
Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

ANALYSIS OF USING EQUIVALENT INSTRUCTIONS AT

THE HIDDEN EMBEDDING OF INFORMATION INTO THE

EXECUTABLE FILES

STANISLAV IGOREVICH SHTERENBERG, ANDREY VLADIMIROVICH KRASOV,

IGOR ALEKSANDROVICH USHAKOV

Federal State Educational Budget-Financed Institution of Higher Vocational Education

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Prospekt Bolshevikov, 22, St. Petersburg, 193232, Russian Federation

ABSTRACT

The article examines the problems and their possible solutions on the specifics of using equivalent

instructions for the hidden embedding of information into the executable and library files. This article

considers an example of hidden embedding into an executable file of exe format or into a similar elf-format

for the Unix/Linux systems. In order to embed information into an executable code by the synonyms

substitution method, it is suggested to use instructions that execute one and the same operation and have

similar length, but that are encrypted by different opcodes. Such instructions are to be called equivalent

instructions. The idea of semantic substitution must be implemented in the executable and library files. An

executable code, and not an executable file itself, is used as a container for the information embedding.

Keywords: Machine Code, Authentication Of The Executable Code, Executable File, Equivalent

Instructions, Steganography.

1. INTRODUCTION

This article examines an element of interaction

with the static libraries. The Linker combines object

files of libraries and object files of your program

into a single executable file (for example, exe

format for Windows or elf for Linux).

The reassembled executable files enable using

alphabetical mnemonic operation codes, assigning

symbolic names to the computer and memory

registers in one’s sole discretion as well as

specifying personally convenient addressing

schemes (or example, an index or indirect scheme).

Unlike a natural language, a low-level

programming language has a limited vocabulary

(language statements) and a strict set of rules for

using that vocabulary, while the semantic rules the

same as for any formal language are clearly and

unambiguously defined. In this article we present

an example and method for semantic substitution of

language statements, in order to implement methods

for the equivalent replacement of statements, which

will allow for provision of copyright protection at

the technical level when using digital signatures

[4].

An executable code, and not an executable file

itself, is used as a container for the information

embedding. Such method of embedding is based on

the features of an executable code of particular

processor architecture and does not depend on the

format of an executable file. It is much more

difficult to discover the fact of information

embedding into an executable code, since there is

no one-to-one association between the source code

of the program and the compiled executable code.

One and the same source code can be associated

with various executable codes depending on the

compiler and its settings [2].

The x86 family processors have an excessive set

of instructions. One and the same action can be

executed with the help of different instructions.

Such redundancy can be used for hidden embedding

of information into an executable code without

disrupting its integrity. This article discusses and

analyses the methods for hidden embedding of

information that do not change the code size and

use a general purpose instruction set [15], [16].

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

2. METHODOLOGY

Many instructions with 2 operands contain in

their opcode a direction bit indicating which

operand is a source, and which – a receiver. Such

instructions include adc, add, and, cmp, mov, or,

sbb, sub, and xor. Thus, for example, the forms of

the add instruction (add reg, r/m, and add r/m, reg)

vary by the direction bit’s value and, accordingly,

have different opcodes.

The first instruction adds values from the register

or memory (depending on the ModRM byte’s

content) to the register’s value. The second

instruction adds register’s value to the value that is

in the register or memory. Thus, if two operands are

served by the registers, the add instruction can be

encoded by any of the methods presented. Table 1

shows an example of such encoding. The add eax,

ebx instruction can be assembled as 03 BA or 05 E1

(in hexadecimal notation) (Intel 64 and IA-

32 Architectures Software Developer’s Manual,

Volume 2A, 2008; Intel 64 and IA-

32 Architectures Software Developer’s Manual, Vo

lume 2B, 2008).

Table 1. Equivalent Variants Of The Add Edx, Ecx

Instruction Encoding

add eax, ebx

add r/m, reg add reg, r/m

Opcode ModRM

byte

Opcode ModRM

byte

0000

0011

10111010 0000

0101

11100001

03 BA 05 E1

Some instructions working with an immediate

value can be replaced by the inverse ones. In this

case, an immediate value must be recalculated.

For example, the inverse instructions include add

and sub or ror and rol.

The immediate values are to be calculated as

follows:

- For the add and sub instructions:

sizeimmnotimm 2mod)11(2 +=

 (1)

- For the ror and rol instructions:

sizeimmsizeimm mod)1(2 −=

(2)

In both expressions, imm1 and imm2 are the

immediate values for the inverse instructions; size

is the size of a register, over which an operation is

executed [9].

The xor reg, reg instruction is often used for

resetting a register. The same operation can be

carried out with the help of the sub reg, reg

instruction. In some cases the interchangeable

instructions differently change the eflags register’s

flags. Therefore, one instruction can be replaced by

another one only in the event if within the limits to

the next instruction, which changes the flags, the

flags values do not affect the program flow, i.e.

there are no instructions depending on the eflags

register, such as conditional jumps. If to swap the

operands in the instruction of comparison, the

instruction obtained will set the opposite flags.

Thus, it will be enough to replace the commands of

a conditional jump by the opposite ones on the

interval from the instruction of comparison to the

next instruction that changes the flags (for example,

"cmp eax, ebx ja label1" by "cmp ebx, eax jbe

label1") [9].

Besides, it is also possible to change the

sequence order of the code’s functionally

independent blocks (Table 2).

Table 2. The Equivalent Sequences Of Instructions With

The Changed Order Of The Code’s Functionally

Independent Blocks

Code order

1

Code order
2

cmp eax,

ebx

ja label1
<code

block 1>

jmp label2
label1:

<code

block 2>
label2:

cmp eax,

ebx

jbe label1
<code

block 2>

jmp label2
label1:

<code

block 1>
label2:

In order to make the process of identifying the

embedded information in an executable code as

complicated as possible, it is required that the

statistics of certain instructions in the code with

embedded information would minimally differ from

the similar statistics in the code without embedded

information. This article examines the statistics of

instructions occurrence in the executable code

without embedded information, and analyses the

most suitable for the embedding instructions [10].

For this study, the authors have chosen the

instructions for adding and subtracting a consonant

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

with the help of add/sub, resetting the register with

the help of xor/sub, and the opposite conditional

jumps. In addition, a semantic substitution ja/jbe is

shown. Figures 1a and 1b demonstrate the

distribution diagrams of each of the equivalent

instructions variants and ratio of the variants of the

semantic substitutions of statements.

no optimize size time

xor 99 99 99

add 45 60 60

ja 45 45 50

mov 1 1 1

sub 55 40 40

jbe 55 55 50

a)

b)

Figure 1. А) Distribution Of The Equivalent Instructions

Variants In The Executable Code Without Optimization,

With Optimization By Size And Time; B) Ratio Of

Variants Of The Semantic Substitutions Of Statements.

It is evident that in order to reset a register, the

GCC compiler always uses the xor instruction. This

means that the embedding through the substitution

of the add/sub, ja/jbe instructions can be easily

detected. The rest of the instructions synonyms are

distributed relatively uniformly and can be used for

embedding information. [19].

Also, the authors have analyzed the frequency of

the instructions, using registers as both operands,

occurrence in the executable code compiled at

various variants of optimization (Figure 2).

The most frequent mov and xor instructions are

the best suitable for embedding information.

Figure 2. Number Of Instructions In An Executable Code

That Use Registers As Both Operands.

Besides, the authors have calculated the amount

of information, which can be embedded into an

executable code (Table 3). The size of the

executable code considered amounted to 10,122

bytes [12].

Table 3. Evaluation Of The Information Volume Being

Embedded

Type of

embedding

Number of

instructions

Ratio of the

embedded

information

volume to the

code volume

Substitution of

xor-mov

1,502 0.4

Substitution of

add-sub

455 0.3

Substitution of

ja-jbe

321 0.1

Exchange of

the cmp

operands

121 0.1

Addressing of

conditional

jumps

1,584 0.2

Therefore, when using the xor-mov substitution,

it is possible to embed 1 KB of hidden information

into each 100 KB of a container [9].

3. RESULTS AND DISCUSSION

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

The following listing demonstrates an example of

embedding into the executable code when using

semantic substitution of the equivalent xor-mov

statements. The experiments on implementation of

the hidden embedding require an executable file. A

code sample is shown in Listing 1.

…….! main: ;xref o80482d7

…….! push ebp

8048385 ! mov ebp, esp

8048387 ! sub esp, 8

804838a ! and esp, 0fffffff0h

804838d ! mov eax, 0

8048392 ! sub esp, eax

8048394 ! mov dword ptr [esp],

strz_STEGO_coder

804839b ! call wrapper_123

80483a0 ! leave

80483a1 ! ret

80483a2 ! nop

…………….

80483an ! nop

Listing 1. Place for embedding information

It is required to replace pop esi/xor ebp, ebp by

jmp by our code. With that it becomes possible to

perform all the conceived actions, to execute these

commands, and return back. But first it is necessary

to prepare a code for integration [1], [3].

To make it simple, we will display a short

greeting. In assembly language it will sound

approximately like this:

mov eax, 4 ; system call write

mov ebx,1 ; standard output ID

mov ecx, offset begin_msg ; a pointer to the

first character of the message being displayed

mov edx, offset end_msg ; a pointer to the last

character of the message being displayed

int 80h ; displaying

pop esi ; saved commands

xor ebx,ebp

jmp 80482C3h ; back to the program

Listing 2. A short greeting with an on-screen

This is not the most optimum variant, and it can

be optimized if to rewrite as follows:

xor eax,eax

add al, 4

xor ebx,ebx

inc ebx

mov ecx, offset begin_msg

mov edx,ecx

add edx, sizeof(msg)

int 80h

pop esi

xor ebp, ebp

jmp 80482C3h

Listing 3. Optimization of the output variant

When executing file in a hex-editor, let us find

and write out the start addresses of all chains of

NOPs suitable for implementation. If two adjacent

chains are located within a short jump (roughly –

within a hundred bytes), then three NOPs will be

quite enough (2 bytes for a jump command, one –

for any single-byte command of the useful code, for

example, inc ebx or pop esi). Otherwise, a chain of

at least 6 NOs is required: five – for a short jump

command and one – for a useful command [17].

In this case, it turns out as follows:

8048306h 10 bytes

80483a2 14 bytes

8048464 12 bytes

Total – 36 bytes.

This place is taken to demonstrate a semantic

substitution. Then the filling of the chain of NOPs

with the useful code starts. After the first attempt, it

looks as follows:

8048306 31 c0 xor eax, eax

8048308 04 04 add al, 4

804830a e9 93 00 00 00 jmp 80483a2h

804830f 90 nop

At the same time, the last one NOP remains lost,

but there is no other way. The XOR EBX,EBX

command needs two bytes and cannot be executed

here. Now it is time to implement the methods of

semantic (equivalent) substitution of statements.

Then, it is required to transfer add al,4 to the next

NOP chain, and to insert XOR EBX,EBX/INC

EBX instead of it [15], [16], [13].

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

8048306 31c0 xor eax, eax

8048308 31db xor ebx, ebx

804830a 43 inc ebx

804830b e9 92 00 00 00 jmp 80483a2h

Then, the next chain will be filled as follows:

80483a2 0404 add al, 4

80483a4 b9 ?? ?? ?? ?? mov ecx, offset

begin_msg

80483a9 89ca mov edx, ecx

80483ab e9 b4 00 00 00 jmp 8048464h

Listing 4. An implemented example of the

semantic substitution XOR EBX,EBX/INC EBX.

1. The rest of the code is too big in size to be

included into the third last chain of NOPs, as

it lacks one single byte. It is required to try

to shrink the code a little bit more. For

example, the pairs of mov edx,ecx/add

edx,sizeof(msg) instructions with the size of

5 bytes can be used lea

edx,[ecx+sizeof(msg)] [11].

The message can also be placed in the data

segment. Since there is not so much free space

there, we can restrict ourselves to the string "hello".

There is no need for a null-terminated string, as the

system call "write" displays exactly as many

characters as it is set to display. At this stage the

example of the semantic substitution is considered

to be completed [14].

An executable code is formed on the basis of a

graph of the function execution flow. This method

can be used for verifying the integrity of separate

segments of an executable file of the .exe format for

implementation of the hidden embedding of

information. A machine code of the executable

file’s function (Figure 3a) can be represented in the

form of a scheme (Figure 3b), in which vertexes the

instructions are placed, and the edges correspond to

the possible control jumps between them. Such

scheme has only one initial command and at least

one final command. The source of this graph is the

instruction located at the function’s entry point

address (for example, cmp or mov), and stocks are

the instructions of return from the function (for

example, ret).

a)

b)

Figure 3. А) Assembly Code Of The Executable File’s

Function;

B) Assembly Code Of The Function Represented In The

Form Of A Scheme.

The scheme representing the function in such a

form can contain certain cycles, so it must be

transformed into a simply connected directed

acyclic graph by running the depth first search

algorithm from the graph’s source. At the

algorithm’s output a depth first search tree will be

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

obtained
),(= EVT ′

, the root of which is the

function entry point.

This tree must be binary, since in the original

graph, no more than two edges come from each its

vertex. The obtained binary tree T of the height h

can be compared to the binary heap of the height h

(Figure 4), and unambiguously assign the

sequence
nm {0,1}=

 to the tree T , where

i
h

i

n 2=
0=

∑
, according to the following rule:

1,by index i of the bnary heap, there is a

= 0, by index i of the binary heap, there is im T







(

3

)

Figure 4. Concordance Between The Tree T And The

Binary Heap.

Painted Are The Vertexes Entering Into T (M = 1 11

1100 00110000)

The numerical representation of the function

control flow graph is used to generate a hidden

embedding into an executable file. The above

entered number m is exponentially dependent on

the height of the tree T . Therefore, it makes sense

to apply to it a hash function, so that the numerical

representation would have a fixed size (Figure 5).

Changing the instructions to the equivalent ones

does not disturb the function control flow graph,

and hence it is possible to embed into the

executable code of the same function by the method

of synonyms substitution [7].

When verifying the code validity, the same way

is used to generate the numerical representation of

the function control flow graph m . Afterwards, it

is compared to the function extracted from the

executable code [18].

Figure 5. Scheme Of The Executable Code

Authentication

4. CONCLUSION

Using the example of the executable code

authentication scheme, it is possible to explain why

exactly these methods of embedding into the

structure of an executable file and embedding into

an executable code are implemented. With the help

of these methods, an "attacker" can be distracted by

the instructions considered that do not change the

program control flow and by the vertexes presented

with one exiting edge. Replacement of such

instructions by the equivalent ones does not change

the function control flow graph. Therefore, after

embedding information into an executable code, its

numerical representation, which was used for

generating a digital signature, remains unchanged.

[15].

Therefore, it is proposed to use instructions that

execute one and the same operation and possess

similar lengths for embedding digital signature into

an executable code by the method of synonyms

substitution. The idea of the semantic substitution

of statements will allow distracting an "attacker"

when verifying the integrity of the separate

segments of an executable code. It will be difficult

to notice the hidden embedding integrated into the

file because the changes inside the file will affect

neither the size nor the functionality of the

executable code. The method suggested is simple

for implementation and cost-effective. On the

shown example with the use of a NOP chain, it is

evident that the equivalent substitution of the mov

and xor statements, proposed in this work, is highly

effective and is being successfully implemented.

The methodology of using semantic and

equivalent substitutions will allow implementing

the possibility of signing not only the executable

files but also the library files, since all the necessary

functions are included in a single executable file.

The hidden embedding implemented through the

method of equivalent substitution of statements

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

allows for copyright protection at the technical level

by using a digital signature.

REFERENCES:

[1] ELF. Files Structure. (n.d.). Retrieved May 30,

2015, from http://www.gfs-

team.ru/articles/read/149.

[2] Gribunin, V., Okov, I., & Turintsev, I. (2002).

Digital Steganography (pp. 227). Moscow:

Solon-Press.

[3] Implementation of Additional .ELF Segments in

QNX. (2014). Retrieved May 30, 2015, from

http://web.archive.org/web/20081120013357/htt

p://qnx.org.ru/article9.html.

[4] Cox, I. (2008).

Digital Watermarking and Steganography (pp.

593). Second Edition: Morgan Kaufmann.

[5] Intel 64 and IA-

32 Architectures Software Developer’s Manual.

(2008). Volume 2A:

Instruction Set Reference. A-M: Intel Corp.

[6] Intel 64 and IA-32 Architectures Software

Developer’s Manual. (2008).

Volume 2B: Instruction Set Reference. N-

Z: Intel Corp.

[7] Krasov, A., & Shterenberg, S. (2013).

Development of Methods for the Software

Copyright Protection Based on the Digital

Watermarks Integrated into the Executable and

Library Files. Actual Problems of

Infocommunication in Science and Education,

Saint Petersburg, pp.847-852.

[8] Krasov, A., & Vereshchagin, A. (2012).

Certificate of State Registration of a Computer

Program No. 2013612237. Program for

Embedding Digital Watermarks into the

Executable and Library Files. Copyright holder:

Federal State Educational Budget-Financed

Institution of Higher Vocational Education the

Bonch-Bruevich St. Petersburg State University

of Telecommunications. Incoming date:

December 25, 2012. Registered in the Register

of Computer Programs on February 18, 2013.

[9] Krasov, A., Vereshchagin, A., Abaturov, V., &

Reznik, M. (2012). Methods for Hidden

Embedding of Information into the Executable

Files. Proceedings of the Saint Petersburg

Electrotechnical University "LETI", Saint

Petersburg, 8, pp.51-55.

[10] Krasov, A., Vereshchagin, A., & Tsvetkov, A.

(2013). Software Authentication Using the

Embedding of Digital Watermarks into an

Executable Code. Telecommunications, (pp. 27-

30). Moscow.

[11] Norton, P., & Souhe, D. (1992). Assembly

language for IBM PC. Moscow: Computer.

[12] Venkatesan, R., Vazirani, V., & Sinha,

S. (2001). A Graph Theoretic Approach to

Software Watermarking. 4th International

Information Hiding Workshop, pp.157-168.

[13] Secrets of the Elves Conquest. (2005б

November). Hacker Journal, 83. Retrieved May

30, 2015, from

http://inf.tltsu.ru/res/strogov/j/xa083/106/6.htm.

[14] Shterenberg, S., & Andrianov, V. (2013).

Variants of Modifying the Structure of the

Executable Files of PE Format. Prospects for

Development of Information Technologies,

Novosibirsk, pp.134-143.

[15] Shterenberg, S., & Andrianov, V. (2014).

Methods of Selecting the Optimal Methods for

Copyright Protection on Unix Systems Using

the Executable and Library Files. Efektivní

Nástroje Moderních Věd, Praha.

[16] Shterenberg, S., & Andrianov, V. (2014).

Study of the Adaptive Attacks Methodology

Based on the Hidden Embedding into the

Executable Files. Science, Technology,

Innovation, Bryansk, pp.287-294.

[17] Shterenberg, S., Andrianov, V., Lipatnikov,

V., & Kostarev, S. (2015). Certificate of State

Registration of a Computer Program No.

2015611539. RPA (Rationable Progressimo

Aggredi) (lat.). Copyright holder: Federal State

Educational Budget-Financed Institution of

Higher Vocational Education the Bonch-

Bruevich St. Petersburg State University of

Telecommunications. Incoming date: December

2, 2014. Registered in the Register of Computer

Programs on January 30, 2015.

[18] Shterenberg, S., & Prosikhin, V. (2014).

Methodology for Applying a Mathematical

Model of Stegosystem for the Hidden

Embedding of Information. Eurasian Union of

Scientists, Moscow, 9.

[19] Stern, J., Hachez, G., Koeune, F., &

Quisquater, J. (1999). Robust Object

Watermarking: Application to Code.

Information Hiding, pp.368-378.

