA agent container. The MPA agent has also the

ability to decide according to the parallel program

architecture when to send the tasks and data and

when to keep the agents to move to the pools. So

by the implementation of the MPA agent in our

model we have a control about the load balancing

problem, and we reduce at the same time the

communication cost. Also the MPA agent is

autonomous, it can decide to move and to clone

itself and resume its work in order to ensure a fault

tolerance environment.

3.2 HPC Parallel and Distributed
Computing Model

This Model uses a specific mobile agent the MPA

agent which implements interesting mechanisms for

managing the cooperative mobile agent team work.

It ensures the HPC performance keys

(Communication cost, Fault Tolerance and Load

Balancing) in Figure. 4 as follows:

Figure 2: Distributed Computing Environment main components overview

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

1) Communication Cost: The MPA agent use

its asynchronous communication ability by

exchanging ACL messages between the different

components of the team work. This agent skill

grants the ability to the team work for performing

computation and communication at the same time.

And also to the MPA agent for performing

management of the team works and

communication.

2) Fault Tolerance: The MPA Agent has the

ability to clone itself at a specific time. So when

some problems happen, the cloned MPAc agent

starts. It resumes its state by the data and tasks of

MPA agent and continues the tasks execution.

3) Load Balancing: The AMS (Agent

Management System) agent performs the nodes

performance monitoring and assembles and stores

the results in the knowledge database. So the MPA

agent accesses the data and performs its tasks by

making some strategies to manage distribution of

data and tasks to the team works in order to ensure

load balancing computing.

3.3 Cooperative Mobile Agents Model
Implementation

In Figure 5, we describe a scenario about the

interaction between the different model main

components in order to perform the execution of the

parallel programs. This model is implemented using

JADE (Java Agent Development Framework) [22].

Figure 3: Distributed Middleware mechanisms for Computing Management

Figure 4: Overview of the Model management strategies for the main parallel computing challenges

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

4. SPMD APPLICATIONS

This section is investigated to demonstrate the

performance of this model for SPMD applications.

The two fined grained algorithms: Fuzzy c-means
and c-means are implemented as distributed

programs: DFCM (Distributed Fuzzy C-Means) and

DCM (Distributed C-Means) and assigned to the

Team leader Agent in order to perform medical

image segmentation.

4.1 Distributed Implementation

The parallel c-means algorithm as defined in [23]

and the FCM (Fuzzy C-Means) which is proposed

by Dunn [24] and extended by Bezdek [25] are

implemented in this environment as distributed

programs in order to perform distributed image

segmentation.

It is performed using the corresponding following

steps presented under a sequence diagram in Figure

6. When the distributed program is assigned to the

team leader agent which cooperates with its team

works in order to perform the big data image

segmentation.

4.2 Program Results

The scalability and the efficiency of this model

are shown under the implementation of the both

programs: c-means and Fuzzy c-means for

distributed segmentation. Each program is assigned

to a Team leader Agent which deploys its team

workers and performs the segmentation for

different input images: MRI cerebral image (Img1)

in Figure 7 (a) and MRI cardiac image in Figure 8

(a) (Img2). And the Figures 7(b)-(c) and the Figures

8(b)-(c), are the c output segmented images for the

both images respectively.

Figure 5: Sequence diagram for cooperative and distributed computing model

Figure 6: Sequence diagram for cooperative and distributed computing model

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

The obtained results are investigated under these

two following cases of dynamic convergence

studies and the segmentation time analysis under

the third case.

1) Case 1: For the same input image (Img1)

and the initial class centers (c1, c2, c3, c4, c5) =

(49.2, 50.8, 140.5, 240.5, 249.8). The DCM

program converges in Table 1 to the final class

centers after 15 iterations. And the DFCM program,

in Table 2 converges to the final class centers after

6 iterations. The dynamic convergence for both

programs is summarized in Figure 9.

Figure 7: Output MRI cerebral images results by the distributed segmentation. a) The

DCM program results; b) The DFCM program results

Figure 8: Output MRI cardiac images results by the distributed segmentation. a) The DCM

program results; b) The DFCM program results

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

2) Case 2: For the same input image (Img2)

and the initial class centers (c1, c2, c3) = (1.5, 2.2,

3.8). The DCM program converges in Table 3 to

the final class centers after 11 iterations. And the

DFCM program, in Table 4 converges to the final

class centers after 13 iterations. The dynamic

convergence for both programs is summarized in

Figure 10.

3) Case 3: We present the segmentation time

analysis of the Img1 in Table 5 and of the Img2 in

Table 6 using the DCM and DFCM program

depending on the number of AVPUs involved in

the segmentation. It is achieved over a distributed

grid computing constituted over 8 heterogeneous

CPUs. As illustrated in Figure 11 and Figure 12, the

DCM algorithm is faster than the DFCM algorithm.

Iteration Value of each class center Absolute value
of the error

C1 C2 C3 C4 C5 |Jn-Jn-1|

1

2

3
4

5

6
7

8

9
10

11

12
13

14

15

49.2

6.810

4.586
4.586

4.586

4.586
4.043

3.790

3.790
3.343

3.082

3.082
2.876

2.688

2.688

50.8

80.816

80.899
80.899

79.486

78.709
76.425

74.261

73.316
71.708

71.343

69.498
68.258

67.959

67.959

140.5

116.739

114.175
112.181

110.073

108.902
107.215

105.811

105.063
104.403

104.323

103.368
102.866

102.866

102.866

240.5

219.488

201.473
190.175

184.334

180.879
178.037

175.541

173.497
172.304

171.858

171.858
171.382

171.382

171.382

249.8

251.929

249.149
244.954

242.084

240.851
239.649

238.277

237.385
236.932

236.932

236.932
236.932

236.932

236.932

1.34E+06

8.87E+05

5.04E+04
1.47E+04

7.51E+03

2.81E+03
6.67E+03

3.77E+03

7.29E+02
3.25E+03

2.21E+03

1.07E+03
1.70E+03

1.31E+03

0.00E+00

Table 1: Different states of DCM program for (Img1) segmentation starting from

class centers (c1, c2, c3, c4, c5) = (49.2, 50.8, 140.5, 240.5,249.8).

Table 2: Different states of DFCM program for (Img1) segmentation starting

from class centers (c1, c2, c3, c4, c5) = (49.2, 50.8, 140.5, 240.5, 249.8).

Iteration Value of each
class center

Absolute value
of the error

C1 C2 C3 C4 C5 |Jn-Jn-1|

1
2

3

4
5

6

49.2
37.901

18.423

3.403
1.132

1.175

50.8
44.168

38.42

46.439
53.31

56.941

140.5
121.629

108.49

102.188
100.327

100.092

240.5
222.386

207.129

195.174
186.73

181.077

249.8
243.506

244.039

244.515
243.734

242.571

5.67E+06
6.45E+04

9.39E+04

1.27E+05
3.36E+04

4.82E+03

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15

Iteration

DCM & DFCM

C1(DFCM)

C2(DFCM)

C3(DFCM)

C4(DFCM)

C5(DFCM)

C1(DCM)

C2(DCM)

C3(DCM)

C4(DCM)

C5(DCM)

Class Center value

0.00E+00

2.00E+06

4.00E+06

6.00E+06

1 2 3 4 5 6 7 8 9 101112131415

Iteration

|Jn-J(n-1)|

|Jn-J(n-1)|(DFCM) |Jn-J(n-1)|(DCM)
Error Value

Figure 9: Dynamic changes of the class centers starting from centers (c1,c2,c3,c4,c5)=(49.2,50.8,140.5,240.5,249.8) for

DCM and DFCM program using (img1). (a) Class centers; (b) Error of the objective function

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

However, by the use of the DFCM method we grant

a good precision of the class centers and of the

quality of the MRI image segmentation compared

to the DCM method. And we notice that the

segmentation time of the two methods is reduced

according to the number of AVPUs. Thus,

demonstrates the speedup of the distributed

segmentation compared to the sequential one. For

example for the DFCM method using 32 AVPUs,

we perform interesting speedup of 6 for (Img1) and

of 8 for (Img2) in Figure 11(b) and in Figure 12(b).

And we can see clearly that from 16 AVPUs, the

speedup achieves its maximum value for the two

algorithms. This is due to the size of the elementary

images which become very small; and enhance the

latency and influence the performance of

distributed systems. In this case it is interesting to

perform the segmentation of these images by the

Team leader Agent instead of deploying a set of

AVPUs.

Table 3: Different states of DCM program for (Img2)

segmentation starting from class centers (c1, c2,

c3)=(1.5, 2.2, 3.8).

Table 4: Different states of DFCM program for (Img2)

segmentation starting from class centers (c1, c2,

c3)=(1.5, 2.2, 3.8).

Table 5: Segmentation time of DCM and DFCM

programs for (Img1) according to AVPUs number.

Table 6: Segmentation time of DCM and DFCM

programs for (Img2) according to AVPUs number.

Iteration Value of
each

 class center

 Absolute
value

of the error
C1 C2 C3 |Jn-Jn-1|

1

2
3

4

5
6

7

8
9

10

11

1.5

0.0
16.343

48.002

61.311
67.935

71.309

72.599
74.951

75.553

75.553

2.2

0.0
0.0

0.0

1.651
2.734

4.149

4.149
5.886

5.886

5.886

 3.8

116.342
131.467

136.958

143.605
147.181

148.424

149.206
149.585

149.950

149.950

4.70E+07

3.28E+07
2.90E+06

2.89E+06

7.42E+05
7.67E+04

9.15E+04

3.98E+03
1.21E+05

9.15E+03

0.00E+00

Iteration Value of each
 class center

 Absolute
value

 of the error
C1 C2 C3 |Jn-Jn-1|

1

2

3
4

 5

6
7

8

9
10

11

12
13

1.5

62.517

40.436
24.141

15.173

10.864
8.811

7.692

6.988
6.507

6.168

5.928
5.757

2.2

98.681

106.484
102.733

97.560

93.349
90.014

87.430

85.466
83.996

82.909

82.114
81.537

 3.8

111.686

134.142
147.129

152.552

154.062
154.100

153.728

153.319
152.975

152.710

152.514
152.371

1.59E+07

6.76E+06

1.26E+06
9.25E+05

4.80E+05

2.76E+05
1.23E+05

7.10E+04

5.23E+04
3.23E+04

2.16E+04

1.83E+04
1.15E+04

Number
of Agents

DCM DFCM

1

2
4

8

16
32

215

145
73

62

54
48

1339

760
450

320

240
230

Number
of Agents

DCM DFCM

1
2

4

8
16

32

554
320

250

130
123

123

12475
5340

3123

1780
1650

1560

0

50

100

150

200

1 3 5 7 9 11 13

Iteration

DFCM & DCM

C1(DFCM)

C2(DFCM)

C3(DFCM)

C1(DCM)

C2(DCM)

C3(DCM)

Class value

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

1 2 3 4 5 6 7 8 9 10 11 12 13

E
rr

o
r

v
a

lu
e

Iteration

|Jn-J(n-1)|

|Jn-J(n-1)|(DCM) |Jn-J(n-1)|(DFCM)

a)

b)

Figure 10: Dynamic changes of the class centers starting from

centers (c1,c2,c3)=(1.5,2.2,3.8) for DCM and DFCM program

for (img1) segmentation. (a) Class centers; (b) Error of the

objective function

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

5. CONCLUSION

In this paper, we have presented a distributed

framework for high performance parallel and

distributed computing and its applications for two

fine grained clustering algorithms: c-means and the

Fuzzy c-means algorithms. It is based on a new

middleware which is flexible with parallel

programs trends and which use the Mobile Agents

as Agent Virtual Processing Units AVPUs. Each

mobile agent associates its skills: autonomy, and

mobility, and communication ability using ACL

messages to provide the computing environment

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

Time (ms)

Number Of Agents

Segmentation Time of Image 1

Time DCM

Time DFCM

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8 16 32

Number Of Agents

SpeedUp DCM SpeedUp DFCM

Figure 11: Segmentation time (Time DCM) and (Time

DFCM) of the (Img1) using the initial class centers

(c1,c2,c3,c4,c5)=(49.2,50.8,140.5,240.5,249.8) and DCM

and DFCM program; (a) Segmentation times depending on

the number of AVPUs ; (b) The gain of DCM and DFCM

methods

a)

b)

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 32

Time (ms)

Number Of Agents

Segmentation Time of Image 2

Time DCM

Time DFCM

a)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 2 4 8 16 32

Number Of Agents

SpeedUp DCM SpeedUp DCM

b)

Figure 12: Segmentation time (Time DCM) and (Time

DFCM) of the (Img2) using the initial class centers

(c1,c2,c3)=(1.5,2.2,3.8); (a) Segmentation times

depending on the number of AVPUs ; (b) The gain of

DCM and DFCM methods

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

that ensure the performance keys (load balancing,

fault tolerance and reduce the communication cost).

Moreover, its implements the Mobile Provider

Agent (MPA) which use interesting mechanisms

for ensuring this performance keys and improve the

HPC. The scalability and the efficiency of this

framework are demonstrated by the segmentation

time and the speedup results performed for these

distributed algorithms compared to the sequential

one. We anticipate implementing some

management strategies for input data and AVPUs

managements in order to reduce the latency in this

environment. And lead to HPC enhancement for

SPMD Applications and for different parallel

computing architectures trends.

REFRENCES:
[1]. H.El-Rewini, M. M.Abd-El-Barr, “Advanced

Computer Architecture and Parallel

Processing”, Wiley, 2005.

[2] R. Miller, et al., “Geometric algorithms for

digitized pic-tures on a mesh connected

computer”, IEEE Transactions on PAMI, Vol.7

,1985, pp.216-228.

[3] V.K. Prasanna, D.I. Reisis, “Image computation

on meshes with multiple broadcast”, IEEE

Transactions on PAMI, Vol.11, 1989, pp.1194-

1201.

[4] H. LI, M. Maresca, “Polymorphic torus

network”, IEEE Transaction on Computer 1989,

C-38, pp.1345-1351.

[5] T. Hayachi, K. Nakano, S. Olariu, “An O ((log

log n)2) time algorithm to compute the convex

hull of sorted points on re-configurable

meshes”, IEEE Transactions on Parallel and

Distributed Systems , Vol. 9, 1998, pp.1167-

1179.

[6] R. Miller, V.K. Prasanna-Kummar, D.I. Reisis,

Q.F. Stout, “Parallel computation on re-

configurable meshes”, IEEE Transactions on

Computer, Vol. 42, 1993, pp.678-692.

[7] Y. Zhao, F.C.M. Lau, “Implementation of

Decoders for LDPC Block Codes and LDPC

Convolutional Codes Based on GPUs”, IEEE

Transactions on Parallel and Distributed

Systems, Vol. 25, 2014, pp.663-672.

[8] J. Wu, J. JaJa, E. Balaras, “An Optimized FFT-

Based Direct Poisson Solver on CUDA GPUs”,

IEEE Transactions on Parallel and Distributed

Systems 2014, Vol. 25, pp.550-559.

[9] A. Rafique, G.A. Constantinides, N. Kapre,

“Communication Optimization of Iterative

Sparse Matrix-Vector Multiply on GPUs and

FPGAs, IEEE Transactions on Parallel and

Distributed Systems 2014.

[10] M. Youssfi, O. Bouattane, M.O. Bensalah, “A

Massively Parallel Re-Configurable Mesh

Computer Emulator: Design, Modeling and

Realization”, J. Software Engineering &

Applications, Vol. 3, 2010, pp.11-26.

[11] O. Bouattane, B. Cherradi, M.Youssfi, M.O,

Bensalah, M.O., “Parallel c- means algorithm

for image segmentation on a reconfigurable

mesh computer”, ELSEVIER, Parallel

computing, Vol. 37, 2011, pp.230-243.

[12] M.Youssfi, O. Bouattane, F.Z. Benchara, M.O.

Bensalah, “A Fast Middleware For Massively

Parallel And Distributed Computing”, Inter.

Journal of Research in computer and

Communication Technology, Vol. 3, 2014,pp.

429-435.

[13] D.R. Karger, M. Ruhl, “Simple Efficient Load-

Balancing Algorithms for Peer-to-Peer

Systems”, Theory of Computing Systems, Vol.

39, 2006, pp.787-804.

[14] I. Konstantinou, D. Tsoumakos, N. Koziris,

“Fast and Cost-Effective Online Load-

Balancing in Distributed Range- Queriable

Systems”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 22, 2011, pp.1350-

1364.

[15] H.C. Hsiao, H.Y. Chung, H. Shen, Y.C. Chao,

“Load Rebalancing for Distributed File Systems

in Clouds”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 24, 2013, pp.951-962.

[16] H.C. Hsiao, C.W. Chang, “A Symmetric Load

Balancing Algorithm with Performance

Guarantees for Distributed Hash Tables”, IEEE

Trans. Computers, Vol. 62, 2013, pp.662-675.

[17] G. Cybenko, “Load balancing for distributed

memory multiprocessors”, Journal of Parallel

and Distributed Computing, Vol. 7, 1989, pp.

279-301.

[18] J. Liu, X. Jin, Y. Wang, “Agent-Based Load

Balancing on Homogeneous Mini-grids:

Macroscopic Modeling and Characterization”,

IEEE Transactions on Parallel and Distributed

Systems, 2005, pp. 586-594.

[19] J.A. García Coria, J.A. Castellanos-Garzón,

J.M. Corchado, “Intelligent business processes

composition based on multi-agent systems”,

ELSEVIER. Expert Systems with Applications

Vol. 41, 2014, pp.1189-1205.

[20] D.Sánchez, D. Isern, A. Rodríguez-Rozas,

Moreno, “Agent-based platform to support the

execution of parallel tasks”, ELSEVIER, Expert

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

Systems with Applications, Vol. 38, 2011, pp.

6644-6656.

[21] A. Rodríguez-González, J. Torres-Niño, G.

Hernández-Chan, E. Jiménez-Domingo, J.M.

Alvarez-Rodríguez, “Using agents to parallelize

a medical reasoning system based on ontologies

and description logics as an application case”,

ELSEVIER, Expert Systems with Applications

Vol. 39, 2012, pp.13085-13092.

[22] F.L. Bellifemine, G. Caire, D. Greenwood,

“Developing Multi-Agent Systems with JADE”

Wiley 2007.

[23] O. Bouattane, B. Cherradi, M. Youssfi, M.O.

Bensalah, “Parallel cmeans algorithm for image

segmentation on a reconfigurable mesh

computer”, ELSEVIER, Parallel computing,

Vol. 37, 2011, pp.230-243.

[24] J.C. Dunn, “A fuzzy relative of the ISODATA

process and its use in detecting compact well-

separated clusters”, Journal of Cybernetics, Vol.

3, 1973, pp. 32-57.

[25] J.C. Bezdek, “Pattern Recognition with Fuzzy

Objective Function Algorithms”, Plenum Press.

New York 1981.

[26] FZ. Benchara, M. Youssfi, O. Bouattane, H.

Ouajji, M.O. Bensalah, “Distributed C-Means

Algorithm for Big Data Image Segmentation on

a Massively Parallel and Distributed Virtual

Machine Based on Cooperative Mobile

Agents”, Journal of Software Engineering and

Applications, Vol. 8, 2015, pp.103-113.

