
Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

A COMPREHENSIVE ARCHITECTURE FOR DYNAMIC
EVOLUTION OF ONLINE TESTING OF AN EMBEDDED

SYSTEM

SMT. J. SASI BHANU
1
, A. VINAYA BABU

2
, P. TRIMURTHY

3

1 Assistant professor, Dept. of Computer Science and Engineering, KL University, Guntur, India
2 Professor, Dept. of Computer Science and Engineering, JNTU, Hyderabad, India

3 Professor, Dept. of Computer Science and Engineering, ANU, Guntur, India

E-mail: 1sasibhanu@kluniversity.in, avb1222@gmail.com, profpt@rediffmail.com

ABSTRACT

Embedded systems which are used for monitoring and controlling safety critical systems are to be evolved
dynamically, meaning changes required either for command language interface, or to the Embedded
systems software must be undertaken while the system is up and running. When the changes are made, the
same are to be tested thoroughly before the changed code is made paramount. Different types of testing
must be carried with the test cases initiated from the HOST. The testing must be carried while the
embedded system is up and running. The kind of testing that must be undertaken sometimes cannot be
foreseen. There is a necessity of dynamically evolving the very testing itself and then carry with testing
with the help of test cases initiated from the HOST. In this paper a comprehensive dynamically evolvable
online testing architecture has been presented and also a comparison of the same with other possible
architectures has also been presented.

Keywords: ES architectures, Dynamic Online Testing, monitoring and controlling safety critical systems,

Software evolution

1. INTRODUCTION

Embedded Applications are a different class of

applications which throw several challenges
especially related to Testing. The testing process to
test the embedded applications involves testing
individually Hardware, Software and both the
Hardware and Software together. The process of
testing an embedded application is rather complex
and needs a detailed study. The process of testing
an embedded system is not even streamlined as yet.

Development and testing of embedded
software is especially difficult because it typically
consists of a large number of concurrently
executing and interacting tasks. Each task in
embedded software is executed at different intervals
under different conditions and with different timing
requirements. Furthermore time available to
develop and test embedded software is usually quite
limited due to relatively short lifetime of the
products.

Testing and debugging embedded systems is
difficult and time consuming for simple reason that
the embedded systems have neither storage nor

adequate user interface. The users are extremely
intolerable of buggy embedded systems. Embedded
systems deal with external environment by way of
sensing the physical parameters and also must
provide outputs that control the external
environment.

It is necessary to add software components
related to dynamic evolution of syntax and
semantics of the ES software of an embedded
system that monitors and controls a safety or a
mission critical system. The components added
must be tested thoroughly before the same are made
to be regular operational components.

No system is full proof. Failures and faults will
occur. Upgrades to the existing software modules
must be undertaken. New modules shall have to be
added due to the need to add more functionality. It
is also possible that some random errors may
appear and it is necessary to know and fix those
errors. Sometimes one can notice the degradation in
response time and some of the devices might be
malfunctioning. One can notice that the actuators
malfunction and the control mechanisms that have
been built into ES system have not been quite
functioning. There could be many other such

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

reasons that makes it necessary for making changes
to the embedded system and to those components
that are added, deleted and modified which are
related to dynamic syntax and semantic evolution
of the embedded system leading to the necessity
undertaking the testing.

The changes to the software have to be
undertaken while ES system is up and running due
safety and mission critical reasons. The embedded
system must be tested thoroughly to ensure proper
running of the same. The testing must also be
undertaken when the system is up and running. The
testing undertaken must be online, meaning testing
undertaken while the application system is up
running. The online testing have to be conducted
without compromising on any of the issues.

Online testing involves addition of various test
processes for undertaking different kinds of testing.
Online testing requirement is an additional set of
processes over and above the actual application
related processes.

Online testing may be either related to
hardware or software. A test environment must be
set so that hardware testing can also be carried
using the test cases initiated from the HOST.
Several methods can be used for undertaking the
testing at HOST or at the TARGET or both.
Methods such as Scaffolding, Assert Macros,
Instruction set simulators and third party tools are
used for testing at the HOST, Logic analyzers are
used to undertake testing Hardware, in-circuit
emulators and monitors are used for testing ES
software with the test cases initiated from the
HOST. None of the methods are useful for carrying
online testing using the processes that must be
dynamically evolvable and using the processes that
can test the changes carried to syntax and semantics
while the software is up and running.

Online testing has to be carried due to the
following reasons:

1. Decrease in response time
2. Decrease in the throughput
3. Non commencement of Actuating

functions
4. Erratic sensing of the Inputs
5. Improper output displayed on to the

output device
6. Memory conflicts
7. Conflicts in use of resources
8. Proper receipt of data transmitted by the

HOST
9. Data out of range
10. Shared data problem
11. Failure of inter task communication
12. Existence of shared data problem

13. Adding new Tasks
14. Updating the existing tasks
15. Deleting existing tasks
16. Other types of testing requirements

2. PROBLEM DEFINITION

Testing of semantically evolvable embedded
systems has to be carried on line. The testing
system must itself be evolved dynamically. The
testing of the embedded system meant for
monitoring and controlling safety or mission
critical system must be undertaken while ES
software is up and running.

Testing must be carried whenever something
faulty functioning within the embedded system is
noticed to find the reasons for faults and take
corrective actions. Examples of faults happening
within the embedded systems include
malfunctioning of sensing and actuating
mechanism.

An online testing system must be evolved
dynamically as it is not possible to pre-identify all
kinds of testing that needs to be undertaken right at
the time of designing the embedded system. Test
processes must be added and test cases that are to
be tested by the test processes must be identified
and attached to the test processes dynamically.
The mechanism required for undertaking testing
must be effected dynamically.

Online testing must be undertaken along with
the running system. The ES software cannot be shut
down for want of making changes to the ES
software. Both the ES System and the Testing
system must be co-existing

Online testing must be carried whenever the ES
software is evolved semantically or syntactically.
Testing must be carried when new tasks are added,
existing tasks are updated or deleted to ensure that
the modifications to ES software is up and running.

Architectural models are required that include
all the components related to online testing that
must be co-existing along with the components that
are related to syntax and semantic evolution and the
components that are related to the ES software
which is updated through changes initiated from the
HOST.

3. LITERATURE SURVEY

The use of the embedded system can be
presented in terms of usage models. Usage models
can be developed using the user profiles, stimulus-
response, User behavior profiles, UML models etc.
Test cases are generated using the usage models
which are kind of graphic structures. A model as

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

such characterize the uses of a software [G.H.
Walton, et. al., 1995][1]. The data that should be
used as input to be fed for undertaking the testing
of the embedded system can be derived from the
usage model [Whittaker et.al. 1994][2]. [Prowell S.
J et.al. 1999][3] have presented that each path in
usage model represents a test case that must be
tested. The test case sufficiency can be judged with
the help of arcs contained in a the usage models and
the test cases that have been failed during the
testing. The state and arc coverage within the
USAGE model determined by a probability
distribution model, provides a basis to verify the
test sufficiency [Wolf M et.al. 2000][4]. Markov
chain’s if constructed using the usage models and
probability distribution of the usage of paths
contained in the usage model makes the generation
of test case more interesting [Whittaker et.al.
1993][5], [J Poore et.al. 1998][6].

 [Matthias Riebisch, et. al., 2003][7] explained
the process of undertaking statistical use testing by
way of exploiting the UML based use cases and
sequence models as they provide data and behavior
which are very much necessary for modeling the
test case generation and also undertaking the test
automation.

A tabular template based test case generation
has been presented by [Cockburn A et.al. 1999][8],
[Frohlich P et.al. 2000][9], [Sergiy A. Vilkomir, et.
al., 2008][10] explained the process of generating
automated test cases based on modeling
combinatorial dependencies between input
parameters and using Markov chain techniques.
Input combinations play an important role rather
than stimulus sequences in testing of software
programs whose usage pattern consists of only
three stages, namely, entering input parameters,
calculation and generating results.

[D M Cohen et.al. 1997][11], [M Grindal et.al.
2005] [12] suggests different combinatorial
approaches for situations where the number of
possible parameter values is too large for testing all
input combinations. Combinatorics together with
Markov chains automates test cases selection,
execution and evaluation and allows applying
statistical analysis to the testing process. Markov
chains are the usage models, each path in the usage
graph relate to a particular usage of the application.

[W T Swain et.al. 2005][13] explains the
application of Markov chain model for the selection
of test cases from independent input parameters. A
specific value represents each state of the model for
each discrete input parameter. State transition
occurs once the corresponding value is assigned to
the parameter.

 An proposed an approach close to the
“Conflict-free sub-models” approach of [M Grindal
et.al. 2006][14], differing in reducing the number of
new states and generation of all test cases using
only one model.

Test dependencies are used to develop a
connected graph which can be used as a usage
model. [Yan Jiong, et. al., 2003][15] advocated
the usage of constrained UML artifacts like use
case diagrams, sequence diagrams and the
execution probability of each sequence diagram for
deriving software usage models. Usage model
generated by projecting the messages in sequence
diagrams onto the objects under test and associating
probability of occurrence for each message. Testing
carried using usage models estimate software
reliability.

[F Basanieri et.al. 2000][16] proposes to
combine message sequences from sequence
diagrams and generate test cases by using
partitioning method. [A Abdurazik 2000][17]
adapts the traditional data-flow coverage criteria as
test adequacy criteria in the context of UML
collaboration diagrams. [L Briand et.al. 2002][18]
have presented the way system test requirements
are derived from use cases and sequence diagrams
by considering the sequential and dependability
relationships between use cases and sequence
diagrams. [Peter Frohlich et.al. 2000][19]
Automatically generates system-level test suites
with a given coverage level by transforming use
cases into UML state charts and mapping its
elements to the STRIPS planning language.

Testability constraints are imposed on UML
artifacts and deriving a Markov chain usage model
from them to support statistical testing. [Binder R
1999][20], [Bruegge B et. al. 2000][21] explained
the sequential relationships of business
requirements to the use cases use the relationships
to generate test cases. The sequential relations
between use cases have been represented through
activity diagrams with vertices as use cases and
edges as execution sequential relations between use
cases. Use cases with no relations can execute in
parallel. The pre and post conditions will determine
the next executed use case. (Tomohiko Takagi et.
al., 2004) [22] advocated the usage of operational
data such as users’ activities, log files of the
program, etc., for generation of usage distribution
which is useful in building the usage model at a low
cost. This is achieved by applying source code
generation methods based on a state machine
diagram by establishing a one-to-one relationship
between each transition on the state machine

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

diagram and basic blocks in the skeleton code
generated.

Construction of probability distribution of a
usage model is done by inserting probes into source
codes while generating skeleton codes. These
probes collect operational data in the state transition
sequences or execution frequencies of each
transition. This enables software to collect
operational data for building a usage model. Source
code generation using state transition table [B
Beizer et.al. 1990][23], [J Ali et.al. 1998][24].

 (Erik Simmons 2005)[25] defines the usage
model as the one that describes the interactions
between the user and the system at a level that
identifies the systems’ benefits to the user and
presents a structure for usage model that contains
three separate tiers: supporting data, overview, and
usage details which provide a common taxonomy
across various teams and business units. .

Product usage is described by use cases,
scenarios, and concept-of-operations documents
[Cockburn A et.al. 2001][26], [Fairley et. al.,
1994][27] which all can be used for the generation
of test cases. 29[Runeson P et. al., 1998][28]
proposed use cases to be either translated or
extended into concept-of-operations model. A
common structure and taxonomy for describing
product usage are necessary in order to unify
requirements engineering, planning and design
processes across business units and promote reuse.

 [Regnell B et.al. 1995][29] Described a
Synthesized Usage Model comprising of actors,
usage views, use case specifications, abstract
interface objects, user and system actions and a data
dictionary. Construction of usage model starts from
the beginning of the project. As the model develops
supporting data is collected from which usage
summary is created. Addition of usage details
completes the model. In addition to the coverage of
product usage the usage model also contains data
about the environment in which the product is used
and

The timing constraints in sequence diagrams in
generation of usage model for real-time software
statistical testing have also been used. Timing
constrains are expressed by four classes of syntactic
constructs [H Ben-Abdullah et.al. 1997][30]
namely, Timers to express maximal delay between
two events in one process, Delay Intervals to
express time intervals between two consecutive
events in a process, Drawing rules and timing
markers used to express timing constraints.

OMG extended UML with a framework for
representing time and time related mechanisms
[OMG 2001] [31] to support real-time software

development. The timed scenarios can be used to
validate timing assignment and verify timing
consistency [R Alur et. al., 1996][32], [X Li et. al.,
1999][33].

Sequence diagrams are formalized based on
partial ordering of events. A sequence diagram is
defined by a finite set of instances, finite set of send
and receives events, finite set of messages and a set
of timing constraints. A Use case is defined by a set
of sequence diagrams and a set of preconditions of
the use case specified with Object Constraint
Language (OCL) [Warmer J et. al., 1999][34]. The
usage of high-order Markov chains for constructing
accurate usage models. Statistical testing overcome
the shortcomings of the systematic testing in
expressing software reliability. The effectiveness of
the statistical testing is determined by the accuracy
of the usage model. By using high-order Markov
chain in which the immediate past state is also
considered along with the current state in
determining the probability of event occurrence the
accuracy of the usage model is increased.

High-order Markov chain generates test cases
that the normal usage structure can’t reveal. It
increases the accuracy of evaluation of software
reliability and also increases the effectiveness of
statistical testing. The importance of using high-
order Markov chain which considers the test case
which are used in the previous instance has been
highlighted.

[Thomas Bauer, et. al., 2007][35] advocated
the usage of sequence-based requirements
specification in combination with model-based
statistical testing for very high degree of
automation from requirements document to
statistical test report.

Sequence -based specification is a set of
techniques for stepwise construction of black box
and state box specifications of software systems. It
helps in analyzing the completeness and
consistency of the requirements with a stepwise
construction of a traceably correct black box
specification.

UML based statistical testing requires,
acquisition of execution probability of the messages
in the sequence diagram associated with use cases
and projecting them onto the objects of the system
under test to generate usage models[Lyu M R
1996][36].

In statistical testing of software, all possible
uses of the software, at some level of abstraction,
are represented by a statistical model wherein each
possible use of the software has an associated
probability of occurrence [J.H. Poore et. al.,
1998][37]. Test cases are drawn from the sample

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

population of possible uses according to the sample
distribution and run against the software under test.
Various statistics of interest, such as the estimated
failure rate and mean time to failure of the software
are computed. The testing performed is evaluated
relative to the population of uses to determine
whether or not to stop testing.

[Lin fan et al. 2008][38] have presented a
method for testing a Embedded product using usage
models and statistical methods. They have shown
the testing process for Radio communication based
application. The Application chosen by them is
non-real time and as such no control logic exists.
The usage states of the application have been
manually recognized and have shown the way the
usage and test chains can be generated by
constructing Usage Model Transfer Matrix and
Usage Model Excitation matrix.

Several authors have proposed different
approaches to conducting testing of embedded
systems. [Jacobson et. al., 1999][39] and others
have suggested testing of modules of embedded
systems by isolating the modules at run time and
improving the integration of testing. This method
has however failed to support the regression of
events.

[Nancy Van Schooenderwoert et al., 2004][40]
and others suggested an approach of carrying unit
testing of the embedded systems using agile
methods and using multiple strategies. Testing of
embedded software is bound up with test of
hardware, crossing professional and organizational
boundaries.

[Tsai W.T et al., 2001][41] and others have
suggested END-TO-END Integration testing of
embedded system by specifying test scenarios as
thin threads; each thread representing a single
function. They have even developed a WEB based
tool for carrying END-TO-END Integration
Testing. [Lee N.H et al., 2003][42] suggested a
different approach for conducting integration
testing by considering interaction scenarios since
the integration testing must consider sequence of
external input events and internal interactions

Regression testing [Tsai W.T et al., 2001][43]
has been a popular quality testing technique. Most
regression testing’s are based on code or software
design, Tsai and others have suggested regression
testing based on Test scenarios and the testing
approach suggested is functional regression testing.
Tsai and others have even suggested a WEB based
tool to undertake the Regression testing. Others
have suggested testing of embedded systems by
simulating the Hardware on the host and combining
the software with the simulators. This approach

however will not be able to deal with all kinds of
test scenarios related to Hardware. The complete
behavior of Hardware specially unforeseen
behavior cannot be simulated on a host machine. A
testing approach has been proposed based on
verification patterns, the key concept of this being
recognizing the scenarios into patterns and applying
the testing approach whenever similar patterns are
recognized in any Embedded Application. But the
key to this approach is the ability to identify all test
scenarios that occur across all types of embedded
applications.

Combinatorial testing is a black-box
technique that could dramatically reduce the
number of tests as it is a highly efficient technique
to detect software faults. The method generally
followed in combinatorial testing is to derive test
cases from input domain of the system under test.
But, when the input domain is larger and the output
domain is much smaller, it is preferable to go for
testing the output domain either exhaustively 47
[Zhao, R. et al., 2007][44], [D. Richard Kuhn et
al., 2004][45] or as much as possible.

Exhaustive testing [Kuhn, D.R. et al.,
2006][46], [Kuhn, R. et. al., 2008][47] is out of
question when many input variables exist and they
act in several combinations. Pseudo Exhaustive
testing aims at considering only those input
combinations that are most likely to act together.

Several authors have developed genetic
algorithms for generating Test cases [Berndt, D. et
al., 2003][48], [B. F. Jones et al., 1998][49],
[Kamal Zuhairi Zamli et al., 2007][50] which uses
input domain and also specially meant for
generating test cases for loaded systems.

For some types of systems like safety critical
embedded systems, developing test cases drawn
from output domain will be more appropriate than
from input domain as it ensures that all or as many
possible output combinations are thoroughly tested
[D. Bala Krishna Kamesh et. al., 2011-1][51]

The criticality regions of the embedded
systems generally involve all parameters of input
domain. The primary issue is to generate a set of
test cases based on requirements specification that
can detect as many faults as possible at a minimum
cost and time in the criticality regions of embedded
system. Another [D. Bala Krishna Kamesh, et. al.,
2012][52] Adjacent Pair-wise Testing method that
helps generating the test cases in the criticality
regions of embedded systems has been proposed.

Combinatorial testing is a highly efficient
technique that could dramatically detect software
faults. It is useful to find whether the system under
test is particularly sensitive to certain input values

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

or specific combinations of input values.
Combinatorial testing can detect hard-to-find
software faults more efficiently than manual test
case selection Another method [D. Bala Krishna
Kamesh, et. al., 2012][53]. Three main types of
algorithms are available to construct combinatorial
test suites viz. Algebraic [Colbourn, C. J.
2004][54], Greedy [Bryce, R. 2007][55], [Cohen,
D.M., 1996][56], [Lei, Y. Kacker et al., 2008][57],
and Heuristic search [Cohen, M. B et. al., 2008][58]
algorithms. The method generally followed in
combinatorial testing is to derive test cases from
input domain of the system under test. Since there
are often too many combinations of input
parameters, it may be impossible to test all possible
combinations for the system under test.

Some [D. Richard Kuhn et. al., 2011][59]
combinations of input domain never occur in
practice and some faults [R. Kuhn et al., 2008][60]
are triggered only by unusual combinations –
hence, the popularity of pair-wise testing, which is
based on the observation that software faults often
involve interaction between two parameters has
been gained. Pair-wise combinatorial testing is an
effective method which can decrease the number of
test cases in a suite and is able to detect about 70%
to more than 90% of faults.

Pair-wise combinatorial test suites could be
generated by using different methods [Cohen D. M
et al., 1997][61], [Lei, Y et al., 2002][62] and some
of them lead to many invalid pair-wise
combinations [Lixin Wang et al., 2010][63] of input
parameters due to the input parameters
relationships and degrade the performance of
algorithm for generating test suite.

Combinatorial testing is a black-box technique
that could dramatically reduce the number of tests
as it is a highly efficient technique to detect
software faults. The method generally followed in
combinatorial testing is to derive test cases from
input domain of the system under test. But, when
the input domain is larger and the output domain is
much smaller, it is preferable to go for testing the
output domain either exhaustively [D. Richard
Kuhn et al., 2004][64] or as much as possible.

For some types of systems like safety critical
embedded systems, developing test cases drawn
from output domain will be more appropriate than
from input domain as it ensures that all or as many
possible output combinations are thoroughly tested.
Exhaustive testing of output domain is out of
question when many input variables exist and they
act in several combinations. Pseudo-exhaustive
testing aims at considering only those combinations
that will most likely result in failure conditions.

Several authors have developed genetic
algorithms for generating test cases from input
domain and those algorithms are specially meant
for generating test cases for loaded systems.
Consideration of output domain and the criticality
regions of the embedded systems is more important
when it comes to testing the embedded systems.

When it comes to the embedded systems
exhaustive testing of the embedded systems in the
critical regions is important. In the case of an
embedded system that monitors and control within
Nuclear reactor systems , commencement of pump
operations when any of the sensed temperature is
more than the reference temperature is critical.
Criticality Regions of each of the Temperatures
should be defined in the region of reference
Temperatures.

There should be well proven architectural
framework backing for undertaking testing of the
changes that get dynamically evolved while the
embedded system is up and running. Test processes
that should be dynamically evolved must be able to
undertake testing using the test cases from the
remote HOST. [

[Sha et. al., 2001][65] has proposed an
architecture that test an unknown process against a
known process that executes correctly with reduced
performance. The unknown process should be
sufficiently tested by providing several test inputs
and checking the timing and correctness of the
results produced.

Sasi et. al., 2012-1][66] have presented a data
repository model using which comprehensive
testing of embedded systems can be carried. [Sasi
et. al., 2012-2][67] have also presented a process
oriented repository model which has been sued for
undertaking the testing of stand-alone embedded
systems.

4. INVESTIGATIONS AND FINDINGS

4.1 Over test Architecture

The overall architecture that support
undertaking the testing of the embedded system is
shown in the Figurer 1.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

Pump

S-2

S-3Temperature

Sensor

R

S

2

3
2

C

I

N
T

E

R

F

A
C

I

N

G

H

A

R

D

W
A

R

E

ES Application

Test Application

RTOS

PRODUCTION SYSTEM TARGET SYSTEM HOST SYSTEM

Figure 1 Overall architecture of testing the embedded

system

It can be seen from Figure 1 that the Test

application must be communicating with the ES
application through a real time operating system
and the commands for undertaking testing are
initiated from a remote HOST.

4.2 Fully Blown testing Architecture

Figurer 2 shows Further exposition of the

model shown in Figurer 1. From the model it can
be seen that individual test processes are required
for undertaking the online testing of the embedded
system.

Test
Process

C
o

m
m

u
n
ic

a
t
io

n
 B

lo
c
k

 a
t
 th

e

T
a
r
g
e
t

C
o

m
m

u
n

ic
a

tio
n

 B
lo

c
k
 a

t th
e
 H

O
S

T

Test
Process

Test
Process

Test
Environment

R
T

O
S

ES Application Code
Test Case and

Test Results

Test Result

Process

Figure. 2 Deeper exposition of Testing embedded system.

4.3 Expanded Testing architecture

Further exposition of testing embedded system

considering the entire process of testing undertaken
at the HOST and the TARGET is shown in the
Figure 3.

Communication

Target

Test Process

Hardware Testing

Processes

Hardware and

Software Testing

process

Software Test

processes

Environment

Setup

Trough RTOS

Application Task-1

Application Task -
N

OS Task-1

OS Task-2

OS Task-3

Communication

Source

Testing control

Process

Environment setup

Process

Test Cases

Test Results

User Interfce

HOST

TARGET

Test Gadget
Processes

OS Task-4

Third Party based
testing

Scaffolding based

tetsing

Assert Macro

Based Tetsing

OS Task-4

Instruction set

siumualtors

Figure 3 Total exposition of testing embedded systems

It can been seen from Figure 3 that Embedded
systems are tested initially to the largest extent
possible on the HOST by using the methods
Scaffolding, Assert Macros, instruction set
simulators and third party tools before the code is
moved to target for testing. The command required
for testing the target which includes either the
hardware testing or software testing or both are
transmitted from the HOST and the commands are
used from undertaking the testing at the TARGET.
The test cases and the test results are maintained at
the HOST where the audit trails are conducted to
find the sufficiency of testing that has been
undertaken till the time audit trails are made.

4.4 Semantic Testing Architecture

A semantic model for undertaking the testing
of the embedded systems and its related
architectural model is shown in Figure 4. The
architecture presented by them shows various
software components that are required for testing
the embedded systems. The model presented by
then is quite suitable for testing of the stand-alone
system. They have deliberated much on this
architectural model. This model have has not
included any of the component required for
undertaking dynamic evolution of the embedded
system.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

167

Use Case Diagrams

Class Diagrams

Sequence Diagrams

Class files

Attribute files

FunctionFiles

Statement files

Event Patterns

Test Scenario Models

Test Process Models
Test Data Models

Test Cases Location wise /Test
Method wise/ Test type wise

Test Analysis

Test Configuration

Requirements Gathering , Analysis ,

Design and Development Testing Framework Models
Testing Models

Test Case Generation

Thin Threads

State Charts

Test Thin Threads Models

Test Semantic Models

Test Regression Models

Test Case Test Case Types

Test Process Architectural
Models

Figurer 4 Semantic model for testing the embedded

systems

4.5 Simplex Architecture

Simplex architecture includes a an extra
component called decision logic which included
into the overall semantic evolution. The testing of
an update component before the old component is
replaced by the new update component is
undertaken as an overall software architecture. The
architecture presented by them is shown in the
Figure 5. The architecture is called as simplex
architecture.

Sensor System

Actuator System

A/D Conversion

D/A Conversion

Interrupt Service

Routines

Simple reliable

Componets

New
Componets

Decision Logic

Control Logic

Figure 5 Simplex Architecture for online updates

In this architecture all critical tasks are performed
by simple and verifiable components and the output
of new components (Complex Components) which
are counter parts to the simple verifiable
components is fed as input to the simple
components.

.

4.6 Process resurrection based testing

architecture

Process resurrection based testing architecture
proposed code safety without runtime checks for
control system through usage of operating feature
of Process protection. The replacing of the simplex
code with Complex components and restarting of
the application is achieved through the concept
called Process Resurrection (PR). PR is a fast and
efficient mechanism for restarting and replacing a
process. PR mechanism is used to switch between
the production mode and testing mode.

The new component image can replace the
simple component and the mode can be changed
from Testing to Production. In the production mode
only the verified and tested components will be
made to run. The runtime sub system must be able
to reconfigure the code and switch between the
production and testing in real time meaning the
activities related to reconfiguration and switching
must be predictable and schedulable. Figurer 6
illustrates the usage of the concept called process
Resurrection. Process resurrection is a feature
supported by most of the real time operating
systems.

Operating System

Standalone
Complex

Component

Operating System

Complex
Component

(under testing)

Switched by Process
Resurrection

Testing and Upgrade
Mode

Normal Operation
Mode

Figure 6 Process Resurrection For Mode Change Of The

Embedded Systems

The mode switch is achieved through the
process Resurrection function which will map the
new code to the address space of the simple reliable
component address space and also setting the
control data a value realized by the control logic to
indicate that a mode switch has been effected.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

168

The system runs in the normal operation mode
when there is no need for testing or upgrade. In this
mode only simple reliable functional modules shall
be running. The switching overhead is very
negligible and as such there is no CPU overhead
and little extra storage is used to store the data
related to changing the modes between productions
and testing & upgrading. When online testing of
new software is needed the PR feature converts the
regular processes into Simplex enabled processes
and the new software modules can be uploaded for
testing.

When the new software is unproven and its
features are needed then the system can be made to
run at the cost of reduced response time of non-real
time and non-critical tasks. When the new modules
are believed to be running then the system is
switched to normal mode of operation through the
Process Resurrection. This architecture as such do
not support dynamic evolution testing systems as
the application system has to be temporarily to be
put on hold while the testing is in progress which
will not be allowed in the case of safety or mission
critical systems.

4.7 Top View of dynamic evolution architecture

The top level view of an architecture of

dynamically evolving embedded system is shown
in the Figurer 7. The architecture has 3 Layers in
It. In layer-1 a communication block exits which
provides all the support required for
communicating with the HOST.

All the commands are processed by the syntax
evolution block situated in layer-2 and the
commands are directed to the semantic, test, and
syntax evolution systems and processes which are
in layer-2. In layer-3 RTOS and various tasks that it
runs to support any one of the evolution system.

The comprehensive architecture that
incorporates the dynamic evolution of the online
testing of the embedded system is shown in the
Figure 8. The command line interface
communicates with the HOST and receives all the
commands from the HOST whether the commands
relate to syntax evolution, semantic evolution or
evolution of the testing. The correctness of the
commands and directing the commands to the
command processors where the semantics of the
commands is verified and then the process that is
related to the command is activated for execution.

Test Evolution

Emantci

Evolution Tasks

Communication

Interface

Syntax

Evolution

RTOS

Semantic

Evolution

Syantax

Evolution

Tasks

Test Evolution

Tasks

Semantic

Evolution

Process

Syntax

Evolution

Processes

Test Evolution

processes

Figure 7 Overall dynamic evolution architecture

4.8 Comprehensive Architectural for dynamic

evolution of online testing system

Interrupt

Service

Routines

Control Logic

ES

Application

Tasks

Communication

Interface

Syntax

Evolution

RTOS

Test Evolution

Memory

Manager

Delete

Existing Test

Process

Test Task

Builder

A/D

Conversion

Sensor

System

D/A

Conversion

Actuator

System

Test Case

– Task

Builder

Task

Delay

Builder

Test Task-1

Invoke

Test Task

Test Task-2 Test Task-N

Figure 8 Comprehensive architecture for dynamic

evolution of testing system

Testing can be made to be command driven.

All the commands related to the testing can be
grouped together into a command processor. The
command processor directs the commands to
process that undertaken the test concerned. In the

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

169

Figure 8. Test Evolution block acts like a
command processor. 5 different types of tasks are
used for achving the dynamic evolution online
testing process. The following are details of the
tasks.
{1}. A task that builds and maintains the

relationships between a command and a
tasks that must be activated to undertake the
related test

{2}. A builder that maintains the amount of delay
that should be caused before the task is
moved from blocked state to run state.

{3}. A test task builder creates a new test process
task that actually undertake the concerned
task.

{4}. A task that invokes the test process task for
undertaking the actual test.

{5}. A task that deletes the existing task.
{6}. There can be many test execution process.

The test execution process will return the
results obtained after undertaking the test
concerned. There can be any number of
process tasks based on the type of test that
must be conducted. For instance there can be
individual tasks for undertaking testing for
response time, throughput, proper reading of
the input from the sensor, proper actuation of
the devices, proper producing of the output
into various devices etc. All the test
execution tasks are in blocked state and the
task is invoked when its related test case
must be executed. This task is called as
“invoke” Task

The invoking, sequencing and delaying any

task is achieved through event processing support
extended by RTOS All the tasks and processes will
work under RTOS and sequencing and activation of
various tasks is achieved through event handling
support extended by the RTOS.

This architecture is truly dynamic that any
number of test cases can be tested and only the test
that is directed from the Host is undertaken.
Additional test processes can be added, unwanted
test processes can be deleted.

The testing to be undertaken is communicated
by transmitting command related to the type of test
that must be conducted along with the input data
for undertaking the testing and the variable that
should be used for returning the results.

5. COMPARATIVE ANALYSIS OF

ARCHITECTURAL MODEL

A comparison is made to show the coverage of
dynamic evolution for carrying online testing

through different architectures. The comparison is
shown in the Table 1 from which it could be seen
that the comprehensive architectural model for
online testing presented in this paper includes all
the software components.

Table 1 Comparison of Testing related architectures

Pa
ra

m
et

er
 S

er
ia

l

Parameter

Se
m

an
tic

A

rc
hi

te
ct

ur
e

Si
m

pl
ex

ar

ch
ite

ct
ur

e

Pr
oc

es
s

re

su
rr

ec
tio

n
A

rc
hi

te
ct

ur
e

C
om

pr
eh

en
si

ve

A
rc

hi
te

ct
ur

e

{1}. Need for suspending
the running system

√ X √ X

{2}. Update Testing X √ √ √
{3}. New process testing X X X √
{4}. Testing for deletion

of a task
X X X √

{5}. Conducting different
types of testing

X X X √

{6}. Comprehensive
testing

X X X √

{7}. Cooperative Testing
(Testing under co-
existence of ES code
and Test cooed)

X X X √

{8}. Creation of new test
processes

X X X √

6. CONCLUSIONS

In dynamically evolvable system changes are
carried while the Embedded system is up and
running. The changes are either carried to syntax or
semantics of the embedded system. Additional
components and methods are to be added for
dynamically evolving the syntax and semantics of
the embedded system. Every change intuited must
be tested. There should be a dynamically evolvable
testing system to undertaking the testing of the
changes initiated to syntax and semantics of the
embedded system. Test processes are to be added,
deleted and modified online and the test processes
are to be used for undertaking the testing of the
changes intuited to the embedded system. A
comprehensive architecture has to be designed that
incorporates that considers evolving the testing
processes online and use those processes for
undertaking the testing using the test cases initiated
from the HOST.

REFERENCES

[1] H. Walton,J.H. Poore and C.J. Trammell,

"Statistical testing of software based on

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

usage model", Software Practice and
Experience, Vol 25, No.1, PP. 97-108, 1995

[2] J. Whittaker and J. Poore, "Markov analysis
of Software Specifications", ACM
Transactions on Software Engineering and
Methodology, Vol. 20, No. 10, , pp. 93-106,
1993

[3] Prowell, S.J., Trammell, C.J., Linger, R.C.,
Poore, J.H, "Cleanroom Software
Engineering", Addison Wesley, 1st
edition,1999

[4] Wolfgang Rosenstiel, Carsten Nitsch, R.
Karlheinz Weiss, Thorsten Steckstor and ,
"Embedded System Architecture Design
Based on Real-Time Emulation",
Proceedings of the 11th IEEE International
Workshop on Rapid System Prototyping,
2000

[5] Whittaker, J.A. and Thomason, M.G, "A
Markov chain model for statistical software
testing", IEEE Transactions on Software
Engineering, Vol. 20, No. 10, pp. 812-824,
1994

[6] J.H Poore, J.P.Prowell., J.C. Trammell,
R.C. Linger, , "Cleanroom Software
Engineering: Technology and Process",
Addison-Wesley, 1999

[7] Matthias Riebisch, Ilka Philippow and
Marco Gotze, "UML-Based Statistical Test
Case Generation", Proceedings of Revised
Papers from the International Conference
NetObjectDays on Objects, Components,
Architectures, Services, and Applications for
a Networked World by Springer-Verlag,
2003

[8] Cockburn, A, "Structuring Use cases with
goals", Journal of Object-Oriented
Programming, pp. 35-40, 1999

[9] Frohlich P. and Link J, "Automated test case
generation from dynamic models",
Proceedings of the 14th European
Conference on Object-Oriented
Programming, pp. 472-491, 2000

[10] Sergiy A. Vilkomir,Thomas Swain and Jesse
H. Poore, , "Combinatorial test case selection
with Markovian usage models", Fifth
International Conference on Information
Technology: New Generations, 2008

[11] D.M. Cohen, S.R. Dalal, M.L. Fredman, and
G.C. Patton, , "The AETG system:An
Approach to testing based on combinatorial
design, IEEE Transactions on Software
Engineering, PP. 437-444, 1997

[12] M. Grindal, J. Offutt and J. Mellin,
"Handling constraints in the Input space

when Using Combination Strategies for
software testing", Technical report HS-IKI-
TR-06-001, University of skovde, Sweden,
2006

[13] W.T. Swain and S.L. Scott, "Model-Based
Statistical testing of a cluster Utility",
Proceedings of the 5th International
Conference on Computational Science,
Atlanta,GA,USA, pp. 443-450, 2005

[14] M. Grindal, J. Offutt and S.F. Andler,
"Combination testing strategies: A survey",
Software Testing, Verification and
Reliability, pp. 167-199, 2005

[15] Yan Jiong, Wang Ji and Chen Huowang,
"Deriving Software Statistical Testing Model
from UML Model", Proceedings of the Third
International Conference On quality
Software, 2003

[16] F. Basanieri and A. Bertolino, "A Practical
Approach to UML-Based derivation of
Integration Tests", Proc. 4th International
Software Quality week Europe,
Brussels, pp. 20-24, 2000

[17] Abdurazik and J. Offutt, "Using UML
Collaboration Diagrams for Static Checking
and Test Generation", Springer Lecture
Notes in Computer Science, pp. 383-395,
2000

[18] L. Briand and Y.Labiche, "A UML-Based
Approach to System Testing", Carleton
University TR SCR-01-01-Version 2, 2002

[19] Peter Frohlich and Johannes Link,
"Automated test case generation from
dynamic models", Springer Lecture Notes in
Computer Science, pp. 472-491,2000

[20] Binder, R, "Testing Object-Oriented
Systems", Addison Wesley, 1999

[21] Bruegge, B. and A.H. Dutoit, "Object
Oriented Software engineering: Conquering
Complex and Changing Systems", Prentice
Hall, 2000

[22] Tomohiko Takagi and Zengo Furukawa,
"Constructing a Usage Model for Statistical
Testing with Source Code Generation
Methods", Proceedings of the 11th Asia-
Pacific Software Engineering Conference,
2004

[23] B. Beizer, "Software Testing Techniques",
Van Nostrand Reinhold, 1990

[24] J. Ali and J. Tanaka, "Generating Java Code
from the Dynamic Model Based on Object
Modeling Technique", Information
Processing society of Japan, pp. 3084-3096,
1998

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

[25] Erik Simmons, "The Usage Model: A
structure for Richly Describing Product
Usage during Design and Development",
Proceedings of the 13th IEEE International
Conference on Requirements Engineering,
2005

[26] Cockburn, A., "Writing Effective Use
Cases", Addison-Wesley, 2001

[27] Fairley, R.E., Thayer, R.H., and Bjorke, P,
"The concept of operations: The bridge from
operational requirements to technical
specifications", Proceedings of First
International Conference on Requirements
Engineering, pp. 40-47, 1994

[28] Runeson, P. and Regnell, B., "Derivation of
an Integrated Operational Profile and Use
Case Model", The Ninth International
Symposium on Software Reliability
Engineering, pp. 70-79, 1998

[29] Regnell, B., Kimbler, K. and Wesslen, A,
"Improving the Use case Driven Approach to
Requirements Engineering", IEEE Second
International Symposium on Requirements
Engineering, pp. 40-47,1995

[30] H. Ben-abdullah and S. Leue, "Timing
Constraints in Message Sequence Chart
Specifications", Proceedings of 10th
International Conference on Formal
Description Techniques, Japan, 1997

[31] OMG, "Response to the OMG RFP for
schedulability, Performance, and Time",
OMG Document Number: ad/2001-06-14,
2001

[32] R. Alur, G.J. Holzmann and D.Peled, "An
analyzer for message sequence charts",
springer Verlag, pp. 35-48, 1996

[33] X. Li and J. Lilius,"Timing Analysis of
UML Sequence Diagrams", springer Verlag,
pp. 661-674, 1999

[34] Warmer, J. and A. kleppe, "The Object
Constraint Language: Precise Modeling with
UML", Addison-Wesley,1999

[35] Thomas Bauer, Frank Bohr, Dennis
Landmann, Taras Beletski, Robert Eschbach
and Jesse Poore, "From Requirements to
Statistical Testing of Embedded Systems",
IEEE Fourth International Workshop on
Software Engineering for Automotive
Systems IEEE, 2007

[36] Lyu, M.R., "Handbook of software
Reliability Engineering", McGraw-Hill
Companies, 1996

[37] J. Poore, C. Trammell, "Engineering
practices for statistical testing, crosstalk, The

Journal of Defense Software engineering, pp.
24-28, 1998

[38] Lin Fan, Zeng Wenhua,Chen Guowu, "The
Embedded Product Testing Using
Cleanroom Statistical Method", 2009 World
Congress on Computer Science and
Information Engineering, 1999

[39] Jacobson, Booch G and Rumbaugh J, "The
Unified Software Development Process",
Addison Wesley, Reading, MA, 1999

[40] Nancy Van Schooenderwoert, "Taming the
embedded Tiger-Agile Test Technique for
embedded Software", IEEE Proceedings of
the Agile Development Conference ADC,
2004

[41] W. T. Tsai, R. Mojdehbakhsh and F. Zhu,
“Ensuring System and Software Reliability
in Safety-Critical Systems", Proc. of IEEE
ASSET, pp. 48-53, 1998

[42] Lee N.H and Cha S.D, "Generating Test
Sequences from a set of MSCs", Computer
Networks, 2003

[43] Tsai W.T, Bai X, Paul R and Yu L,
"Scenario-Based Function Regression
Testing", Proc. of IEEE COMPSAC, pp.
496-201, 2001

[44] Zhao, R. and Shanshan Lv, "Neural-Network
Based Test Cases Generation Using Genetic
Algorithm", 13th IEEE International
Symposium on Pacific Rim, Dependable
Computing, pp. 97-100, 2007

[45] D. Richard Kuhn, Raghu N. Kacker and Yu
Lei, "Practical combinatorial testing", NIST
Special Publication, 2010

[46] Kuhn, D.R. and Okun, V, "Pseudo-
Exhaustive Testing for Software", 30th
Annual IEEE/NASA Software Engineering
Workshop SEW-30(SEW'06), pp. 153-158,
2006

[47] Kuhn, R. ,Yu Lei and Kacker, R, "Practical
Combinatorial Testing: beyond Pair wise",
IEEE Computer Society - IT Professional,
Vol. 10, Iss. 3, pp. 19-23, 2008

[48] Berndt, D., Fisher, J., Johnson, L., Pinglikar,
J. and Watkins, A, "Breeding Software Test
Cases with Genetic Algorithms", IEEE
Proceedings of the 36th Hawaii International
Conference on System Sciences, 2003

[49] B. F. Jones, D. E. Eyres and H. -h. Sthamer,
"A Strategy for using Genetic Algorithms to
Automate Branch and Fault-based Testing",
The Computer Journal, Vol. 41, No. 2, 1998

[50] Kamal Zuhairi Zamli, Nor Ashidi Mat Isa,
Mohamed Fadel Jamil Klaib and Siti
Norbaya Azizan, "A Tool for Automated

Journal of Theoretical and Applied Information Technology
 10

th
 October 2015. Vol.80. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

172

Test Data Generation (and Execution) Based
on Combinatorial Approach", International
Journal of Software Engineering and Its
Applications, Vol. 1, No. 1, pp. 19-36, 2007

[51] D. Bala Krishna Kamesh, Vudatha,
C.P. , Jammalamadaka, S.K.R., Nalliboena,
and Reddy,L.S.S,
“Automated generation of test cases from out
putdomain of an embedded system using
Genetic algorithms" 3rd International
Conference on Electronics Computer
Technology (ICECT), Vol. 5, pp. 216-220,
2011

[52] Kamesh DBK, "Comprehensive testing of
embedded systems using refined cleanroom
software methodology", Thesis submitted to
Shri Venkateswara University, Gajroula, UP,
2012

[53] D. Bala Krishna Kamesh, Chandra Prakash
Vudatha, Dr. Sastry KR Jammalamadaka,
Haritha SV Grandhi, Vandana Lakshmi
Nunna, Dr. Reddy L.S.S, "Automated
generation of Test cases for testing critical
regions of Embedded systems through
Adjacent Pair-wise Testing", International
Journal of Mathematics and Computational
Methods in Science & Technology, Vol.2,
No.2, pp. 10-15, 2012

[54] Colbourn, C. J, "Combinatorial aspects of
covering arrays", Le Matematiche (Catania,
pp. 121-167, 2004

[55] Bryce, R, "The Density Algorithm for
Pairwise Interaction Testing", Journal of
Software: Testing, Verification and
Reliability, pp. 159-182, 2007

[56] Cohen D. M., Dalal S. R., Fredman M. L.
and Patton G. C,"The AETG system: an
approach to testing based on combinatorial
design", IEEE Transactions on Software
Engineering, pp. 437-444, 1997

[57] Lei, Y and Tai, K. C, "A Test Generating
Strategy for Pair-wise Testing”, IEEE
Transactions on Software Engineering", pp.
1-3, 2002

[58] Cohen, M. B., Colbourn, C. J., and Ling, A.
C. H, Constructing Strength 3 Covering
Arrays with Augmented Annealing, Discrete
Mathematics, pp. 2709-2722, 2008

[59] D. Richard Kuhn, Raghu Kacker and Yu Lei,
"Combinatorial and Random Testing
Effectiveness for a Grid Computer
Simulator", NIST – National Institute of
Standards and Technology, 2007

[60] Kuhn, R. ,Yu Lei and Kacker, R, "Practical
Combinatorial Testing: beyond Pair wise",

IEEE Computer Society - IT Professional,
Vol. 10, No 3, pp. 19-23, 2008

[61] Cohen, D.M., Dalal, S. R., Fredman, M. L.,
and Patton, G. C, "Method and system for
automatically", generating efficient test cases
for systems having interacting elements",
United States Patent, pp. 542-543, 1996

[62] Lei, Y. Kacker, R. Kuhn, D. Okun and V.
Lawrence J, IPOG/IPOD: Efficient Test
Generation for Multi-Way Combinatorial
Testing, Journal of Software: Testing,
Verification and Reliability, pp. 125-148,
2008

[63] Lixin Wang and Renxia Wan, “A New
Method of Reducing Pair-wise
Combinatorial Test Suite, Computer and
Information Science, ccsenet.org, 2010

[64] D. Richard Kuhn, Wallace, D.R. and allo,
A.M., Jr, Software Fault Interactions and
Implications for Software Testing", IEEE
transactions on software engineering, Vol.
30, No. 6, pp. 418-421, 2004

[65] Sha L, Lee K and, “Process Resurrection: a
fast recovery mechanism for real-time
embedded systems, Proceedings of the 11th
IEEE Real-Time and Embedded Technology
and Applications Symposium, 2005

[66] Sasi Bhanu. Vinaya babu A, Sastry JKR,
"Scenario Based Comprehensive Testing of
Embedded Systems using Data Models”,
International Journal of Advances in Science
and Technology, Vol. 4, Iss. 6, pp. 34-38,
2012-1

[67] Sasi Bhanu. Vinaya babu A, Sastry JKR,
"Scenario based Comprehensive Testing of
Embedded Systems using Process Models",
International Journal of Computer
Information Systems, Vol. 4, Iss. 6, PP. 8-11,
2012-2.

