
Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

 EFFICIENT REVERSE SKYLINE ALGORITHM FOR

DISCOVERING TOP K-DOMINANT PRODUCTS

1
SHAILESH KHAPRE,

2
M.S. SALEEM BASHA,

2
A. MOHAMED ABBAS

1
Department of Computer Science, Pondicherry University, Pondicherry, INDIA.

2
Department of Computer Science and & Info. Technology, Mazoon University College, Muscat, OMAN

E-mail:
1
shaileshkhaprerkl@gmail.com, m.s.saleembasha@gmail.com,

abbasasfaq@mazooncollege.edu.com

ABSTRACT

Recent boom in internet growth and the advancement in internet security have led to rapid growth in

Ecommerce and related services. In this context, capturing the preferences of customers plays an important

role in decisions about the design and launch of new products in the market. The science that primarily

deals with the support of such decisions is the Operational Research. Since many of the research problems

of Operational Research have to do with the analysis of large volumes of data, therefore there has been a

keen interest in data management methods to solve these problems. In this work we develop new

algorithms for two problems related to the analysis of large volumes of consumer preferences, with

practical applications in market research. The first problem we consider is to find the potential buyers of a

product (potential customer’s identification). We formulated this problem as a reverse query skyline and

propose a new algorithm called ERS. Secondly, Practical applications often require simultaneous

processing of multiple queries. To resolve this problem, we formulated a new type of query, which is

referred to as a query to find the k dominant candidates (k-dominant query). Our experimental evaluation

validates the efficiency of the proposed algorithm which outperforms BRS by a huge margin.

Keywords: Skyline Algorithms, Market Analysis, Personalized Service Mining, Personalized marketing, E-

Commerce.

1. INTRODUCTION

The development of methods for evaluating

queries with preferences of particular interest of

consumers is the on-going research in service

provider’s world. This is because in modern

environment, the providers-companies are required

to attract consumers with different characteristics

and consumer habits, following them as closely as

possible, learning and optimizing there personalized

strategies. In this context, capturing the preferences

of customers plays an important role in decisions

about the design and launch of new products in the

market. Examples of important applications related

to the analysis of consumer preferences are

personalized advertising, market segmentation,

product positioning etc.

For example suppose the marketing department

of an IT company, has conducted a market survey

to gather consumer preferences regarding the

desired features of a laptop. Using the data

gathered, the company wants to assess what

consumers are more likely to buy any of the

computer models offered. In this way, the company

could adjust its advertising strategy to these users

(for example, sending personalized e-mails or their

special offers). Another interesting application is to

identify the features that should have a new product

in order to maximize the most popular among

consumers. In this case, the company would choose

to adjust the standards set by the planning

department.

The science that primarily deals with the support

of such decisions is the Operational Research. The

object of Operational Research usually described as

follows: Wanted to optimize a number of

parameters to maximize a utility function (utility

function). Since many of the research problems of

Operational Research have to do with the analysis

of large volumes of data, therefore there has been a

keen interest in data management methods to solve

these problems.

In this work we develop new algorithms for two

problems related to the analysis of large volumes of

consumer preferences, with practical applications in

market research. Then we present briefly the

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

specific problems which we focused. The first

problem we consider is to find the potential buyers

of a product (potential customer’s identification).

We formulated this problem as an reverse query

skyline and we propose a new algorithm called ERS

which predominates in performance compared to

the most efficient algorithm has been proposed in

the literature so far BRS [1], in relation to both the

computational cost and with the disk access cost.

Unlike the algorithm BRS, the ERS algorithm we

propose is based on a different ranges of data

processing, which allows significant improvements

in relation to the speed of implementation,

scalability, and progressive production results.

Practical applications often require simultaneous

processing of multiple queries, for example, if a

mobile phone carrier which maintains a database of

subscribers, keeps information about the current

program subscriptions for each client, and usage

statistics such as the average monthly call duration,

no. of text messages sent, data volume consumed

etc. Moreover, suppose that the sales department

has proposed the launch of a new series of

television programs, the company would like to

provide these programs that collectively will be

more likely to attract the maximum number of

subscribers. To resolve this problem, we formulated

a new type of query, which will be referred to as a

query to find the k dominant candidates (k-

dominant query). Given a set of existing products

on the market P, a set of consumer preferences C

and a new set of candidate products Q, a k-

dominant query returns a set of k candidate from

the initial set of Q, so that the selected new products

have collectively the estimated maximum total

number of buyers. According to the formulation of

the problem we propose a consumer is considered a

potential buyer of a product if and only if the

product is the result of a reverse skyline set or

influence set, considering for each consumer as the

best attribute values that are related to their

preferences.

Two recent works [2, 3] consider a similar

problem but only features the data that have a

universally accepted total provision, such as price

or weight of a laptop (in both cases, lower prices

are always preferable) . If subjected to this

requirement, the best records for a user are easy to

obtain by performing a conventional skyline query.

Therefore, the above studies are concentrating on

greedy algorithms that seek the most profitable

solution, combining the sets of potential buyers

with each new product. In this paper, we generalize

the notion of preferences of a consumer to cover

also features for which there is an optimal objective

value (i.e. it does not follow a total order value)

such as screen size, processor type, operating

system, etc. For example, a consumer may be

interested in buying the portable laptop while

someone else buying a laptop to replace the fixed

personal computer. In such a case, it is expected the

first consumer to prefer a laptop with a smaller

screen (making some sacrifices in usability and

applications that can it perform), while the second

one with a larger screen (perhaps sacrificing ease of

transportation).

For such traits, the application of the techniques

proposed in the work [2, 3] requires the previously

exported relations of domination that exist between

the records for each customer as they are user

dependent preferences. Therefore, this method

would require the implementation of a dynamic

query skyline [4] for each consumer, which is

prohibitively expensive compared to the execution

time that would be required. At the same time, if it

chooses to execute one of the algorithms that have

been proposed till now (simple) reverse skyline

queries to evaluate a k-dominant queries, we would

need to calculate the outcome of a reverse skyline

query once for each new product candidate, which

is also very costly in terms of execution time,

especially for larger datasets. With this in mind, we

adapt the algorithm ERS proposed for simple

reverse skyline queries. The algorithm we propose

for this problem significantly reduces the required

runtime compared by processing each query

separately by grouping similar questions

appropriately, performing common accesses to disk,

and allowing simultaneous processing of many

queries. Finally, having drawn the entire reverse

skyline for each query, we propose a greedy

algorithm that computes the final solution for a k-

dominant product.

Overall contributions of the paper are:

• We propose a new algorithm, called ERS for

evaluating reverse skyline queries. ERS

algorithm shows better scaling to datasets

containing a large number of results belonging

to the ridge (e.g. in case of multidimensional

data) while producing the first results

significantly faster than the best algorithm has

been proposed in the literature to date(BRS).

• We develop a variant of the ERS algorithm for

processing groups of queries which significantly

reduces the required runtime compared by

processing each query individually appropriate

grouping similar products candidates,

performing common accesses to disk, and

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

allowing simultaneous processing of multiple

queries. We then apply this new algorithm for

evaluating k-dominant queries, the k-Dominant

queries generalizes similar queries that have

been proposed in previous work [2, 3] for cases

where consumer preferences also include

subjective attributes.

• Experimenting on synthetically generated data,

outcome shows us that (a) the ERS algorithm

significantly outperforms the BRS algorithm for

the case of an reverse skyline query in relation

to the performance, the scalability, and

progressiveness, particularly for

multidimensional data or when the size of the

whole product dataset is larger than the size of

all consumer preferences, and (b) the algorithm

we propose simultaneously perform multiple

queries which outperforms basic methods that

process each item separately.

2. RELATED WORKS

The work [5] first proposed the formulation of

several problems in operational research, such as

finding potential market, potential customer

identification, product-feature promotion and

product positioning.

In the field of database the work [6] suggests

different types of queries for market analysis,

analysis of dominance relationships among

competing products and consumer preferences.

Goal is to help a company to place its products in

perfect position as per the consumer choices in the

market so to attract as many customers as possible.

Several works [7, 8, 1, 9, 10, and 11] focus on

the problem of finding potential buyers of a

product. To highlight the characteristics of a

product relative to the competition, the work [12]

focuses on the problem of defining and promoting

the attributes of a product to make it competitive in

comparison with other products. In [13] the

problem of promoting a product is transformed into

a problem of finding attractive in buyer i.e.

dimensions subsets for which the product has good

ranking. A corresponding problem is to find the

top-k best areas to promote a product [14].

Another practical application relates to the

design of new products in order to maximize the

estimated benefit (utility function), a problem

commonly known as the optimal placement of a

product [15, 16, 17, 2, 3], the utility function may

include various number of factors including the

estimated buy [16, 17, 2, 3], the final gain (product

price minus production costs) [6, 15, 17, 3] or

competitions [6, 2]. The work [15, 17] deals with

the problem of finding competitive packages

composing individual product offerings, for

example prices of flights with hotel rates. A

package is competitive if not dominated by other

packages.

Focusing on utility functions related to the

number of expected buyers, a challenge is how to

represent the preferences of consumers. A popular

method assumes the existence of a weighted

aggregate function that reflects the relative

importance of each feature for a particular

consumer. Based on this assumption, each product

is assigned a score by applying the preference

corresponding aggregate function on product

prices. Products receiving the highest scores are

considered as the most attractive for the individual

user. The work [9, 16] follows this approach by

introducing the notion of reverse top-k queries. A

reverse top-k query returns the aggregation function

for which (vectors) a product q belongs to top-k.

Nevertheless, in practice it is often quite difficult

to get the exact aggregation function for each user

of the system [18]. In contrast, a more natural way

to represent preferences is allowing users to directly

determine the ideal for those features for a product.

Following this approach, both product and

consumer preferences can be represented as points

in the same multidimensional space. Such cases

lead to different ways of measuring the satisfaction

of a consumer-product. One option is to allow users

to specify a minimum acceptable value in each

dimension-feature [3], Based on this approach, all

products that have better features than the minimum

acceptable can be regarded as satisfactory. A major

limitation of such a formulation is that it can be

applied to types of features that do not have full

rank, but the optimum value is subjective per user.

Moreover, it gives a sense of satisfaction to

consumer-product.

Therefore, another option for measuring

satisfaction is based on how close is product-

features to the user’s needs. Based on this logic,

one can identify the top-k most attractive products

to a consumer by means of a query nearest

neighbor. Given a set of point P and a point g, a

nearest neighbor query (Nearest Neighbor (NN)

query) [20] returns the point p ∈ P that has the

smallest distance from q, But even in this case,

many times it is difficult to determine an

appropriate distance function, mainly because each

dimension has different weight depending on the

preferences of a user, or because each dimension

usually has its own unit of measurement.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

Specifically to address some of the above

limitations, the skyline Query have been widely

used for research applications market. Suppose user

preferences and characteristics of the products

belong to the sets C and P respectively. In this case

the meaning of the reverse skyline query to a point

q which is introduced in [7] is used to find all of the

points p ∈ P for which q belongs to the dynamic

skyline. In other words, such a query returns all

customers c ∈ C for which a specific product q is

attractive. In this paper we propose a variant of the

algorithm BBS [4] used in conventional skyline

query, with a view of pruning large part of the

search space.

The work [8] improves the method of [7] by

considering the problem where the preferences and

characteristics of products is uncertain, proposing

an algorithm that solves the original problem

minimizing write-read operations from the disk.

The algorithm BRS presented in this paper [1]

suggests an optimizations method for definite data;

the work [10] addresses the problem for the case of

non-metric spaces and proposes efficient algorithms

that compute the reverse skyline. In addition, the

paper [19] studies the problem of energy efficient

reverse skyline query in a wireless sensor network.

Finally, it can be argued that there is a link

between the market analysis and work done on the

problem of facility location planning. In Reverse

Nearest Neighbor queries (RNN) [20], for a set of

points Q, the query returns points q ∈ Q, for which

a point s ∈ S is the nearest neighbor. Finding the k

best s points to a predetermined region of space in

order to maximize the number of points that have q

as nearest neighbor is treated in [21], this problem

is exactly analogous to the problem that is being

addressed in our research.

3. PRELIMINARIES

In this we give some basic definitions for the

reverse skyline queries. Under section 3.1and 3.2

we present the meaning of the whole and its

hinterland and present some important properties

that apply. Finally, section 3.3 describes the most

efficient algorithm that has been proposed in the

literature to date of reverse skyline queries (BRS).

3.1 Reverse Skyline Queries

Let P and C be two sets of records of a table in a

database consisting a set of attributes �	 �
	���, . . . , �	
, alternatively consider each record as

a point in a multidimensional space with D

dimensions. In small letters we will denote a record

that belongs to the corresponding set of capital

letters, e.g. � ∈ �. We will refer to each record

� ∈ � as a product, while �
 will denote the value

of the attribute �
 for product p. In addition each

record � ∈ � represents the ideal characteristics of a

product for a consumer; we will refer briefly to

each record for a consumer as c. For example,

suppose that the database records contain

information about the features of available models

of laptops. In this case, possible attributes

(dimensions) may be the price, weight, screen size,

memory size, etc. some of the features are objective

attributes i.e. e.g. best prices. For example, between

two models with identical features, a buyer will

always prefer the cheaper or lighter model. But it is

clear that for some traits the optimal value is given

by subjective preferences. For example, a large

screen is more practical but also hinders the

portability of a computer. Similarly, a very fast

processor typically causes more heat and noise

while reducing self-sufficiency. Some buyers prefer

a powerful and larger sized laptop (desktop

replacement laptop), while others a model with less

power and smaller size (e.g., netbook or tablet).

Obviously, a buyer is more likely to be interested

more for products that fit quite to his liking. Given

the existence of subjective preferences for attributes

of a relationship, then we present the definition of

the dynamic dominance, as given in [7].

Definition 1: Dynamic Dominance.

Consider two points � ∈ �, �, �� ∈ �. We will

say that a product � dominates dynamically on a

product �′ regarding preferences of a consumer c,

and will be denoted by � ← �� ′, if for each valid

dimension |�
 �	�
| 	� |	�
� �	�
| and there is at

least one dimension such that |�
 �	�
| 	� |	�
� �	�
|.
Note that this definition can cover the objective

dimensions, making the assumption that smaller

values are preferred and preference is set to the

minimum value for the attribute �
. For example,

assuming that a lighter computer is always

preferable we simply assume that all customers

apply the preference ������� � 0, then we present

the definition of a potential dynamic skyline query

(from [7]).

Definition 2: Dynamic skyline query.
A dynamic skyline query relative to the

preferences of a consumer � ∈ �, which is denoted

as � !"�# returns all the products � ∈ � which are

not dynamically dominated with respect to c by

some other product �� ∈ �.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

Figure 1(a). Dynamic Skyline Query relative to the c1 Figure 1(b). Dynamic Skyline Query relative to the c2

Figure 1(c). Dynamic Skyline Query relative to the c3 Figure 1(d). Skyline Queries and Amount of Influence

Figure 1. Example: Dynamic Skyline Query

Suppose there is a set of products � �
���, �$, �%, �&
, and a set of consumers � �
���, �$, �%
. Figure 1 (a) shows a Dynamic skyline

query relative to the point �� considering two

dimensions: processing power and screen size. The

query result consists of products �$ and �&.

Sections of the figure in gray areas are dominated

by dynamic points belonging to dynamic skyline

with respect to ci. As we are interested only in

absolute difference between the values of an

attribute, a product may be dominating against a

product that is in a different quadrant relative to the

��. For example, the points �� and �% in the upper

right quadrant dominates point �$ belonging to the

lower right quadrant, and the processing power and

screen size are both closer to the preferences �$ of

�� from the corresponding characteristics of points

�� and �%. Figures 1 (b) and 1 (c) shows dynamic

skyline queries on the points �� and �% respectively.

Then we present the problem from the reverse

side, i.e. a product, quoting the definition of a

Bichromatic reverse skyline query as given in [48].

Definition 3: Bichromatic reverse skyline query.

Let P and C be two sets of products and

consumers respectively. A dichromatic reverse

skyline query with respect to a point � ∈ �, which

will be denoted as '� !"�# returns all points

� ∈ � such that �	 ∈ � !"�# the point p belongs to

the dynamic skyline query relative to the point c.

In other words, a Bichromatic reverse skyline

query with respect to a product p returns all

consumers � ∈ � who find the point p as attractive.

Then we refer to the result of a Bichromatic reverse

skyline query with respect to p as the total influence

(influence set) with respect to p. In Figure 5.1 (d)

shows the influence of sets of points

��, �$, �()*+	�&.

The size of the total influence of a product p,

'� !"�#, can be seen as a way of measuring the

impact of the product on the market. We refer to the

size of the total impact of a product p, |'� !"�#|,
as scores of influence and is denoted as ,�"�#. In

the example of Figure 1, ,�"��# � 	,�"�$# �
	,�"�%# � 	,�"�&# � 1.

P P

P

P

C

C

C

P P

P

P

C

C

C

P P

C
C

P
C

P

Product O pi

Customer X ci

SKY(c1) : {p2, p4}

SKY(c2) : {p1, p3}

SKY(c3) : {p1, p2}

RSKY(p1) : {c2, c3}

RSKY(p2) : {c1, c3}

RSKY(p3) : {c2}

RSKY(p4) : {c1}

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

232

Figure 2(a). Transformed space 1st quadrant Ω/ relative

to the point q

Figure 2(b). Intermediate points (mid-points) relative to

the q

Figure 2. Influence of neighbors as to q

3.2 Influence Region

Consider a point q (product) this point divides a

space D to 2	 quadrants Ω
 , wherein each is

determined by a number in the range 10, 2	 � 12. In

the example of Figure 2 where D = 2, the point q

divides the space into four quadrants. As in the case

of dynamic skyline queries we are interested only

in the absolute difference values of attributes, we

can transform points from all quadrants in the first

quadrant Ω/ as shown in Figure 2 (a), for ease of

presentation, and then we focus on the first

quadrant Ω/ points if it relates q.

For each point pi belonging to the skyline of q,

and 3
"4# the mid-point connecting q with pi. In

Figure 2 (b), the points are represented with black

spot 3�; 3$ and 3& representing the midpoints of

p1, p2 and p4 relative to q. so, whenever we will

mention a product pi that would mean the

corresponding intermediate point 3
"4# relative to

q. Also we will assume that each point pi can be

calculated with a simple calculation on the

corresponding 3
"4# when processing a skyline

query.

Uniting all the regions space that are not

dynamically dominated in terms of q via skyline of

q, showing the so-called influence region for q,

which we denote by ,'"4#. In Figure 2 (b) the non-

shaded region in the first quadrant Ω/ shows the

influence region of q. Please note that items

belonging to the skyline are not in same part of the

influence region, as according to the definition of

dominance, two points with equal values in each

dimension is not dominated by one against the

other. So we present a useful property that applies

in relation to the influence region, as described in

[8].

Property 1. A point (consumer) c belongs to the

influence set '� !"4# of product q if and only if

the point c belongs to the influence region q, such

that �	 ∈ ,'"4# ⟺ �	 ∈ 	'� !"4#.
Returning to the example of Figure 2 (b), we

observe that only the point c2 belongs to the ,'"4#.
Therefore RSKY(q) = {c2}.

Then we will assume that all the points (either

owned by set of products or the consumer) is

indexed by means of an R-tree. In an R-tree, the

points with similar values of attributes (dimensions)

are grouped and assigned to nodes. Each node

contains a minimum bounding box (MBB) which

encloses a number of points whose actual values

are unknown to the particular node. Figure 3 (a)

shows an MBB e. min-corner will be denoted by

<="4# the top of the MBB which is the minimum

Euclidean distance from the point q. Among the

points of MBB, point <="4# dominates the larger

piece of the multidimensional space. Furthermore,

due to the way of construction of a MBB which is

the smallest possible rectangular parallelepiped that

includes a set of points, each side of the MBB must

contain at least one point. At worst this point may

be located in one of the peaks. We will refer to the

peaks belonging to the sides of MBB as d and

which is exactly diametrically opposite of q as

minmax-corners. Each MBB contains exactly d

such peaks. Regardless of the region of points

within a MBB e, such that each point e dominates

the area of its minmax-corners, while mostly

dominating in the region dominated by the min-

corner.

Given a set MBB we can extract two sets: a set

of L containing all the min-corners and a set U that

contains all the minmax-corners relative to q.

P4

P2’ C3

P1

P3 P4’
c1’

c2’

c3

c1

P2

q

P4

P2’ C3

P1

P3 P4’
c1’

c2’

c3

c1

P2

q

m1
m4

m2

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

233

Figure 3 shows an example for all nodes >? �
	�<@A , <@B , <@C , <@D
 where <@E denotes a node that

contains points-products. In Figures 3 (b) and 3 (c)

parallelepipeds represent midpoints and points with

black and hollow dots show the respective min-

corners and minmax-corners. Continuing the

example of Figure 3 (b), the gray area corresponds

to a lower limit of influence region of q, ,'="4#,
and is defined as the area that is not dominated by

any of the min-corners belonging to set L.

Similarly, the gray area in Figure 3 (c) corresponds

to an upper limit of influence region of q, ,'F"4#,
and is defined as the area that is not dominated by

any minmax-corners belonging to set U . According

to the work [1] applies the following property:

Property 2. If a node <G dominated from a point

H	 ∈ I, i.e. the node <G is completely out of the

upper limit of influence region ,'F"4#, then the

node <G cannot contain any point within the

(effective) area of influence IR(q). Therefore, in

accordance with the property 1 <G node can be

pruned.

For example, the node <G� in Figure 3 (d) can be

pruned as it is completely outside the ,'F"4#.

3.3 The Brs Algorithm

Here we present briefly the most efficient

algorithm proposed so far in the literature of

reverse skyline queries, the Bichromatic Reverse

Skyline - BRS [1]. BRS algorithm aims at

minimizing the number of input/output (I/Os) by (a)

progressively limiting influence region of q

extracted until the final influence region, and (b)

applying the property 2 to prune some nodes that do

not contribute to the total influence RSKY(q).

The BRS algorithm uses two R-trees TP and TC

which indexes data sets P and C respective. In

addition for each dataset it maintains a priority

queue (heap) EP and EC respectively, which are

classified on the basis of the Euclidean distance of

each node from the point q. The BRS algorithm

runs in iterations. Initially, the algorithm adds the

root of the tree TP (respectively TC) in the tail. In

each iteration the BRS algorithm produces sets L

and U consisting of all min-corners and all the

minmax-corners each <@ ∈ >@. Then we calculate

the skyline of sets L and U, which we denote as

SKY(L) and SKY(U) respectively.

Figure 3(a). example MBB Figure 3(b). Lower limit of the

influence Region IR (q)

Figure 3(c). Upper limit of the influence

Region IR (q)

Figure 3(d). Example node pruning

Figure 3. Influence Region

Min
Corner

Minmax

Corner

MB

B

e-

q

IR-

ep1

ep4

ep3
ep2

q

IR
+

ep1

ep4

ep3
ep2

q

ep1

ep3
ep2

q q

ec1

ec2
ec3

ec4

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

234

In each iteration, the algorithm removes the

priority queue EP node with the smallest Euclidean

distance from the q and update appropriate current

sets L and U and the corresponding sets of skyline

SKY(L) and SKY(U). Then, for each node <� ∈ >J

it verify dominance by SKY(L) and SKY(U). If the

node ec is not dominated by SKY(L), i.e. the

section has a lower limit of the influence region of

q, ,'="4#, then the algorithm accesses the node ec

as it is likely to contain points that lie within the

zone of influence ,'"4#. In the example of Figure 3

(d), node ec3 intersects the ,'="4#, therefore

should be accessed and the child node is added to

the priority queue. Conversely, if a node ec is

dominated by SKY(U) (such as e.g. node ec1 in

Figure 3 (d)), then the node can be pruned ec on the

basis of property 2. BRS algorithm terminates when

queue is empty EC, i.e. when the exact position of

each node is determined either within the influence

region IR(q) so that all the leaves of the subtrees

belongs to the reverse skyline relative to q, and if

outside the influence region IR(q) then rejected

from the result.

3.3.1 Limitations Of The Brs Algorithm

Complexity analysis: Let pk and ck current

counterparts on priority queues EP and EC during

the k
th

 iteration of the algorithm BRS. In the worst

case sizes of pk and ck are equal to the sizes of the

datasets |P| and |C|. As described above, each

iteration of the BRS algorithm maintains a totals

skyline SKY(L) and SKY(U) having a size O(|P|)

and O(D|P|), respectively, where D is the number of

dimensions. The BRS algorithm performs

dominance checks between each node belonging to

the EP and the EC sets of skyline SKY(L) and

SKY(U). Therefore, each iterations requires

KLM|�|N	"|�| O 	|�|#P dominance checks, or

otherwise KLM$|�|		N	"|�| O	 |�|#P comparisons,

since each check takes K"M# comparisons.

As its clear from the above analysis, BRS

algorithm depends essentially on the size of sets of

skyline SKY(L) and SKY(U). The work [22] shows

that for uniformly distributed data, the size of the

skyline is Θ""RS|?|#TUA	! #. Therefore, the processing

cost of BRS algorithm is essentially unaffordable

for larger data sets or higher dimensionality. Our

experimental evaluation confirms the above

analysis. More specifically, our experiments show

that the processing cost of the BRS algorithm

increases drastically for |�| W 	10X	YZ	M W 	4.

In order to tackle the problem of scalability in

valuation of reverse query skyline, we suggest a

more efficient algorithm called ERS which

basically avoid calculating totals skyline SKY(L)

and SKY(U) and therefore behave better for

different dimensions and more generally for data

with large size skyline.

Order Processing: The algorithm runs

asynchronously following the R-trees TP and TC, a

layout based on the Euclidean distance of each

node from the point q. This processing order

ensures minimized I/Os required on the index TP.

However, focusing on the total number of I/O

operations required, the algorithm BRS performs

sometimes some unnecessary I/Os. Figure 4 (a)

illustrates such a case where the nodes ep2 and ecl

have not yet been accessed. In the next step the

algorithm BRS access node ec1 and if not affected

by this access therefore should be accessed later.

Conversely, if the first node of accessing ecl, the

algorithm finds specific descendants nodes - ec2 and

ec3 who dominated the points p1 and p5 respectively

then the node is pruned. This avoids the additional

access node ep2. The proposed ERS algorithm

follows a different processing order primarily based

on the level of each node in TC, as confirmed

experimentally that the proposed ordering requires

less overall input/output.

Progressive production effects: The BRS algorithm

progressively refines the boundaries of influence

region IR(q) and returns all points belonging to the

set C, and within the lower limit ,'="4#, Because

of the processing sequence that BRS follows, it

usually takes several iterations until to find the first

results, which is not practical for applications that

require only a part of the result set or require quick

response. The ERS algorithm attempts to address

this problem by producing first results fairly quick

as of BRS.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

235

Figure 4(a). The BRS algorithm accessing node ep2

performing a redundant I/O

Figure 4(b). The ERS algorithms avoids accessing the

Node ep2 lopping the c4 using the point p1

Figure 4. Order processing and disk accessing

4. THE ERS ALGORITHM

We present the algorithm ERS (Efficient Reverse

Skyline Algorithm), which aims to address the

problems described above.

General idea: ERS algorithm

• Avoids calculating SKY (L) and SKY (U) at

each iteration, and therefore has a lower

processing cost.

• Each iterations examines a node from the

priority queue Ec following a series of

processing based on two criteria: (a) the level of

the node in the tree, and (b) the Euclidean

distance of the node from the point q.

• Accessing a node from the priority queue EP

only if required to determine whether a point of

C have total influence RSKY(q).

The ERS algorithm maintains two priority

queues EP and EC and a set SKY(q) containing

midpoint skylines that have been found to the

current iteration. The two priority queues are

classified according to two criteria: firstly based on

the level of the node in the corresponding R-tree,

and secondarily based on Euclidean distance of the

node from the point q. Thus, the leaf nodes having

higher priority are dealt first, while the operations

on intermediate nodes are prolonged for later.

Following this order of processing a leaf node may

reveal some midpoint skyline which then can be

used to prune an intermediary node ec on basis of

the Property 2. The same logic applies for nodes ep

as a midpoint skyline can also be used to prune an

intermediary node ep if the node ep does not

contribute to the skyline. Initially, the current node

ec is examined for dominance by SKY(q) and then

with all the leaf nodes that belong to the priority

queue EP. If there is no leaf that dominates the node

ec, then the ERS algorithm accesses the next

intermediate node ep. This change in the order

processing reduces the number of I/Os. For

example, Figure 4 (b) the ERS algorithm considers

the first leaf node p1 and discovered that the

particular node dominates the c4, so that point c4

does not belong to the influence set '� !	"4#. This

avoids the access node ep2.

4.1 ALGORITHM DESCRIPTION

Initially the ERS algorithm adds descendant

nodes to the queue TP (respectively TC). Then the

algorithm runs in iterations. In each iterations the

ERS removes a node from the queue TP (line 5) and

checks the following pruning conditions:

• If node ec is dominated by some point that

belongs to the current total of midpoint skyline,

SKY(q), then node ec is rejected by the results

based on the property 1 (lines 6-8).

• Else if the node is an intermediate node ec (line

9), then the node is accessed and ec-descendants

nodes is added to the queue EC (line 10).

• Otherwise, for each node ep belonging to the

queue EP (lines 12-22):

• If node ec is dominated by a midpoint such that

<@ 	 ∈ >? (line 15), then the node ec is rejected

based on property 1, while midpoint for ep is

added to the total Sky(q) (line 17).

• Otherwise if the node ec is dominated by the

midpoint of min-corner <@= such that <@ 	 ∈ >?

(line 20), then the node ep and the nodes

descendants are added to the queue EP (line 21).

ep4

ec3

ec2

ep3

ep2

ec1

P1

P5

q

ep4

ec3

ec2

ep3

ep2

ec1
P1

P5

q

c4

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

236

Finally, if node ec is not pruned by any of the

above conditions (line 23), then ec belongs to the

reverse Skyline of q and can be returned directly as

a result (line 24). The ERS algorithm terminates

when the priority queue EC is empty so the total

influence RSKY(q) is returned (line 25).

Example 1. The performance of ERS algorithm

will express better with the help of the example of

Figure 5.5. First we have EP(q) = {ep7, ep1, ep4} and

EC(q) = {ec1, ec4} (nodes at the same level classified

so as to the Euclidean distance from the point q).

During the first iteration algorithm ERS will

examine ec1 node which has the minimum distance

from q. Because they are intermediate node ERS

accesses node ec1 (line 10) and adds - descendants

c2 and ec3 nodes to the priority queue EC(q) (see

Figure 5 (b)). At this point we have EC(q) = {c2, ec4,

ec3} so the algorithm chooses node c2. Even after

processing total skyline, if node c2 is not dominated

by any point-product the algorithm continues to

check whether the node c2 is dominated by a node

contained in the queue EP(q). As node c2 is

dominated by the min-corner of the first node in the

queue EP(q), ep7 (line 14). Therefore the algorithm

examine whether there is a point (leaf node) in ep7

which prevails against the c2 as to q. For this

reason, the algorithm accesses the node eP7 (line

21), adding - descendants p8 and p9 nodes queued to

EP(q). Plus we have EP(q) = {p8, p9, ePl, eP4} (see

Figure 5 (c)). At this point the algorithm finds that

node c2 is dominated by the point p8. Therefore, the

point p8 is added to the skyline (line 17) and node

c2 is discarded from the results. In the next

iteration, the ERS algorithm will consider node ec4.

The node ec4 is not dominated by the current set

after the skyline is accessed, the intermediate node

and the descendants node c5 and c6 are added to the

queue EC(q) (line 10) (see Figure 5 (d)). Plus we

have EC(q) = {c5, c6, ec3}. Then the algorithm will

consider node c5. Again node c5 is not dominated

therefore returned to the result (line 24). Then the

ERS algorithm examines node c6 which is

dominated by point p8 belonging to the current

skyline (line 6) and is therefore rejected. In the last

iteration the algorithm will consider node ec3 and

node ec3 is dominated by point p8 and therefore

rejected. The priority queue EC(q) is now empty so

the ERS algorithm terminates and returns the point

c5 as the final result of the query.

Figure 5(a). step 1 Figure 5(b). step 2

� !"4# ∶� 	0; 	'� !"4# ∶� 	0;	

+Y3^*)_<+ ∶� 	_ZH<;
�Y*_^*H<;
`a	eG	is	a	non � leaf	entry	hijk	
>l�)*+	eG, ^*m<Z_	�n^o+Z<*	<*_Z^<m	^*	>J"4#;

SKY	"q#. push"m#;

>?"4#. remove"ey#;
`a	"dominated	 �
� 	false#	hijk	
RSKY"q#. push"eG#;
return	RSKY"q#;

Algorithm 4: ERS

Input: 4 a query point, |? R-tree on products, |J R-

tree on customers, >?"4# priority queue on products,

>J"4# priority queue on customers

Output: '� !"4# reverse skylines of 4

Variables: � !"4# currently found midpoint skylines

of products w.r.t. 4

begin

while >J � 0	 do
dominated := false;

>J"4#. �Y�"# → <� ;
^~	+Y3^*)_<+	"<� , � !"4## then

else

foreach ep £ Ep (q) do

 midpoint"ep, q# 	→ 	m;
if eG is dominated by m then

if ey is a leaf entry then

if (dominated"m, SKY"q## 	�� 	false# then

+Y3^*)_<+ ∶� 	_ZH<;
break;

else

Expand ey, insert children entries in >?"4#;

ec3 ec4

ep4

ep3

ec1
P5

P8

q

c2
P6

P9

ep2

ep7

ep1

c6

c5

ec3 ec4

ep4

ep3

P5

P8

q

c2
P6

P9

ep2

ep7

ep1

c6

c5

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

Figure 5(c). step 3 Figure 5(d). step 4

Figure 5. Example execution of the ERS algorithm

Complexity analysis: The ERS algorithm requires

in the worst case is |C| iterations, one for each point

in set C. Of course, certainly in practice many

nodes will be rejected with the help of this set

skyline SKY (q) (line 6). Each iteration comprises a

check rule (a) with the current set of skyline

SKY(q), and (b) with the set of nodes belonging to

the priority queue EP. Both sets have size O(|P|) at

worst case so the total ERS algorithm requires O(|P|

|C|) dominance check, or otherwise O(D|P| |C|)

comparisons.

Progressive Production of results: Returning to the

discussion on the progressive production results, we

remind that the ERS algorithm always considers

first leaf node that simultaneously have the

minimum Euclidean distance from the point q. In

other words this means that the first iterations cover

points which are very close to q. Intuitively, the

closer the point is in the set C w.r.t q, the more

likely it is not dominated by any other point of the

set P with respect to q. Therefore, the points

considered in the first iterations have a high

probability of belonging to RSKY(q). Furthermore,

the criterion for classification in queue EC, i.e. the

first nodes to be examined will be leaf nodes and

therefore will not need to be accessed by the

respective nodes on disk, which means that the first

iteration will generally be faster than the next. As

described above the ERS algorithm takes

comparatively little time to find the first results of a

reverse skyline query. In contrast, we remind that

the BRS algorithm requires several iterations to

determine the influence region with such a degree

of accuracy.

5. FINDING K DOMINANT PRODUCTS

We then propose a new type of query which will

refer to as query to find the k dominant products.

The k-most dominant query generalization

problems have been studied in recent work [3, 2]

covering the case where consumer preferences

include subjective features. Initially we describe an

example application that demonstrates the

usefulness of such query. Then we will present the

formal definition of query k-Dominant.

Example application of k-Dominant queries

Suppose a company manufacturer of portable

computer which is planning to produce a new

model series. To decide which models to choose to

put into production, the company must take into

account: (a) all competing models P that exist in the

market, (b) total consumer preferences C that have

been expressed as to the specifications of a model,

and (c) all candidates new models Q as proposed by

the design department. The objective is to

determine the k models from all Q which is

expected to have the greatest impact on the market,

i.e. they jointly expected to attract the maximum

number of buyers. To clarify that we call sub-k

most attractive models, as it makes no sense to

choose the result of two models which are expected

to attract the same set of buyers.

5.1 Problem Definition

First we define the joint influence of all

candidates for a set Q. Then we present the

definition of joint influence scores and introduce

the notion of query k-Dominant.

Definition 4. (Total Influence): Given a set P of

products, a set of consumer preferences C and a set

ec3 ec4

ep4

ep3

P5

P8

q

c2
P6

P9

ep2
ep1

c6

c5

ec3

ep4

ep3

P5

P8

q

c2
P6

P9

ep2
ep1

c6

c5

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

of new (candidate) Q, the set of joint influence of

Q, which we denote as RSKY(Q), is defined as the

union of the individual sets influence all 4
 	 ∈ 	�:

'� !"�# � 	 � '� !"4
#
�E	∈	�

Based on the above definition, influence score

IS(Q) of a set product candidates Q is equal to the

size of the influence of the total Q, |RSKY(Q)|.

Definition of a k-Dominant query as follows:

Definition 5. (Find the k-Dominant): Given a set P

of products, a set of consumer preferences C, a set

of new (candidate) Product Q and a positive integer

k> 1, a query k-Dominant returns the subset

�� ⊆ 	�; with size |Q'| = k which maximizes the

influence score IS(Q').

Figure 6 shows an example query k-Dominant

where we consider two existing (competitive)

products p1 and p2 and 3 new candidate models. As

shown, the result of a 1-Dominant query will return

the model q3 for which IS (q3) = 2. Similarly, a 2-

Dominant query will return models {q2, q3} which

have jointly influence score 3.

It should be noted that it is possible that more

than one candidate products are attractive based on

the preferences of a consumer. For example, in

Figure 6 (b) , both the q1 and q3 belong to SKY (c2),

furthermore it clarifies from the valuation of k-

Dominant, that each product candidate 4	 ∈ 	� is

considered independently of the other nominated

one only in comparison with the existing products

of all P. This assumption is consistent with an

actual application where a company is interested to

compare all products only in relation to the

competition. Also, at the end of this section we

describe how we handle cases where two product

candidates having equivalent influence scores.

Previous work [3, 2] attempt to address a similar

question that has been proposed by inserting

queries. However, this work only considers the case

where all the features of database is objective, i.e.

have a general optimum value (for example in the

case of a laptop: market value, infinite range, etc.).

The k-Dominant queries extend these contracts

covering also subjective traits, where the optimal

value depends on the preferences of each consumer.

Moreover, in the work [57 , 49] it is assumed that

the relationship between dominance and competing

products candidates are known in advance, which is

unfortunately only possible in case of objective

attributes . Therefore, the contribution of the work

[3, 2] merely propose efficient algorithms for

selecting candidates that belong to the query result .

In contrast, in our case the focus is on efficient

identification of all influence.

5.2 K-Dominant Queries Variants

Based on the definition of a k-Dominant query

we consider a product group only once. This is

because two products with equal attribute values

are in identical zones of influence. In a similar way

we can handle a total consumers SC with identical

preferences, where |SC| > 1, It suffices: (a) to

consider only one consumer for each such group

with weight equal to |SC| and (b) take into account

the specific weight when calculating the joint

influence score.

Another variation of k-Dominant query would be

to correlate any potential buyer ci belonging to total

influence RSKY (q) with a weight wi. The specific

value for the weight wi represents the probability

that the consumer ci eventually buy the product q.

For example, a parameter that can be used to

calculate the probability is the distance between the

points q and ci of the multidimensional space.

Figure 6(a). Dynamic Skyline of c1 Figure 6(b). Dynamic Skyline of c2

q2 q1

P

P

c2

c3

c1

q3

q2 q1

P

P

c2

c3

c1

q3

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

Figure 6(c). Dynamic Skyline of c3 Figure 6(d). Total influence sets

Figure 6. Example k-Dominant Query

5.2.1 K-Stage Selection Algorithm

Treatment of a k-Dominant is anything but

simple. Specifically, the problem can be separated

into two subproblems: (a) the calculation of the

sub-assemblies that influence a set of candidate

products, and (b) finding a subset of size k that

maximizes profit measured as the sum of potential

buyers (influence scores). In the next section we

propose techniques for efficient processing of the

first part. Considering the individual sets of

influence known, the second subproblem can be

transformed into a more general problem known as

maximum k-coverage. This problem is NP-hard and

therefore an exhaustive examination of all possible

subsets of size k is not a feasible option. So, we

propose an efficient greedy algorithm to solve the

problem, the solution we propose is a variant of the

more general k-coverage algorithm described in

[31], As we ensure the following property, the

profit generated by the solution is at most 1 - 1/e of

the profit of the optimal solution.

Then we describe how we adapt the algorithm k-

stage coverage with k-Dominant query, our

algorithm (k-stage Selection Algorithm - KSA)

takes as input a set of candidate products Q and

returns a subset �� ∈ 	�, where |Q'| = k, which is a

(1 - 1/e) - approximate solution of the k-Dominant

query. KSA algorithm runs in iterations. In each

iteration the algorithm examines all candidates

product and chooses which if added to the current

result would lead to the maximum possible increase

in the joint influence score? If more than one

candidate products have resulted in an equal

increase in IS(Q'), then the algorithm KSA selects

the product that has the minimum sum of distances

from points belonging to all influence. The reason

we choose this criterion is because the closer the

specifications of a product to a consumer's

preferences, the more likely the consumer will be

interested in the purchase of this product. The KSA

algorithm terminates after k iterations and returns

the result set of Q'.

5.3 Processing Multiple Reverse Skyline

Queries

k-Dominant Queries is an example query that

demonstrates the need for simultaneous

measurement of multiple inverse queries skyline. In

this section we extend the ERS algorithm proposed

for simple skyline query vice versa in the case of

multiple queries.

The simplest method of processing multiple

reverse skyline queries is to implement an

algorithm for simple queries, such as BRS or ERS

for each point. But this approach is very inefficient

relative to the number of inputs/outputs of the disc

needed. Specifically, several nodes ep(ec) will need

to be accessed many times since they appear in the

priority queue more than once.

q2 q1

P

P

c2

c3

c1

q3

Product O pi

Customer X ci

Candidates qi

RSKY(q1) : {c2}

RSKY(q2) : {c1}

RSKY(q3) : {c2, c3}

RSKY(q1, q2) : {c1, c2}

RSKY(q1, q3) : {c2, c3}

RSKY(q2, q3) : { c1, c2, c3}

2-Dominant{q1, q2, q3}: { q2, q3}

Q′ ∶� 	0; 	TempRSKY ∶� 	0; 	MaxRSKY ∶� 	0;		

|<3�'� ! ∶� 	�)l'� !;		

|<3�'� ! ∶� 	'� !"q# 	∪ 	�)l'� !;		
�<m_�)*+ ∶� 	 �qi
;	
�)l'� ! ∶� 	|<3�'� !;	
� ∶� 	�	— 	�<m_�)*+;	
Q′ ∶� 	Q′U	BestCand;	
Z<_HZ*	�′;	

Algorithm 2: k-stage Selection Algorithm

Input: Q a set of candidates, RSKY"q�# reverse

skylines of qi, k

Output: Q′ the most attractive set of candidates

where	|�′| 	� 	k

begin

whi le |Q′| � k do

foreach 4
 ∈ 	� do

if |'� !"q�# ∪ 	�)l'� !| 	� 	 ||<3�'� !| then

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

5.3.1 Algorithm Gers

Here we describe the algorithm gERS, which is

an extension of the ERS algorithm proposed for the

case of simple skyline queries, the main objective

gERS algorithm is to reduce the total number of

required I/O operations, by exploiting the possible

proximity between candidates and allowing sharing

a portion of the processing. It should be noted that

the algorithm gERS we propose can be applied

outside of k-Dominant queries and other types of

queries that require processing of multiple reverse

skyline queries.

The algorithm gERS process multiple queries in

parallel, grouping them in such a way that the

points are in a group to take advantage from the

processing of other group members. The algorithm

attempts to avoid unnecessary I/O operations using

nodes accessed during the execution the ERS

algorithm on a portion of query to prune nodes that

belong to the priority queues of the other group

members.

Specifically, when node is accessed the entering

children nodes are updated in respective priority

queue and simultaneously updating all priority

queues of all members of the group containing the

original node. Therefore, each node runs only one

access per group. Moreover, in order to further

improve the processing cost, the algorithm

maintains a set gERS products (leaf corresponding

R-tree) which are considered to prune large amount

of space. Then we use the term vantage points to

refer to these points, their use will be explained

below and describe in detail with the

implementation of the gERS algorithm.

At this point it is important to mention that the

data structures needed to implement the algorithm

gERS (e.g. priority queues, Skyline sets etc.)

occupy a significant part of main memory. In the

general case, particularly for larger |Q|, we can

safely assume that all these data structures can fit in

main memory. Based on the capabilities of our

system, we will consider only G queries can be

processed in parallel, where � ≪ |�|, as we will

see in the experimental evaluation of the algorithm,

the algorithm gERS displays optimal behavior by

keeping the value G in relatively small size (e.g. up

to 10 queries per group), the reason is that larger

group sizes lead to explosive growth in the

processing costs associated with the management of

priority queues and their required dominance

checks, which quickly offset the benefit from the

reduced number of I/O operations.

Points which are adjacent to the multi-

dimensional space are more likely to benefit from

parallel processing. For this reason the algorithm

gERS originally by setting up Q on 1|�|	/	�	2
groups using a space filling curve (p, x, Hilbert

curve). Then the algorithm processes the group’s

one after the other. For each group is selected at

each iteration in a circular fashion (product

�)_�n'��"q�, G�, Ty, T�	, >�	"4^#, Ey"q�#, RSKY"q�#, SKY

Algorithm 3: gERA

Input: Q a set of candidates, Ty R-tree on products, T�

R-tree on customers

Variables: Ey"q�# priority queue on products for q�,
E�"q�# priority queue on customers for q�, RSKY"q�#
reverse skylines for q�, SKY"q�# midpoint skylines of

q�, G� batches with |G�| � G

begin

�)Z_^_^Y*	�	^*_Y	1|�|/�2	�)_�n<m	 → G�;
foreach G� do

while

"RSKY"q�#	for	all	q� 	 ∈ 	G�	have	not	been	found#	do

m<o<�_�)*+^+)_<	 → 	 q�;
/* Process qi until IS(qi) has been completely

determined */

if E�"q�# � � then

+Y3^*)_<+ ∶� 	~)om<;		
>J"4
#. �Y�"# 	→ 	<�;	

Function Group-ERA

Input: � a group of candidates, |@ R-tree on products,

|� R-tree on customers, >?"4
priority queue on

products for 4
, >J"4
#priority queue on customers for

4
, '� !"4
reverse skylines of 4
, � !"4

midpoint skylines of 4
, �? priority queue on product

leaf entries (vantage points)

Output: '� !"4
reverse skylines of 4

begin

while >J"4
� 0 do

if +Y3^*)_<+L<� , � !"4
#P OR +Y3^*)_<+"<� , �?#
then

+Y3^*)_<+ ∶� 	_ZH<; 	��� ¡�¢£;

if <� is a non-leaf entry then

Expand <� for all relevant qi, insert children into

>J"4
#;
else

foreach <@ ∈ 	>?"4
do

3^+�Y^*_"<@, 4
→ 3;

if <� is dominated by m then

if <@ is a leaf entry then

if "+Y3^*)_<+"3, � !"4
## 	�� 	~)om<# then

� !"4
#. push(m);

�?. �Hmn"<@#;
+Y3^*)_<+ ∶� 	_ZH<; break;

else

Expand <@ for all relevant 4
, insert children into

>?"4
;
>?"4
#. Z<3Y¤<"<@#;
if "+Y3^*)_<+	 �� 	~)om<# then

'� !"4
#. �Hmn"<�#;
return '� !"4
#;

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

candidate) (line 5 of Algorithm 6) and executed by

a modified version of the ERS algorithm. Batch-

ERS extends the ERS algorithm for the case of a

group parallel processing queries. We then describe

the differences in Batch-ERS algorithm with

respect to ERS.

First, whenever a node ex is accessed, the priority

queues of all group members in which ex is

included are properly informed. Also, if a leaf node

is found point pi (line 12 of the function 6) , the

algorithm decides whether the pi should be inserted

into a buffer HP containing vantage points, i.e.

those that can be used in pruning other candidates

nodes. Intuitively, the closer is a candidate point, so

having maximized opportunities for pruning a

larger piece of the multidimensional dominated

space. Following this logic, we implemented the

buffer HP as one key priority queue with the

minimum Euclidean distance of a node from any

candidate group. When the HP is full the HP is

replaced with a new point pi. The vantage points

(corresponding essentially midpoints) are used in

order to implement additional dominance check of

all skyline (second condition - line 5) to avoid some

unnecessary I/O operations.

6. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the

proposed algorithms. All algorithms tested were

implemented in C + +, compiled with gcc and

executed on a system with processor 2 GHz Intel

Xeon, memory RAM 4 GB.

6.1 Experimental Methodology

In our experiments we used a synthetic data

generator designed to build datasets having

different distributions with respect to their attribute

values. Specifically, all uniform values are selected

from a uniform distribution. Additionally, the

attribute values were normalized to the range [0,

10000]. At the end we tag both data sets (products

and consumer preferences) with the help of an R-

tree considering the size of each page is equal to

4096 bytes.

In our experiments we compared the

performance of the proposed algorithms ERS and

gERS compared with the algorithm BRS, for each

algorithm we measured the execution time and the

number of I/O operations required to process (a) a

set of |Q| reverse skyline queries, and (b) a query k-

Dominant given a set of |Q| candidate products.

More detail in each experiment was measured:

The number of I/O operations accessed from disk

separately for products and consumer preferences.

For each data set we used a buffer having a size

equal to 100 pages (410 KB), which for our basic

experiment represents 12.5% of the total data size.

For buffer we followed the strategy of Least

Recently Used cache replacement policy - LRU.

PROCESSING TIME: The total processing time

consisted of the time spent in the CPU plus the cost

of entry/exit from the disk, making the assumption

that each input / output requires 1 millisecond.

Recalling that in the case of simple reverse

skyline queries algorithms BRS and ERS will

perform a set of queries serially one after the other.

To evaluate the specific algorithms query k-

Dominant is added with two additional steps of

execution, (a) a preprocessing step which classifies

points based on the hash function according to

Hilbert curve, and (b) a final stage which

implement the greedy algorithm kESA in order to

choose k product candidates. In our experiments,

the execution times of these two steps were

negligible compared with the time required for the

valuation of an inverse skyline query. Moreover it

is worth noting that none of the algorithms were

practically affected by the number of results k, as it

should anyway be the first step to identify sets of

influence for all Q product candidates.

In each experiment, we modify a single

parameter while holding the other parameters at

their default values, Table 1 shows the parameters

concerned with the range of values tested for each

parameter.

Table 1: Experimental parameters

Parameters Search range

Number of dimensions (D) 2, 3, 4, 5

Size of dataset �"|�|# 10Κ, 100Κ, 500Κ, 1Μ

Size of dataset �"|�|# 10Κ, 100Κ, 500Κ, 1Μ

Size of cache / Total data size

(M)
6.25%, 12.5%, 25%

No. of query per group (G) 5, 10, 20, 50, 100

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

6.2 EXPERIMENTAL RESULTS

Performance relative to the number of dimensions:

2 3 4 5

Figure 7 (a). No. of I/Os with respect to the number of dimensions

Figure 7 (b). Total processing cost in relation to the number of dimensions

In the first experiment we examine the

performance of all algorithms as we vary the

number of dimensions of 2-5, Figures 7 (a) -7 (b)

show the number of I/O operations and the total

processing time respectively. The algorithm BRS

has prohibitively high cost of enforcement for at

least three dimensions data, specific costs of 3.35

times more in CPU time in relation to the ERS

algorithm even for two dimensions, and is

approximately 46 times slower compared to the

time spent in the CPU and 13.5 times slower

compared to the total time for data 5D. It is worth

mentioning that in our experiments we also tested

even higher values for number of dimensions, e.g.

for D = 6, which we have not included in the charts.

In this case, the BRS algorithm took about 15 hours

to terminate in our system, and the ERS algorithm

took 20.2 minutes. Also in all experiments we

observe that the algorithm gERS has much better

performance compared to ERS and BRS in case of

k-Dominant queries.

Another important observation we can make is

that when we have a larger number of dimensions,

the total processing cost is largely determined by

the processing time of the CPU rather than the

inputs/outputs of the disc. This is because the size

of the global skyline SKY(L) and SKY(U)

increased dramatically with the number of

dimensions, therefore the number of dominance

checks required to perform an reverse skyline query

rises sharply . Note that the remaining part of our

experimental evaluation we used the default value

for the number of dimensions the value D = 3,

which is relatively short for real data. Therefore,

our experimental scenarios are rather favorably to

competitive BRS algorithm. The efficiency gain of

the ERS algorithm in respect to the BRS is

significantly greater if we consider a larger number

of dimensions.

Performance relative to the size of the dataset:

We then analyze experimentally the performance

of the algorithms on the size of the dataset. Altering

the original size of the dataset for products |P|.

Figures 8 (a) -8 (b) show the results for the sets

data. It is worth observing that the behavior

between BRS and ERS algorithms with respect to

the type of disk accesses shown in (Figure 8 (a)),

BRS algorithm requires more disk accesses for data

for all P, while the ERS algorithm performs more

accesses to node q for all C, In this case the sizes of

the sets P and C are similar (100K entries each).

Both algorithms require approximately the same

number of I/O operations. However, as the number

of products increases, the strategy followed by the

ERS algorithm is proved more effective in relation

to the total number of I/Os required. Moreover, the

1

10

100

1000

10000

1

10

100

1000

10000

1

10

100

1000

10000

1

10

100

1000

10000

2 3 4 5

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

time spent in the CPU of the ERS algorithm is

considerably less and shows better scaling behavior

as the size of the total P. Also, as shown in Figures,

the algorithm gERS is by far the most efficient

choice for k-Dominant queries, and seems not to be

influenced particularly by varying size of the entire

P.

2 3 4 5
Figure 8(a). No. I/Os relative to the size of the data set P

2 3 4 5
Figure 8(b). Total processing cost in relation to the size of the data set P

Then we compared the performance of all

algorithms by varying the size of the total C. In

Figures 9(a) -9(b) shows the number of I/Os and

processing times for data sets, algorithms ERS and

BRS require approximately the same number of I/O

operations for larger datasets C. If the total size of

C is much larger than the size of the total P, the

strategy pursued by the algorithm BRS is more

promising. However, as shown by experiments

(Figures 9 (b)), the total processing cost of RSA

algorithm is less than BRS algorithm mainly due to

the significantly lower time spent in the CPU.

Similarly, in this experiment, the algorithm gERS is

significantly more efficient than the algorithms

RSA and BRS in the case of execution of multiple

reverse skyline queries.

2 3 4 5
Figure 9(a). No. I/Os relative to the size of the data set C

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0
50

100
150
200
250
300
350

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0
50

100
150
200
250
300
350

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

2 3 4 5
Figure 9(b). Total processing cost in relation to the size of the data set C

Performance relative to the number of queries per

group

We evaluate experimentally the performance of

the algorithm gERS relative to G the number of

queries that are executed in parallel in a group and

changing the value of G from 5 to 100 queries.

Figures 10(a) -10(b) show the experimental results

regarding the number of I/Os and the processing

time in the CPU for data sets. As expected, the

more the queries are executed in parallel, so the

fewer disk accesses required, as one used to access

the pruning nodes to many queries at once.

However , as we can observe a number of queries

over the total execution costs increased

significantly due to higher time required for

managing priority queues and hence the number of

dominance checks needed . As shown in our

experiments.

Progressive Productions result

In this experiment we examine the progressive

production results of the algorithms ERS and BRS

during the execution of a reverse skyline queries set

|Q|. The x-axis represents the percentage of the

results that have been determined in relation to the

final influence score, The y axis shows the

corresponding execution time required in absolute

values (Figures 11(a)) and a percentage of total

time of valuation queries (Figures 12 (b))for the

datasets. Both figures show that the ERS algorithm

shows much better behavior for the progressive

production results in comparison with the BRS,

particularly for determining the initial results.

Specifically, the ERS algorithm returns 5% of the

results in one tenth of the time required by the

algorithm BRS. This advantage is especially

important for applications that require fast response

and do not need the full set of results.

Figure 10(a). No. of I/Os in relation to the number of

queries per group

Figure 10(a). Total processing cost in relation to the

number of queries per group

Figure 10. Performance relative to the number of queries per group

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

10

20

30

40

50

60

5b 10b 20b 50b 100b

0

20

40

60

80

100

120

140

160

5b 10b 20b 50b 100b

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

Figure 11(a). Processing time compared to the results

obtained

Figure 11(b). Processing time/Total time (%) compared to

the results obtained

Figure 11. Progressive production results

7. CONCLUSION

In relation to market analysis using consumer

preferences with an objective to effectively promote

products and services: We developed new

algorithms for two problems related to the analysis

of large volumes of consumer preferences, with

practical applications in market research. Moldings

these two problems as variants of a multiple reverse

skyline queries respectively. Firstly we proposed a

new algorithm, called ERS for evaluating reverse

skyline queries; the concluded experiments shows

RSA algorithm significantly outperforms BRS in

case of a reverse skyline query in relation to the

speed of execution (performance), the scalability

(scalability), and progressive production results

(progressiveness), particularly for multidimensional

data. Secondly we developed a variant of the ERS

algorithm for groups of queries which significantly

reduces the execution time required in relation to

basic query execution by appropriate grouping

similar products candidates, performing common

accesses to disk, and allowing the simultaneous

processing of multiple queries. Then we applied

this new algorithm for evaluating k-Dominant

queries. The experiment shows the algorithm we

propose to simultaneously perform multiple queries

outperforms methods that process each query

individually.

REFRENCES:

[1]. Xiaobing Wu, Yufei Tao, Raymond Chi-Wing

Wong, Ling Ding, and Jeffrey Xu Yu, Finding

the influence set through skylines, EDBT,

2009, pp. 1030-1041.

[2]. Chen-Yi Lin, Jia-Ling Koh, and Arbee L.P.

Chen, Determining k-most demanding products

with maximum expected number of total

customers, TKDE(2012).

[3]. Yu Peng, Raymond Chi-Wing Wong, and Qian

Wan, Finding top-k preferable products,

TKDE 24 (2012), no. 10, 1774-1788.

[4]. Dimitris Papadias, Yufei Tao, Greg Fu, and

Bernhard Seeger, Progressive sky-line

computation in database systems, TODS 30

(2005), no. 1, 41-82.

[5]. Jon M. Kleinberg, Christos H. Papadimitriou,

and Prabhakar Raghavan, A microeconomic

view of data mining, Journal of Data Mining

and Knowledge Discovery 2 (1998), no. 4,

311-324.

[6]. Cuiping Li, Beng Chin Ooi, Anthony K. H.

Tung, and Shan Wang, Dada: a data cube for

dominant relationship analysis, SIGMOD,

2006, pp. 659-670.

[7]. Evangelos Dellis and Bernhard Seeger,

Efficient computation of reverse skyline

queries, VLDB, 2007, pp. 291-302.

[8]. Xiang Lian and Lei Chen, Monochromatic and

bichromatic reverse skyline search over

uncertain databases, SIGMOD, 2008, pp. 213-

226.

[9]. Akrivi Vlachou, Christos Doulkeridis, Yannis

Kotidis, and Kjetil Norvag, Reverse top-k

queries, ICDE, 2010, pp. 365-376.

[10]. Prasad Deshpande and Deepak P, Efficient

reverse skyline retrieval with arbitrary non-

metric similarity measures, EDBT, 2011, pp.

319-330.

[11]. Thomas Bernecker, Tobias Emrich, Hans-Peter

Kriegel, Nikos Mamoulis, Matthias Renz,

1

10

100

1000

10000

100000
E

xe
cu

ti
o

n
 T

im
e

 (
se

c)

5% 20% 40% 60% 80% 100%

0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
ti

o
n

 T
im

e
 p

e
rc

e
n

ta
g

e

ERS

BRS

1% 20% 40% 60% 80% 100%

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

Shiming Zhang, and Andreas Zufle, Inverse

queries for multi-dimensional spaces, SSTD,

2011, pp. 330-347.

[12]. Muhammed Miah, Gautam Das, Vagelis

Hristidis, and Heikki Mannila, Standing out in

a crowd: Selecting attributes for maximum

visibility, ICDE, 2008, pp. 356-365.

[13]. Tianyi Wu, Dong Xin, Qiaozhu Mei, and

Jiawei Han, Promotion analysis in multi-

dimensional space, PVLDB 2 (2009), no. 1,

109-120.

[14]. Tianyi Wu, Yizhou Sun, Cuiping Li, and

Jiawei Han, Region-based online pro-motion

analysis, EDBT, 2010, pp. 63-74.

[15]. Qian Wan, Raymond Chi-Wing Wong, Ihab F.

Ilyas, M. Tamer Ozsu, and Yu Peng, Creating

competitive products, PVLDB 2 (2009), no. 1,

898-909.

[16]. Akrivi Vlachou, Christos Doulkeridis, Kjetil

Novag, and Yannis Kotidis, Identifying the

most influential data objects with reverse top-k

queries, PVLDB 3 (2010), no. 1, 364-372.

[17]. Qian Wan, Raymond Chi-Wing Wong, and Yu

Peng, Finding top-k profitable products, ICDE,

2011, pp. 1055-1066.

[18]. Yufei Tao, Ling Ding, Xuemin Lin, and Jian

Pei, Distance-based representative skyline,

ICDE, 2009, pp. 892-903.

[19]. Guoren Wang, Junchang Xin, Lei Chen, and

Yunhao Liu, Energy-efficient reverse skyline

query processing over wireless sensor

networks, TKDE 24 (2011), no. 7, 1259-1275.

[20]. Flip Korn and S. Muthukrishnan, Influence sets

based on reverse nearest neighbor queries,

SIGMOD, 2000, pp. 201-212.

[21]. Tian Xia, Donghui Zhang, Evangelos

Kanoulas, and Yang Du, On computing top-t

most influential spatial sites, VLDB, 2005, pp.

946-957.

[22]. Jon Bentley, Kenneth Clarkson, and David

Levine, Fast linear expected-time algorithms

for computing maxima and convex hulls,

SODA, 1990, pp. 179-187.

