
Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

278

MONITORING, INTROSPECTING AND PERFORMANCE
EVALUATION OF SERVER VIRTUALIZATION IN CLOUD
ENVIRONMENT USING FEED BACK CONTROL SYSTEM

DESIGN

1
VEDULA VENKATESWARA RAO,

 2
Dr. MANDAPATI VENKATESWARA RAO

1Research Scholar, Department of Computer Science Engineering, Institute of Technology, Gitam

University, Visakhapatnam, India

Associate Professor, Department of Computer Science Engineering, Sri Vasavi Engineering College,

Tadepalligudem, India

2Professor, Department of Computer Science Engineering, Gitam Institute of Technology, Gitam

University, Visakhapatnam, India

E-mail: 1venkatvedula2012@gmail.com, 2mandapti_venkat@yahoo.co.in

ABSTRACT

Data centers of today are rapidly moving towards the use of server virtualization as a preferred way of
sharing a pool of server hardware resources between multiple ‘guest domains’ that host different
applications. The hypervisors of the virtualized servers, such as the Xen use fair schedulers to schedule the
guest domains, according to priorities or weights assigned to the domain by administrators. The hosted
application’s performance is sensitive to the scheduling parameters of the domain on which the application
runs. However, the exact relationship between these parameters of the domain and the application
performance measures such as response time or throughput is not obvious and not static as well.
Furthermore, due to the dynamics present in the system there is need for continuous tuning of the
scheduling parameters. The main contribution of our work is the design and implementation of a controller
that optimizes the performance of applications running on guest domains. We focus on a scenario where a
specific target for the response time of an application may not be provided. The goal is to dynamically
compute the CPU shares for the virtual machines in such a way that the application throughput should be
maximized, while keeping the response time as low as possible, with the minimum possible allocation of
CPU share for the guest domain. The optimizing controller design is based on the feedback control
theoretic concept. The controller computes the values of the scheduling parameters for every guest domain
in such a way that it minimizes the CPU usage and response time, and maximizes throughput of the
applications. To evaluate our work, we deployed multi-tier application in virtual machines hosted on the
Xen virtual machine monitor. The performance evaluation results show that the controller brings the cap
value close to the expected optimal value. The optimizing controller also rapidly responds to changes in the
system when a disturbance task is introduced or load on the application is changed.

Keywords: Cloud Computing, Data Center, Virtualization, hypervisor, Xen, virtual machine, Green IT,

scheduler, performance, response time, throughput, feedback control theory.

1. INTRODUCTION

The task of predicting & maintaining the system

performance and capacity planning is becoming
difficult due to increased complexity in the IT
applications and infrastructure. Service providers
host the applications from different enterprise
clients on the shared pool of hardware resources.
Clients negotiate the service contract in the form of

Service Level Agreement (SLA) with service
providers which depict all the related formal
information about the contract and the performance
guarantees. The performance guarantees include
QoS (quality of service) requirements [5] [36] like
desired response time or throughput of the
application. Degraded performance leads to penalty
cost due to SLA violation as well as dissatisfied
clients which ultimately results in financial loss for

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

279

the service providers. Over-provisioning of
hardware resources has always been the easiest
choice for service providers to avoid any
performance problems. But it leads to inefficient
and costlier resource management.

Cloud computing is a technology that numerous
IT organizations extend their hands in order to
improve their financial ability. This is done by
improving the various QoS parameters such as
performance, throughput, reliability, scalability,
load balancing, persistence, etc. The services such
as disk storage, virtual servers, application design,
development, testing environment are added
advantages of the Cloud Computing technology.
The cloud computing technology makes the
resource as a single point of access to the client and
is implemented as pay per usage [1]. Though there
are various advantages in cloud computing such as
prescribed and abstracted infrastructure, completely
virtualized environment, equipped with dynamic
infrastructure, pay per consumption, free of software
and hardware installations, the major concern is the
order in which the requests are satisfied. This
evolves the scheduling of the resources. This
allocation of resources must be made efficiently that
maximizes the system utilization and overall
performance. Cloud computing is sold on demand
on the basis of time constrains basically specified in
minutes or hours. Thus scheduling should be made
in such a way that the resource should be utilized.
Nowadays server virtualization[25][45] is heavily
used to build IT infrastructure is it allows sharing of
resources among different applications while at the
same time providing isolated environment called
virtual machine for each application[6] [9] [12].
Virtual machine hosts an OS (operating system) in
its secured isolated environment consisting of
virtual CPU, main memory and IO devices. Virtual
machine monitors (VMM) like VMware, Xen [25]
[45] does the task of protection and resource
allocation among individual virtual machines. Some
of the benefits of server virtualization include
consolidation of multiple OS on single physical
server, live migration of a virtual machine from one
physical server to another physical server. With
these capabilities offered by server virtualization,
managing a server farm becomes easier and cost
effective. Sharing of the resources should not cause
performance of an application adversely getting
affected by the other applications running on the
same hardware. Gupta et al[15] [16] describes the
term performance isolation as the scenario in which
performance of the client application remains same
regardless of type and amount of workload of other
applications sharing the resources. Performance

isolation is an important goal in any shared hosting
environment such as virtualized environment.
Performance isolation can be achieved by properly
allocating the resources among competing virtual
machines [17] [26] [27] [30]. VMM allocates the
share of resources like CPU, main memory to each
virtual machine [37]. For example, CPU scheduler
in Xen [46] accepts two parameters named weight
and cap for each of the virtual machine. Weight
represents the relative share of a virtual machine,
whereas cap represents the upper bound on CPU
consumption by the virtual machine. Performance
isolation can be achieved by setting the appropriate
values of resource management parameters like
weight and cap for each virtual machine. Dynamic
nature of the workload should be considered while
modeling the performance behavior of the
applications residing in virtual machines. Client
SLAs keep on changing very frequently. Addition or
removal of clients is also a continuous process.
Same is the case with underlying hardware
infrastructure which frequently gets scaled or
upgraded with new hardware components. With
these many sources of dynamics, delivering QoS to
the applications hosted in the virtual machines
becomes more complex. Our study focuses on
devising a mechanism for computing the share of
the resources to be allocated to each virtual machine
in such a way that desired QoS is delivered to the
applications running inside virtual machines.

In this paper, we are applying feedback control
theory [35] to maintain the performance of the
applications running inside virtual machines.
Feedback control theory does online analysis of the
system and attempts to maintain the output of the
system around the desired values [17]. In virtualized
environment scenario, output refers to the QoS
requirements of the clients which need to get
satisfied. Controller in a feedback system computes
the values of input parameters which affect the
working of the system which in turn affects the
output delivered by the system. In virtualized
environment, input parameters refer to the resource
management parameters like main memory
allocation to guest OS, or some scheduler specific
parameters like weight, cap, time-slice for a guest
OS.

2. LITERATURE REVIEW

Cloud computing is a recent technology and a lot

of research are made in that domain to improve it.
Also due to the relation between cloud and
virtualization there are as well many researches on
virtualization to enhance virtualization

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

280

performances. Cloud computing is more and more
popular and most of the enterprise begin to adopt it.
However there are still some obstacles which can
restrained the adoption of cloud services by
enterprise such as the lack of standardization,
reliability associate to the cloud, the security and so
on. The reason of the adoption of cloud computing
by enterprise is principally for economical reasons
because cloud computing allow customers to reduce
their hardware cost as well as energy consumption
and so on. Also there is no waste because customers
only pay for what they are using.

As seen previously there are many different type
of virtualization. To be able to provide the best
performances cloud computing is using para-
virtualization as well as hardware-assisted
virtualization. Full virtualization is not used in cloud
computing due to poor performances cause by its
considerable overhead. Virtualization technology is
not a new technology however it has regain
popularity in 2005 with the apparition of AMD and
Intel processors which had support for
virtualization. Virtualization brings many
advantages such as the improvement of security, the
enhancement of the efficiency of server utilization
and so on. Also during the past few years due to the
popularity of virtualization and its utilization in the
cloud computing many researchers have been made.
From that research, lot of improvement has been
made to try to obtain performances near to native
performances.

2.1 Cloud Computing

Cloud computing is a new technology and evolve
rapidly also it is difficult to match a good definition
of cloud computing [1] [2] [5]. Because cloud
computing is an evolving technology the definition
is changes over the time. The U.S. Government's
National Institute of Standards and Technology
(NIST) tries to give an up to date definition of the
cloud computing. The actual version of their
definition is the version 15 in date of 10 July 2009
(Mell et al, 2009). According to the NIST cloud
computing is on demand service which shares a pool
of computer resources over a network. Cloud
computing matches five essential characteristics
which define the main functionalities provided by
the cloud, three service models which give the level
of service provided and four deployment models
which indicate where the cloud is deployed and who
can access to it. The main characteristics of the
clouds are the following (Mell et al, 2009):

� On demand self-service: Users of the cloud
can manage the resources in on demand basis and
they only paid for what they consume.

� Broad network access: The resources
provided by the cloud can be access by as any
normal services through thin or thick clients such as
laptop, PDA, mobile phones and so on.

� Resource pooling: The cloud provider
serves pool of resources over multiple customers
according to the demand. Client which access the
service have no knowledge of the exact location of
the cloud but may be able to provide a location at
higher abstraction level such as country, state,
datacenter and so on [17].

� Rapid elasticity: The resources provided by
the cloud are highly scalable. Customer can rapidly
scale up the resources that they need and then scale
them down if there is no need to use it anymore. The
scalability of the cloud gives a real modularity to the
cloud. Also resources appear as infinite and
customers have no need to make plan for
provisioning (Armbrust et al, 2010) [27].

Measured service: The resources provided by the
cloud are controlled and optimized according to the
resources capabilities. Also resources usage can be
monitored control and reported to be able to provide
transparency for both provider and consumer of the
resources [31] [44].

2.2 Virtualization of Resource Sharing

Data centers of today are rapidly moving towards
the use of server virtualization as a preferred way of
sharing a pool of server hardware resources. The
journey of virtualization technology started in 1960s
when IBM first invented the concept of virtual
machine to divide the computing power of
mainframe servers into logical partitions. Virtual
Machine Facility/370 better known as VM/370[7]
was one of the initial successful implementations of
virtual machines by IBM which was based on their
mainframe server IBM System/370. VM/370 had
been in wide use inside IBM for mainly time-
sharing purpose and operating system development.
The emergence of virtual machines was due to
expensive mainframe systems. Virtual machines
provided a convenient way to share the mainframe
among multiple users so as to effectively use the
otherwise wasted resources. Later virtualization
became unnecessary as inexpensive x86 based
machines came into markets around 1980s and
1990s. Also the client-server model of the
applications helped in building distributed model for
computing which was cheaper than computing using
mainframes. Then came the era of World Wide Web
in late 1990s, where the computing needs started to
increase exponentially. Around the same period,
many organizations started the use of IT
applications at massive scale for various operations.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

281

The under-utilized machines became major source
of concern as the operational and management cost
of the infrastructure was rising without actually
leveraging the resources to significant extent. Many
of the studies reported average use of the servers
and desktop machines around 5-15%. This situation
resulted in making a call to old virtualization
technology in this era. In 1999 VMware[33] became
the first company to release a virtualization product
for x86 based machines which was named
“VMware Virtual Platform”. At present, VMware
server [33], VMware ESX [30], XenServer [26],
Microsoft Virtual server [32] are some of the
popular server virtualization solutions available in
the market.

Server virtualization provides a way of sharing a
resource pool between multiple guest domains that
host different applications. An isolated execution
environment called virtual machine (VM) which is
also referred as a domain is provided. The virtual
machine hosts an operating system (OS) which is
provided with a virtual set of CPU, main memory
and IO devices. Virtual machine monitor (VMM) is
a software layer between these virtual machines and
the hardware. VMMs carry out the task of
protection, isolation and resource allocation among
the individual virtual machines. Some of the
benefits of adopting server virtualization include
consolidation of multiple OSes on a single physical
server, pooling of the resources, uniform interface to
the resource pool, and live migration of a virtual
machine from one physical server to another
physical server. With these and many more
capabilities offered by server virtualization,
managing a server farm becomes easier and cost
effective.

2.3 Application Performance in Data Centers

The task of predicting and maintaining the system
performance and doing capacity planning is
becoming difficult due to increased complexity in
the IT applications and infrastructure. Service
providers host applications from different enterprise
clients on a shared pool of hardware resources in
datacenters. Clients negotiate a service contract in
the form of a Service Level Agreement (SLA) with
service providers which include a description of the
performance guarantees. The performance
guarantees may include Quality of Service (QoS)
requirements such as desired response time or
throughput of the application. Degraded
performance leads to SLA violation which results in
penalty cost for the service providers. It also results
into dissatisfied clients which ultimately results in
financial loss for the service providers. Over-

provisioning of hardware resources has always been
the easiest choice for service providers to avoid such
performance problems. But it leads to inefficient
resource management and costlier infrastructure.
Resource allocation needs to be done dynamically
so that shared resources can be reused among the
application more effectively.

One interesting situation arises when there are no
pre-specified desired values of performance metrics.
The clients may not specify the desired values;
instead they require the maximized performance at
minimal cost. For example, response time of an
application decreases with increase in CPU capacity
with certain rate for some range of capacity. This
rate starts to drop after certain CPU capacity. So
utilizing more CPU does not yield performance at
the same rate, hence the cost to benefit ratio goes
up.

2.4 Application Performance and Virtual

Machines

The performance of an application should not get
adversely affected by the other applications running
on the same hardware. Gupta et al [11] described the
term performance isolation as the scenario in which
performance of an application remains the same
regardless of type and amount of the workload of
other applications sharing the same resources.
Performance isolation is an important goal in any
shared hosting environment such as a virtualized
environment. As we have seen in the example of the
previous section, CPU capacity allocated to the
application has a major impact on the performance
of the application. To achieve performance
isolation, appropriate resource allocation need to be
done among the competing virtual machines. For
deciding the resource shares for an application we
need to understand how the resource scheduling
process works in VMMs. A VMM allocates the
share of resources such as CPU, main memory to
each virtual machine. For example, the CPU
scheduler in Xen named credit scheduler accepts
two parameters weight and cap for each virtual
machine. Weight represents the relative share of a
virtual machine, whereas cap represents the upper
bound on CPU consumption by a virtual machine.
The value of cap puts the limit on CPU usage by a
virtual machine. If sum of cap of all virtual
machines running on the given CPU is less than the
CPU capacity then CPU remains idle even if there is
some runnable work present in the system. The
performance of a hosted application is sensitive to
the weight or cap given to the domain on which the
application is running. However, the exact
relationship between the value of the weight or cap

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

282

of the domain, and the application performance
metrics such as response time or throughput is not
obvious. Therefore, determining the appropriate
parameter values that would provide a certain QoS
for an application is a difficult problem. To make
things worse, there are many sources of dynamics
which makes the task of delivering QoS to the
applications hosted in the virtual machines much
more complex. e.g. the dynamic nature of the
workload, or changing client SLAs. Addition or
removal of clients is also a continuous process. This
is also the case with underlying hardware
infrastructure which frequently gets scaled or
upgraded with new hardware components. With all
this dynamics, the exact relationship between
application performance and the amount of resource
allocated to the application is not so obvious and is
not static. From this scenario we infer that
performance isolation can only be achieved by
monitoring the running system and tuning the
appropriate values dynamically.

2.5 Feed Back Control Theory

Feedback control has been in the history much
longer than the virtualization. One of the known
initial applications of feedback control can be found
in windmills of 17th centuries [34]. The very
famous invention of James Watt, the steam engine
[34] had a centrifugal governor to control over-
speeding of the mover. Another legendary example
is of control mechanism in first controlled human
flight by Wright brothers [34]. Some of the widely
used applications of feedback control theoretic
approach involves automobile cruise control,
aircraft cruise control, temperature maintenance
using thermostat[28][16][34]. A feedback control
system monitors the values of output metrics of the
system, processes it and computes the new values of
input parameters to be set. These input parameters
should be some configuration parameters of the
system which have influence on the working of the
system. Thus, setting the value of input parameter to
a new value can result in change in the output. As
there is this interdependency between input and
output of the system, it is called as feedback system.
An important feature of the feedback control system
is that it does online analysis of the system and
responds to changes in the system dynamically.
Feedback control system design can be done in two
steps. In the first step, the mathematical model of
the system is constructed which relates the output to
its past values and to the past as well as present
values of input parameters. From the constructed
system model, a most important part of feedback

control system named controller is designed. The
controller computes the values of input parameters
to be set. A typical feedback control system takes
the input called reference input which specifies the
objective for control. This input may or may not be
present in every case. If system accepts the
reference input, the controller tries to compute the
values of input parameters in such a way that the
output delivered will be equal to the reference input.
In some scenarios there is no reference input
provided to the system. In such scenarios, the
objective for feedback control is to tune the input
parameters in such a way that certain metrics are
optimized.

These metrics may include the values of some
output or input parameters. A feedback control
system also consists of other components which
monitor and process the values of the output metrics
of the system. The output in the context of
applications running inside the virtual machines
refers to the QoS requirements such as response
time and throughput, where as the input parameters
can be comprised of resource management
parameters such as CPU scheduling parameters of
VMs, or main memory allocation to the VMs. In
this work, we focused only on CPU sharing. The
CPU scheduling parameter weight is the relative
share of a VM whereas the value of cap is the
absolute limit on CPU consumption of a VM. As the
value of cap provides direct control over the CPU
usage by a VM, we are using the cap of VM as the
input parameter to be tuned.

3. PROBLEM DESCRIPTION

This section starts with describing the basics of
the virtualization. Subsequently we discuss the
performance issues occurring in the virtualized
environment. Then we define the problem
statement.

3.1 Virtualization

The term virtualization refers to the abstraction of
resources. The user or the software process is not
aware of the actual characteristics of the resource.
Rather, they get a view of resource which is more
familiar to them or which is more manageable by
them. Our concern over here is about
server/software virtualization which is more
popularly known as virtual machine environment.
Figure1 shows a virtualized environment. Let us see
some of the basic terms in server virtualization.

• Virtual Machine (VM): This is a virtual
environment created by VMM (described below),

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

283

which simulates all the hardware resources needed
by an operating system. The OS running in such
environment is called a guest OS. Guest OS has a
virtual view of the underlying hardware.

• Virtual Machine Monitor (VMM/hypervisor):
This is the interface between the guest OS and the
underlying hardware. All the administrative tasks
like adding a new guest OS, allocation of resources
to each of guest OS is done through VMM. Some
popular examples of VMM are VMware [45], Xen
[46]. In our study, we have used open source VMM
solution Xen [24] [25] [46].

• Host OS: The native OS running on the given
hardware is called the Host OS. The VMM is
installed on Host OS. This OS has all the privileges
on the given hardware.

Figure 1: Virtualized Environment

In simpler terms we can describe the
virtualization as follows. The actual physical
resources are divided into logical partitions. Each of
the logical partition is allocated to some guest OS.
Each guest OS runs independently on a given
partition. For host OS, guest OSes are like the
normal processes running on it. The VMM interface
is available in host OS through which guest OSes
are managed. The term domain is alternatively used
in place of virtual machine. Host OS is often called
as Domain-0 where as guest OS are called DomUs.

3.2 Scheduling of Virtual Machines

There are number alternatives for CPU
scheduling in Xen like Borrowed Virtual Time
(BVT), Simple Earliest Deadline First (SEDF) and
Credit scheduler [5] which schedule the virtual
machines on available set of processors. The latest
scheduler for Xen is credit scheduler which is a
proportional fair share SMP (Symmetric
multiprocessor) scheduler. Each domain (including
host OS) is assigned with number of virtual CPUs

(VCPU), weight and cap values. Weight denotes
share of a domain and is directly proportional to
CPU requirement of a domain. The cap specifies the
maximum amount of CPU a domain will be able to
consume even if there is idle CPU. Thus credit
scheduler works in non-work conserving mode
when sum of cap of all domains is less than
available CPU capacity. Each CPU manages a local
run queue of runnable VCPUs sorted by VCPU
priority. A VCPU’s priority can be over or under
depending upon whether that VCPU has exceeded
its fair share of CPU in the ongoing accounting
period. Accounting thread computes how many
credits each virtual machine has earned and re
computes the credits. Until a VCPU consumes its
allotted credits, priority of VCPU is under.
Scheduling decision is taken when a VCPU blocks
or completes its time slice which is 30ms by default.
On each CPU, the next VCPU to run is picked up
from head of the run queue. When a CPU doesn’t
find a VCPU of priority under on its local run
queue, it looks on other CPUs for VCPU with
priority under. This load balancing mechanism
guarantees each domain receives its fair share of
CPU. No CPU remains idle when there is runnable
work in the system.

3.3 Performance Isolation and Application QoS

In a virtualized environment, multiple software
servers are hosted together on a single shared
platform. Each server may belong to different
owner. For each server, the QoS requirements are
expressed by the client through Service Level
Agreement (SLA) with the service provider. The
task of the service provider is to maintain the
performance such that SLA of any of the client does
not get violated. SLA violations have pre-specified
penalty costs associated with them. QoS crosstalk
[20] occurs in a situation when maintaining QoS for
some client results into degraded QoS for another
client. Performance guarantees for the applications
running inside the virtual machines can be fulfilled
only if there is performance isolation across virtual
machines. Figure2 pictorially depicts the scenario of
virtual machine environment.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

Figure 2: Applications Running Inside Virtualized

Environment

Performance Isolation as described by [15] [16] is
as follows: ”Resource consumption by any of the
virtual machines should not affect the promised
performance guarantees to other virtual machines
running on the same hardware” . Over-provisioning
of the resources can be simplest solution to achieve
performance isolation but then the whole essence of
using virtualization can be lost. The ultimate aim is
actually to increase the benefit of the service
provider through better resource utilization with
constraint of delivering QoS for each of the client.
Hence some better solution other than over-
provisioning is required. Let us see one example
which describes this problem.

Table 1: Effect On Mixed Load On The Performance Of

Applications In Virtualized Environment

Statistics of web server running in virtualized
environment

 Wei
ght

Cap Load CP
U

usa
ge

Reque
sts
per sec

Transf
er rate
(Kbyt
es per
sec)

Experiment1: With Web Server running

Dom
ain0

256 400
-

- NA

VM2 256 400 - - NA

VM3
256 400

Web
Server

180 797.61 1035.
17

Experiment1: Mixed Load 1 VM CPU Load,1 With Web
Server running

Dom
ain0

256 400
- - NA

VM2 256 400 CPU 100 NA

VM3
256 400

Web
Server

180

In above table we have shown that the behavior
of the applications running inside the virtual
machines remains unpredictable when there is IO
load running on at least one virtual machine. The
experiment was done to analyze the effect of mixed
load applications on the performance of each other.
One application is a CPU intensive application and
the other application is a web server. We carried out
first experiment only with web server running in
virtual machine vm3. Next experiment was carried
out with CPU intensive application running in vm2
and vm3 is hosting the web server. In both the
experiments we have not set the value of cap for the
virtual machines. As shown in the following table,
in both cases, CPU consumption by vm3 is the same
which is 180% whereas in second experiment vm2
consumed 100% CPU. The test bed consisted of
four cores of processor; hence there was still some
CPU capacity left. But the readings show there is
drastic change in throughput of the web server in the
second experiment. Although CPU consumption is
same in both experiments, the quality of service
(QoS) delivered has gotten affected by the presence
of the other virtual machine. The experiment
described above was done with a simple setup. In a
real life scenario, the situation can get worse in
presence of tens or hundreds of virtual machines
sharing the pool of resources. Each of the virtual
machines may be hosting different kind of
application with different kind of workload patterns
and with different levels of desired quality of
service. A change in any of the software
components such as the virtual machine, or
application characteristic or a change in any of the
hardware resource can affect the performance
adversely. Several studies [15] [16] [21] [26] [41]
revealed that there is compelling need of having
better performance isolation mechanism in Xen.
This is also evident from the fact that three
schedulers [46] named Borrowed Virtual Time
(BVT), Simple Earliest Deadline First (SEDF) and
Credit scheduler have been proposed for virtual
machine scheduling in Xen in past four years. Lack
of performance isolation causes degraded and
unpredictable application performance. With this
motivation, we define the problem in the following
way.

3.4 Problem Definition

Our work is in the context of providing
performance isolation across virtual machines
sharing the resources. Specifically most important
objective of our work is to devise a mechanism to
set resource management parameters for the virtual

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

machines in such a way that the applications
running inside virtualized environment can deliver
client QoS guarantees. The client QoS requirements
need to be translated in resource management
parameters. Another important objective is to
improve resource utilization with constraint of
maintaining client QoS. This objective is important
from the perspective of the service providers. For
example, the client QoS requirements can be
expressed in terms of desired response time of the
application. The resource management parameter to
be tuned can be scheduler parameter cap of a virtual
machine hosting the application. The value of cap
represents the upper limit on CPU consumption by a
virtual machine. The challenge is to design robust
mechanism for setting up the cap of virtual machine
in order to maintain the response time of the
application even in presence of the other workloads
or with the variations in the operating environment.

4. PROPOSED METHOD

In this section we present our mechanism i.e.
“Scheduler based on feedback control system” to
compute the resource management parameters of the
virtual machines so as to deliver QoS to the
applications running inside virtualized environment.
We applied the feedback control theoretic approach
[35] for developing the solution. The basic idea of
feedback control systems is that they work on the
basis of the feedback they receive from the system
at runtime. Therefore building a very accurate
model of the system is not necessary. Also, as it
works on feedback from a running system, it can
respond quickly to the variations occurring in the
system. Other alternative for developing the solution
include queuing theory. But the queuing model does
not handle feedback and it is not good at
characterizing transient behavior in overload. Also a
queuing model does off-line predictive analysis,
whereas feedback control theory does online
analysis which makes it more robust to changes in
the operating environment.

4.1 Feed Back Control Theoretic Approach

As famous mathematician GEP box said, all
models are wrong, but some models are useful. As
suggested by this quote [8], a mathematical model
of a system may not be completely correct, but often
the model is adequate enough to solve the specific
problem. In control theoretic approach, we build the
system models which approximately represent the
effect of input parameters on the output metrics of
the system. Using the system model, a feedback
control system is designed. The online feedback

from the system is monitored by feedback control
system and accordingly the appropriate action to be
taken is decided. The designed feedback control
system can quickly react to any changes in the target
system or in the environment by virtue of feedback
supplied. Hence feedback control can be a good
approach in the scenarios where a system is having
several sources of dynamics. Let us go through the
basics of feedback control theory to understand the
solution approach in detail.

4.1.1 Elements of feedback control system

This subsection presents the working of a feedback
control system. Figure 3 shows a basic feedback
control system. a control system diagram is very
different from a architectural diagram of a system.
Control diagrams depict flow of the data and control
signals through the system and the various
transformations the signal undergoes. Architectural
diagrams depict the functional components involved
in the system. Some of the keywords used in
feedback control theory are as follows:

� Target system: the system which is being
controlled.

� Reference input: the desired value of the
output metric from the system. This input may not
be present in some scenarios. The subsequent part of
this chapter will discuss that scenario in detail.

� Control error: difference between the
values of reference input and measured output.

� Control input: variable whose value affects
the behavior of the target system.

� Controller: controller is the most important
component of a feedback control system. It
computes the value of control input so as to
maintain the measured output equal to reference
input.

� Disturbance input: other factors that may
affect the target system e.g. administrative tasks
running on the same system as of target application
under work.

� Noise input: noise represents an effect that
changes the value of measured output produced by
the target system.

� Transducer: Transforms measured output
in some desired form. Transducer may be used for
averaging of the output depending upon design of
the feedback control system.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

Figure 3: Typical Feedback control system

The purpose of a controller which is called as
control objective can be of following types.

• Regulatory control

• Disturbance rejection

• Optimization

Let us see how the control systems are developed
with keeping these objectives into consideration.
The control input parameters are the system
variables or the configuration parameters which
affects the working of the system which results in
variations in the values of output from the system.
The main idea in feedback control system is to
monitor the output from the system and compute the
new value of input parameters depending upon
value of the current output. Task of controller is to
model the input-output relationship for the system
so that the desired responses from system can be
achieved by setting up the proper values of input
parameters.

4.2 Architecture of QoS Aware Environment

Architecture proposed in our work is independent
of virtual machine monitor (vmm) used, so we can
use any of the vmm solutions like Vmware
workstation, Xen, ms virtual server. Figure 4 shows
the architecture of QoS (quality of service) aware
virtualized environment. Datacenters host number of
physical servers which are shared among multiple
client applications.

Figure 4: Architecture of QoS aware virtualized

environment

As shown in above architecture all the virtual
machines consisting of tier1 of the application are
placed on the physical server1, virtual machines of
Tier2 on the physical server 2 and so on. Hence for
n tier applications there will be at least n physical
servers. Placement of these tiers is subject to
resource availability on the given physical server. A
virtual machine monitor will be running on each of
the physical servers which do management of
virtual machines on the given server. For simplicity
we haven’t shown the host OS or VMM in the given
architecture. Please refer to figure 4.2 for the
Architecture of the virtualized environment with
VMM and host OS. Apart from these usual
components of the virtualized environment, we add
three modules named controller, capacity Analyzer
and sensors. Sensor module is deployed in the tier 1
of all applications. As the name suggests, the Task
of the sensor is to carry out measurements. Sensor
will monitor each request coming to the application
and Measure the values of interest. The measured
values can include QOS parameters like response
time delivered to each request, throughput of the
application. The other task of the sensor will include
transforming the measured Output in some form
which is further being used by controller. The
transformation can include summarizing the
measured data, storing the history data etc. The
controller and capacity analyzer modules are
deployed in the host OS on each of the physical
server. Controller module receives the values of the
QOS parameters from the sensors. Task of the
controller is to compute the new values of the
resource management parameters for the virtual
machine. In this architecture, we compute the

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

Resource management parameter values for each
virtual machine separately. The computed values for
each of the Virtual machine are then supplied to
capacity analyzer. Capacity analyzer verify whether
the resource demands of All virtual machines
together will get satisfied on the given physical
server or not. Note that each physical server will
have separate instances of controller and capacity
analyzer running. After verification from the
capacity analyzer, The resource management
parameter values are then forwarded to the virtual
machine monitor which acts as actuator to set these
values. Following subsection describes the feedback
control system covering these three Modules in
depth.

4.3 Feed Back Control System Design

The following figure 5 depicts the design of the
feedback control system for virtualized
environment. For simplicity we are assuming
number of applications and number of tiers of every
application to be 2 each. Note that each physical
server will have separate instance of this feedback
control system. For this study we focus on
maintaining the response time delivered by
application. Response time is the measurement of
time between arrival of the request at the server and
departure of the request after successful service
from the server. Delay over the network between the
server and the client is not included in the response
time measurement. Hence we are having one
reference input in the form of desired response time
for an application. In this study we are using cap of
the virtual machine hosting the application as
control input. Cap of the virtual machine puts the
upper limit on the CPU consumption by a virtual
machine. We are modeling the system using
multiple SISOs. SISO stands for single input single
output system. There will be one SISO for one
virtual machine of each application running on a
physical server.

Figure 5: Feedback control system for virtualized

environment

As shown in the figure5, virtual machine
environment is hosting two applications in different
virtual machines. feedback control system gets
desired response time for each of the application as
the reference input from the user. this input is
entirely choice of the user which describes desired
quality of service. response time delivered by each
of the application is measured with sensors present
in the virtual machines. this measured output is then
given to transducer which computes exponential
average of the response time. exponential averaging
is useful in order to avoid responding to the
temporary fluctuations in the system. exponential
averaging technique updates the average response
time value in following manner:

avg_response_time = α * current_response_time
+ (1 - α) * old_avg_response_time.

where α denoted exponential factor. value of α
can be configured by the system administrator
depending desired responsiveness to the changes in
the system. The exponentially averaged response
time value is provided to the controller along with
the desired response time value. We implemented a
pid (proportional-integral-derivative) controller. the
controller computes the new value of cap for the
virtual machine. The controller computes the cap for
the two applications separately. Hence logically
there are two controllers running on a given physical
server, so we have shown two controllers in this
figure. the values computed by both controllers is
feed to the capacity analyzer which verifies whether
the resource demands of the virtual machines
running on same physical server are feasible or not.
if the resource demands exceed the capacity of the
physical server then we need allocate some more
hardware resources or we should discard some
workloads. Allocating new hardware resources can
be done by migrating the virtual machines on
different physical server. the virtual machine
migration technology is supported by many of the
virtual machine monitors. Virtual machine
migration allows runtime migration of a virtual
machine from one physical server to other physical
server.

5. EXPERIMENTAL SETUP

This section describes the Experimental setup
(Testbed deployed) for carrying out the
experiments. We designed and deployed
components in the Testbed in a way so as to
resemble to real world scenario. For building the
Testbed, we have used open source solution
Xen3.0.3.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

5.1 Components of Test Bed

For demonstration of the work we have used two-
tier systems with apache web server at frontend and
MySQL database server connected at the backend.
Apache server hosted the two-tier Web application
which has web and database tiers. We used httperf
for load generation. We have used two instances of
the same two-tier system to demonstrate how we
can deliver differential quality of service to each of
the application. We created four virtual machines by
using Xen. Two of the virtual machines are hosting
one apache server each and two other virtual
machines are hosting one MySQL server each. Fig 6
explains the Testbed for QoS aware virtualized
environment.

Figure 6: Testbed for QoS aware virtualized environment

Following describes the hardware components of
the Testbed and how the software components are
deployed on the hardware. The Testbed setup is
shown in the figure 7. Our Testbed consists of two
machines each with following configurations are
used for hosting the servers.

• Server1: Intel(R) Xeon(TM) dual CPU 2.80GHz
processor, 2 GB main memory.

• Server2: AMD Athlon(tm) dual core processor
3.0GHz, 1 GB of main memory.

Generally data centers put same tiers of different
applications on the same physical server. We
adopted this design by putting virtual machines
hosting the web tiers on server1 and virtual
machines hosting the database tiers on server2.
Apart from the above datacenter design, we have
used 2 client machines to emulate behavior of real
workload with the help of continuous load
generation using httperf [47]. Requests are having
exponential distribution. All of the machines are
running with linux2.6. All of the machines are
connected with 100Mbps Ethernet. we designed two
controllers each of which is running in the host OS
on each of the physical servers. Each of the virtual

machine hosting the web tier also hosts a http proxy
named Muffin which acts as sensor. Muffin simply
forwards the requests coming from the clients to the
web server. We have modified the source code of
Muffin to measure the response time of the web
server. This proxy acting as sensor gives the
response time measurement to the controller running
in the host OS. This controller also communicates
these response time values with other controller
running in the host OS on server2 hosting the virtual
machines corresponding to the database servers. The
proxy Muffin is written in java, whereas all the
utilities required for extracting the response time
values from muffin log files, controller design is
done by coding in C and shells script.
Communication among the machines for exchange
of the values and parameters is done using sockets
programming. For deploying Web application, we
installed apache web server, php on the virtual
machines hosting the web tier. Also we installed
MySQL on the virtual machines hosting the
database tiers.

Figure 7: Response time measurement and flow of a

request through the Testbed

The above diagram shows flow of a request
coming to a application1 running inside our
Testbed. As shown in last figure of Testbed,
application1 has its web tier running inside the vm1
and database tier running inside vm3. The virtual
machines vm1 and vm3 are running on two different
physical servers.

5.2 Work Load Description

The nature of the workload deployed in the
virtual Machines has an impact on the behavior of
the QoS delivered. The resource usage pattern of
one VM affects the performance of application
running in other VMs. Hence we deployed Web
application which is two tier applications. We
deployed the two tiers in two separate virtual
machines which are hosted on two different physical
machines which depicts the practical scenario in the

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

data-centers. This workload exercises different IO
tasks like querying database, flow of requests
through network as two tiers of a application are
located in two different virtual machines.

The following diagram explains Optimal Control
System architecture.

Fig 8 Optimal Control System design Architecture

6. PERFORMANCE EVALUATION

This section present the results of our experiments
carried out to evaluate the feedback control system.
For comparison purpose, we carried out a
experiment without controller running. The cap of
the virtual machines were 47 and 40 respectively
which are the average values of cap set in the
second experiment carried out with the controller
running. The desired response time values are
180msec and 220msec for the two web servers
respectively which are same as the second
experiment with the controller which is described
below. Graph in figure 9 shows the values of
response time delivered by the web servers running
in virtual machines. The table2 gives more clear
picture of the results we got in this experiment. We
classified the % error values in certain ranges.
Generally any error over magnitude of 10% might
not be tolerable by the clients. As shown in the
table, 35% and 25% time’s error values are having
magnitude of more than 10%.

Figure 9: Evaluation of virtual machines without

controller

Table 2 Summarized result of virtual machines without

controller

Summarized Result

%
Errors

<
-

10

%

-
10

%

to
 -

5%

-5%
to

0%

0
%

0%
to

5%

5%
to

10

%

>
10

%

Respon

se Time
Values

Applica

tion1

3.1 11.4 12.3 4.5 20.2 16.4 32.1

Applica
tion2

14.8 11.3 15.9 4.6 25 18 10.4

Figure 10 shows plots of the values of the
response time delivered by the both web servers
running in the virtualized environment. This
experiment was carried out in the same environment
as of first experiment without control. The reference
inputs given for this experiment were 180msec and
220msec for the two web servers respectively.

Fig10 Evaluation of the feedback controller

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

The graph a) shows the graph of response time
values delivered by the web servers against the time.
Graph shows that response time values are generally
very close to the desired values of response time.
Graph b) of % error against the time gives the
values of errors between actual and desired values
of the response times. The graph c) of exponential
average response time against time gives the plot of
the response times which are being produced by
transducer which are further used by the controller
in the computation of new cap value. This
experiment was done with exponential factor of 0.2
As shown in the table 3, application1 delivers
response time with error of magnitude less than 10%
for 86% of times whereas application2 delivers
response time with error of magnitude less than 10%
for 89% times. In the first experiment these values
were 65% and 75% respectively. This shows that
the controller is able to deliver the desired response
time. Both the applications deliver the response time
with error magnitude of less than 5% for around
60% of time each. Table also lists out the error
values when exponentially averaged response time
is compared with the reference response time. In
this comparison, we got only 4% and 2% error from
application1 and application2 respectively.

Table 3 Summarized Result Of Evaluation Of Feedback
Controller

Summarized Result
%Errors <-

10%

-

10%
to

 -

5%

-

5%
to

0%

0% 0%

to
5%

5%

to
10%

>

10%

Response
Time Values

Application1
0 2 12 10 38 24 14

Application2
0 0

18 8 48 16 11

Expontial

Average

Response
Time Values

Application1
0 0

10 14 62 10 4

Application2
0 2

16 16 56 8 2

To illustrate the robustness of the feedback
controller, we carried out the experiments in
presence of disturbance. We start executing a thread
periodically on the virtual machine where
application1 is running i.e. on vm1. This thread is
CPU hogging loop which alternately sleeps and
executes some computation. This is explained in Fig
11.

Figure 11: Evaluation of the feedback controller in

presence of disturbance

As shown in the table 4, application1 delivers
response time with error of magnitude less than 10%
for 85.75% of the times, whereas application2
delivers response time with error of magnitude less
than 10% for 86.5% times. Both the applications
deliver the response time with error magnitude of
less than 5% for around 50% of time each. The error
values when exponentially averaged response time
is compared with the reference response time are
0.73% and 0% for application1 and application2
respectively. Hence these results show that our
controller is robust enough in presence of the
disturbances.

Table 4 Summarized Result Of Evaluation Of Feedback

Controller In Presence Of Disturbance

Summarized Result

%Errors <-
10%

-

10
%

to

 -
5%

-5%

to
0%

0% 0%

to
5%

5%

to
10%

>

10%

Respons

e Time

Values

Applicat

ion1

Applicat

ion2
0.46 2.0

11.6 5.38 29.6 34.5 16.2

Exponti

al Avg,

RT

Values

0.03 3.4

20.0 6.27 29.1 27.5 13.5

Applicat

ion1

Applicat

ion2
0 0.2

8.87 18.0 68.8 3.45 0.73

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

The graphs in figure 12 shows the values of cap
set by the controller. Graph a) shows the values of
cap in first experiment which was carried out
without any disturbance whereas graph b) shows the
values of cap from second experiment. From these
graphs, we can infer that curve of cap of virtual
machine vm1 in second experiment is relatively
shifted upwards than the corresponding curve in
first experiment. This happens because the virtual
machine vm1 has extra load in terms of a thread
running periodically which represent disturbance in
the system. Average values of cap in the first
experiment are 46.98 and 40.48 for vm1 and vm2
respectively, whereas average values of cap in the
second experiment are 48.85 and 40.18 for vm1 and
vm2 respectively. This shows that in second
experiment there is 3% increase in CPU demand by
virtual machine vm1 due to disturbance.

Figure 12: Variation of CAP Values of Virtual Machine.

The graph in the Figure 13 shows the values of cap
in the Experiment, which had no controller running
in the system. Graph in the Figure 6.9 shows the
values of cap in Experiment which was carried out
without any disturbance whereas graph in the Figure
6.10 shows the values of cap from Experiment in
presence of disturbance. From these graphs, we can
infer that curve of cap of virtual machine VM1 in
Experiment with controller in presence of
disturbance is relatively shifted upwards than the
corresponding curve in Experiment with controller.
This happens because the virtual machine VM1 has
extra load in terms of the thread running
periodically which represent disturbance in the
system. Average values of cap in the Experiment
with controller are 46.98 and 40.48 for VM1 and
VM2 respectively, whereas average values of cap in
the Experiment 3 are 48.85 and 40.18 for VM1 and
VM2 respectively. This shows that in experiment

with controller there is 3% increase in CPU demand
by virtual machine VM1 due to disturbance.

Figure 13: CAP of virtual machines running without

controller

The Graphs in Figure 14 & Figure 15 explains the

variation in CAP of Virtual Machines without noise
and in presence of noise.

Figure 14: Variation in CAP values of Virtual Machine

Figure 15: Variation in CAP values of Virtual Machine in

presence of disturbance

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

7. RESEARCH HIGHLIGHTS

The main goals of our work are

1. To monitor various performances issues in
Server Virtualization.

2. To Study the optimization process and
various issues in analyzing the performance of
Server Virtulization.

3. To identify various parameters and issues
for evaluating performance of virtualization in cloud
computing environment in terms of CPU, memory
performances.

4. To study various issues to understand
effectiveness of existing Quality of Service (QoS)
controls on resource usage and thereby application
performance.

5. To design and implement a controller that
optimizes the performance of applications running
on guest domains.

6. The goal is to dynamically compute the
CPU shares for the virtual machine in such a way
that the application through put is maximized, while
keeping the response time as low as possible with
minimum possible allocation of CPU share for the
guest domain.

7. To maintain the QoS of the applications
running inside the VMs around some desired value.
This goal can be called as Reference tracking.

8. To minimize the resource usage by the
application running inside the VMs while
maximizing the application performance. This goal
can also be called as optimal control.

9. The goal is to consolidate the Data Center
and increase its performance.

Feedback control system acts as scheduler who
monitors the performance of processes running on
different VM’s and according to feedback it
received it optimizes the allocation of CPU to
different processes so that QoS is served for all the
processes. The Results from figures 9, 10, 11 shows
the role of feedback controller in allocating CPU to
different virtual machines in optimizing manner.
The Figures 13, 14, 15 shows how Scheduler based
on Feedback control system changes cap values for
keeping optimization of CPU utilization.

8. CONCLUSION

In this paper, we described the problem of
delivering QoS to the applications running inside
the virtualized environment. Our work focused on
devising a mechanism for computing the share of
the resources to be allocated to each virtual machine

in such a way that desired QoS is delivered to the
applications running inside virtual machines. We
designed the feedback control system for virtualized
environment. We designed and implemented
controller, sensor, and capacity analyzer modules as
a part of the control system. Sensors measure the
QoS delivered by the applications. Controller uses
these QoS values to decide new values of resource
management parameters like cap of a virtual
machine. Capacity analyzer verifies whether the
resource demands of all applications can be fulfilled
with the given physical server or not. We evaluated
the performance of the proposed control system by
deploying two tier applications in the virtualized
environment test bed. We carried out the
experiments with desired response time of the
application as reference input and cap of the virtual
machines in which application resides as the control
input. We implemented the sensor for carrying out
response time measurements at the servers. The
results of the experiments shows that control system
is able to set the values of cap accurately even in the
presence of disturbance.

REFRENCES:

[1] Abirami S.P. and Shalini Ramanathan, ”
Linear Scheduling Strategy for Resource

Allocation in Cloud Environment
“,International Journal on Cloud Computing:
Services and Architecture(IJCCSA),Vol.2,
No.1,February 2012.

[2] Abhinav Kamra, Vishal Misra, and Erich M.
Nahum. Yaksha: “A self-tuning controller for

managing the performance of 3-tiered web

sites”. Proceedings of 12th International
Workshop on Quality of Service(IWQoS),
2004.

[3] Andrew J. Younge, Robert Henschel, James T.
Brown, Gregor von Laszewski, Judy Qiu,
Geoffrey C. Fox, ”Analysis of Virtualization

Technologies for High Performance

Computing Environments”, Pervasive
Technology Institute, Indiana University 2729
E 10th St., Bloomington, IN
47408,U.S.A.ajyounge,henschel,jatbrown,gvo
nlasz,xqiu,gcf}@indiana.edu. Proceedings of
the IEEE 4th International Conference on
Cloud Computing (CLOUD. 9-16.

[4] Andrea Arcangeli, Izik Eidus, Chris Wright, ”
Increasing memory density by using KSM”,
Red Hat, Inc. aarcange@redhat.com,
ieidus@redhat.com, chrisw@redhat.com.

[5] Anton Beloglazov, Jemal Abawajy, Rajkumar
Buyya, ”Energy–aware resource allocation

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

heuristics for efficient management of Data

Centers for Cloud Computing”, Future
Beneration Computer Systems(2012),
Elsevier, also available at Science Direct,
Sponsored by Cloud Computing and
Distributed Systems(CLOUDS).

[6] Aravind Menon, Jose Renato, Yoshio
Turner,G. (John) Janakiraman, Palo Alto
john,Willy Zwaenepoel, ” Diagnosing

Performance Overheads in the Andrzej Kochut

and Kirk Beaty. On strategies for dynamic

resource management in virtualized server

environments”. MASCOTS 2007: IEEE /
ACM International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS),
October 2007.

[7] “Xen Virtual Machine Environment”, VEE’05,
June 11-12, 2005, Chicago, Illinois, USA.
Copyright2005ACM1-59593-047-
7/05/0006...$5.00.

[8] B.Thirumala Rao, N.V.Sridevi, V.Krishna
Reddy, L.S.S.Reddy, ”Performance Issues of

Heterogeneous Hadoop Clusters in Cloud

Computing “, Global Journal of Computer
Science and Technology Volume XI Issue VIII
May 2011 .

[9] Bao Rong Chang, Hsiu-Fen Tsai, Chi-Ming
Chen, ” Evaluation of Virtual Machine

Performance and Virtualized Consolidation

Ratio in Cloud Computing System”, Journal of
Information Hiding and Multimedia Signal

Processing c ⃝2013 ISSN 2073-4212
Ubiquitous International Volume 4, Number 3,
July 2013.

[10] Bhukya, D.P. ; Ramachandram, S. ; Reeta
Sony, A.L ,“IO Performance Prediction in

Consolidated Virtualized Environments”.
[11] Carl A. Waldspurger, ” Memory Resource

Management in VMware ESX Server”,
VMware, Inc. Palo Alto, CA 94304 USA
carl@vmware.com, Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation.

[12] Diego Ongaro Alan L. Cox Scott Rixner, “
Scheduling I/O in Virtual Machine Monitors”,
VEE’08, March 5–7, 2008, Seattle,
Washington, USA.

[13] Diogo M. F. Mattos, Lyno Henrique G. Ferraz,
” Virtual Network Performance Evaluation for

Future Internet Architectures” Journal of
emerging technologies in web intelligence,
Vol. 4,No. 4, November 2012.”

[14] Diego Ongaro Alan L. Cox Scott Rixner, ”
Scheduling I/O in Virtual Machine Monitors”,

VEE’08, March 5–7, 2008, Seattle,
Washington, USA. Copyright c 2008 ACM
978-1-59593-796-4/08/03...$5.00.

[15] Diwaker Gupta1, Ludmila Cherkasova, Rob
Gardner, Amin Vahdat1,” Enforcing

Performance Isolation Across Virtual

Machines in Xen”, Enterprise Software and
Systems Laboratory HP Laboratories Palo
Alto HPL-2006-77 May 4, 2006*.

[16] Diwaker Gupta, Ludmila Cherkasova, Rob
Gardner, and Amin Vahdat. “Enforcing

performance isolation across virtual machines

in xen”. Middleware 2006: Proceedings of
ACM/IFIP/USENIX 7th International
Middleware Conference, 2006.

[17] Himanshu Raj, Ripal Nathuji, ” Resource

Management for Isolation Enhanced Cloud

Services”, CCSW’09, November 13, 2009,
Chicago, Illinois, USA. Copyright 2009 ACM
978-1-60558-784-4/09/11 ...$10.00.

[18] Horacio GonAlez Velez, Maryam Kontagora,
”Performance evaluation of mapreduce using

full virtualization on a departmental cloud”,
Int. J. Appl. Math. Comput. Sci., 2011, Vol.
21, No. 2, 275–284 DOI: 10.2478/v10006-
011-0020-3(AMCS).

[19] Indrani Paul, Sudhakar Yalamanchili, Lizy K.
John, ” Performance Impact of Virtual

Machine Placement in a Datacenter”.
[20] Leslie, I.M. McAuley, D. Black, R. Roscoe, T.

Barham, P. Evers, D.Fairbairns, and R.
Hyden.”Design and implementation of os to

support distributed multimedia applications

(nemesis)”. IEEE Journal of Selected Areas in
Communications, 1996.

[21] Ludmila Cherkasova, Diwaker Gupta, and
Amin Vahdat. “When virtual is harder than

real: Resource allocation challenges in virtual

machine based it environments. Technical

report”, HP Laboratories Palo Alto., February
2007.

[22] nikolaus huber, marcel von quast, Michael
Hauck, Samuel Kounev, ”Evaluating and

modeling virtualization performance overhead

for cloud environments”, CLOSER 2011 -
Proceedings of the 1st International
Conference on Cloud Computing and Services
Science, Noordwijkerhout, Netherlands, 7-9
May, 2011. SciTePress 2011 ISBN 978-989-
8425-52-2.

[23] Nikolaus Huber, Marcel von Quast, Michael
Hauck, Samuel Kounev, ” Evaluating and

modeling virtualization Performance overhead

for cloud environments”, Journal of

Information Hiding and Multimedia Signal

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

Processing c ⃝ 2013 ISSN 2073-4212,
Ubiquitous International Volume 4, Number
3, July 2013.

[24] Paul Barham∗, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer†, Ian Pratt, Andrew Warfield,
“Xen and the Art of Virtualization”,
SOSP’03, October 19–22, 2003, Bolton
Landing, New York, USA. Copyright 2003
ACM 1-58113-757-5/03/0010 ...$5.00.

[25] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauery, Ian Pratt, and AndrewWareld.
“Xen and the art of virtualization. nineteenth

ACM symposium on Operating systems

principles”, 2003.
[26] Pradeep Padala, Xiaoyun Zhu, ZhikuiWang,

Sharad Singhal, and Kang G. Shin.
“Performance evaluation of virtualization

technologies for server consolidation”.
Technical report, HP Laboratories Palo Alto.,
April 2007.

[27] Qingling Wang, Carlos A. Varela , “Impact of
Cloud Computing Virtualization Strategies on
Workloads ’Performance”, Department of
Computer Science Rensselaer Polytechnic
Institute, Troy, NY, USA http://wcl.cs.rpi.edu/
{wangq9, cvarela}@cs.rpi.edu, UCC, page

130-137. IEEE Computer Society, (2011).
[28] Rahul Gundecha. “Measurement-based

evaluation of virtualization platforms”.
Technical report, Indian Institute of
Technology, Bombay, april 2007.

[29] Ratul K. Majumdar, Krithi Ramamritham,
Ravi N. Banavar, and Kannan M. Moudgalya.
“Disseminating dynamic data with qos

guarantee in a wide area network: A practical

control theoretic approach”. 10th IEEE Real-
Time and Embedded Technology and
Applications Symposium, 2004.

[30] Sajib Kundu, Raju Rangaswami, Kaushik
Dutta, Ming Zhao, “ Application

Performance Modeling in a Virtualized

Environment”, School of Computing &
Information Sciences, College of Business
Administration Florida International
University {skund001, raju}@cs.fiu.edu
kaushik.dutta@business.fiu.edu,zhaom@cs.fiu.
edu,

[31] Shicong Meng, Ling Liu, “Monitoring-as-a-

Service in The Cloud”, ICPE’13, April 21–24,
2013, Prague, Czech Republic. ACM 978-1-
4503-1636-1/13/04.

[32] S. Keshav. “A control-theoretic approach to

flow control”. Proceedings of the ACM
SigComm, 1991.

[33] Sriram Govindan, Jeonghwan Choi, Arjun R.
Nath, Amitayu Das, ” Xen and Co.:

Communication-Aware CPU Management in

Consolidated”.
[34] “Xen-Based Hosting Platforms”, 0018-

9340/09/$25.00 2009 IEEE Published by the
IEEE Computer Society.

[35] Sujay Parekh, Dawn M. Tilbury, Joseph L.
Hellerstein, and Yixin Diao. “Feedback

control of computing systems”. John Wiley
and Sons, Inc, 2004.

[36] Tarek Abdelzaher, Kang G. Shin, and Nina
Bhatti. “User-level qos-adaptive resource

management in server end-systems”, IEEE
Transactions on Computers, 52.

[37] Xiao Zhang Eric Tune Robert Hagmann Rohit
Jnagal Vrigo Gokhale John Wilkes,” CPI

2
:

CPU performance isolation for shared

compute clusters”, Google, Inc, 2013 ACM
978-1-4503-1994-2/13/04. $15.00.

[38] .Xue Liu, Xiaoyun Zhu, Pradeep Padala,
ZhikuiWang, and Sharad Singhal. “Optimal

multivariate control for differentiated services

on a shared hosting platform”. Proceedings of
the 46th IEEE Conference on Decision and
Control (CDC’07), December 2007.

[39] Ying Lu, Avneesh Saxena, and Tarek F.
Abdelzaher. “Differentiated caching services;

a control-theoretical approach”. International
Conference on Distributed Computing
Systems, 2001.

[40] Zongjian He, Guanqing Liang, ” Research and

Evaluation of Network Virtualization in Cloud

Computing environment”, IEEE Third
International Conference on Networking and
Distributed Computing (ICNDC), 2012 at
Hangzhou,40-45, ISSN :2165-5006,Print
ISBN:978-1-4673-2858-6,INSPEC Accession
Number:13263829,Digital Object Identifier
:10.1109/ICNDC.2012.18.

[41] ZhikuiWang, Xiaoyun Zhu, Pradeep Padala,
and Sharad Singhal. “Capacity and

performance overhead in dynamic resource

allocation to virtual containers”. Technical
report, HP Laboratories Palo Alto., April 2007.

[42] “Application Performance Management in a

Virtualized Environment Growing “, WHITE
PAPER: APPLICATION PERFORMANCE
MANAGEMENT.

[43] ” Better virtualization of XenApp and

XenDesktop with XenServer”, XenApp and
XenDesktop with XenServer White Paper.

Journal of Theoretical and Applied Information Technology
 20

th
 October 2015. Vol.80. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

[44] “Experimental Evaluation of the

Performance-Influencing Factors of

Virtualized Storage Systems”,
Computational Intelligence and Computing
Research (ICCIC), 2010 IEEE International
Conference on Digital Object Identifier:
10.1109/ICCIC.2010.5705753, Publication
Year: 2010 , Page(s): 1 - 4

[45] VMware site. http://www.vmware.com/.
[46] Official Xen project site. http:/

/www.cl.cam.ac.uk/research/srg/netos/xen/.

[47] httperf.

http://www.hpl.hp.com/research/linux/httperf/.

[48] Website of Muffin proxy server.

http://muffin.doit.org/.

