
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

129

TRENDS , PERFORMANCE AND GENERAL OPERATION OF
THE GRAPHIC PROCESSING UNIT.

1 J. ANTONIO ÁLVAREZ, 1GUSTAVO MARTÍNEZ ROMERO, 2 J CORREA-BASURTO.

1 Centro de Investigación e Innovación Tecnológica IPN México, Cerrada de Cecati S/N. Col. Santa
Catarina Azcapotzalco México D. F. CP:02250 Tel 57296000,

 jaalvarez@ipn.mx , egustavo2000@yahoo.com.mx .

2 ESM IPN México,Sección de Estudios de Posgrado e Investigación y Departamento de Bioquímica de
la Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Distrito Federal, México.

corrjose@gmail.com

ABSTRACT

A computer graphics card is an additional peripheral that enhances the performance of rendered graphics.
Recently, there has been an increasing interest in general purpose computation on graphics hardware. The
ability to work independently alongside the CPU as a coprocessor is interesting but not motivating enough
to learn how to apply problems to the graphics domain. This paper analyzes the overall architecture of the
GPU and its performance.

Keywords: GPU architecture, Computer graphics card, GPU performance, CPU alternative.

1. INTRODUCTION

Commodity graphics hardware has evolved
tremendously over the last years – it started with
basic polygon rendering via 3dfx’s Voodoo
Graphics in 1996, and continued with custom
vertex manipulation four years later, the graphics
processing unit (GPU) now has improved to a full-
grown graphics-driven processing architecture
with a speed-performance approx. 750 times
higher than a decade before (1996: 50 b/s, 2006:
36,8 b/s).

This makes the GPU evolving much faster than
the CPU, which became approx. 50 times faster in
the same period (1996: 66 SPECfp2000, 2006:
3010 SPECfp2000) [1]. Figure 1.1 shows the GPU
performance over the last ten years and how the
gap to the CPU increases.

Experts believe that this evolution will continue
for at least the next five years [2,3].

New graphics hardware architectures are being
developed with technologies that allow more
generic computation. GPGPU (general-purpose
computation on GPUs) became very important and
started a new area related to computer graphics
research. This leads to a new paradigm, where the
CPU (central processing unit) does not need to

compute every non-graphics application
issue.[5,6,7].

Fig. 1.1. The performance-increase of computer
graphics hardware over the last decade . The green
trend line shows that the GPU doubles its speed-
performance every 13 months (i.e. GPU of 2006
are approx. 750 times faster than G Pus of 1996).
In contrast, the performance of the CPU doubles
only every 22 months [1].

However, not every kind of algorithm can be
allocated for the GPU (graphics processing unit)
but only those that can be reduced to a stream
based process. Besides, even if a problem is
adequate for GPU processing, there can be cases
where using the GPU to solve such problems is not
worthy, because the latency generated by memory

130

manipulation on the GPU can be too high, severely
degrading application performance.

Many mathematics and physics simulation
problems can be formulated as stream based
processes, making it possible to distribute them
naturally between the CPU and the GPU. This may
be extremely useful when real time processing is
required or when performance is critical. However,
this approach is not always the most appropriate
for a process that can be potentially solved using
graphics hardware. There are many factors that
must be considered before deciding if the process
must allocate the CPU or the GPU.

Some of these factors may be fixed and some
may depend on the process status.

A correct process distribution management is
important for two reasons:

• It is desired that both the GPU and the CPU
have similar process load, avoiding the cases
where one is overloaded and the other is fully idle;

• It is convenient to distribute processes
considering which architecture will be more
efficient for that kind of problem.

2. THE COMPUTER GRAPHICS CARD

A computer graphics card is an additional
peripheral that enhances the performance of
rendered graphics. The card mainly consists of a
graphical processing unit (GPU), memory, and a
digital/analog converter and connections to and
from the graphics card. Most applications on a
computer requires some type of graphics to be
displayed. The information is processed from the
application to the central processing unit(CPU)
which is then sent to the specialized graphics
accelerator for quicker processing. After
undergoing the transformation of computer code,
the data is then sent to a monitor to be displayed.
Figure 2.1 shows the general flow diagram of
Graphics Card.

Originally, computers were once all text based
and did not come with a Graphical User Interface
(GUI) that consumers have grown accustomed to.
As computer technology has advanced, graphics
has become an important part in the way humans
interact with computers and the demand for
graphic oriented computing has called for the need

of specialized graphical processing. This is when
the age of graphical accelerated cards began.

Fig. 2.1. General Flow Diagram of Graphics Card.

Most computer chips are produced as silicon
chips. A silicon chip is composed of thousands of
transistors, which are in turn composed of three
layers of conducting material, mainly silicon,
forming a “sandwich” design. The layer might
contain either a positive or negative type of
silicon. With a difference in electrical charge, and
allowance to accept and receive electrons,
transistors are used as switches. Current cannot
pass through a transistor because of the diode
effect. Diodes are devices that block current going
in one direction while allowing the opposite
direction of the current to flow. This is very
important as it can keep sensitive electronics safe
from a reverse charge.

3. GPU DESING

The GPU , The processor accelerates graphical
processing while taking the CPU’s workload,
which is used to process every instruction code for
the computer. Since graphical processing units are
devoted to processing graphics, the processing of
advanced graphical algorithms and coding are
accelerated compared to the regular CPU, that is
illustrated in the figure 3.1.

Fig. 3.1. Basic Layout of Graphics Card

131

Originally, computers were once all text based
and did not come with a Graphical User Interface

2.1 Pipelined Architecture

A pipelined architecture is the standard procedure
for processors as it breaks down a large task into
smaller individual grouped tasks.[4] When a set of
instructions are transferred to the GPU the GPU
then breaks up the instructions and sends the
broken up instructions to other areas of the
graphics card specifically designed for decoding
and completing a set of instructions. These
pathways are called stages. The more stages the
graphics card has, the faster it can process
information as the information can be broken
down into smaller pieces while many stages work
on a difficult instruction, that is illustrated in the
figure 3.1.1.

Fig. 3.1.1 The Graphic Pipeline

Pipeline Process : Stage 1

The pipeline process starts with an
“Application/Scene” stage, also known as the
workload-reduction trick. This stage is devoted to
deciding which particular object will be rendered
in the three dimensional(3D) environment. The
way that 3D environments are created is through a
Cartesian Coordinate Systems (an x, y, and z axis)
in which objects are placed to create a scene.
Scenes can have multiple angles to view them, in
which they are created by reference points
(cameras). The view space is determined by
objects and angles depending on how the creator
programmed the scene. The first process of the
graphics pipeline is to only render and produce the
images of the view space and to skip over
unnecessary instructions that will not be displayed
even if it was processed. This system allows the
graphics card to produce scenes and graphics
efficiently.

There are also factors that involve in processing
the image efficiently, mainly the Level of Detail
(LOD). An objects distance to the reference point
of the view camera has an effect on the object’s
LOD. Some objects are assigned multiple
resolution settings (the quality of image that is
determined by the number of triangles that
composes the object) in which the closer object
might receive a higher resolution, while the same
object farther away might be at a lower resolution
to reduce the workload of the graphics card.

Pipeline Process : Stage 2

The second stage involves the scene’s geometry.
Objects mainly get moved from frame to frame to
give an illusion that the object is moving in a real
time setting. Objects can both be moved and
manipulated in a scene depending on the
application in which it is running. This
manipulation of objects is generally called
transformation. The objects can be stretched,
skewed, moved or moved about an axis, or scaled
differently. It is in the second stage of processing
that the objects in the environment are altered.

Geometric lightning also occurs in the second
stage after the objects are in their proper place, and
once the figures receive their shape through the
geometric transform process. Different types of
lightning, depending on the application being run,
will be processed to give the graphics a realistic
appearance.

After the lighting is calculated the scene needs to
get rid of unnecessary triangles that are only
partially shown through the view space. This
process is similar to the process which occurs in
the first stage and also includes the process of
“clipping.” “Clipping is the operation to discard
only the parts of triangles that in some way
partially or fully fall outside the view volume”.

Pipeline Process : Stage 3

The third stage implies an algorithm called the
digital differential analyzer (DDA) which
calculates the position of each part of all the
triangles, and determines if the triangles are
connected to other triangles. This process is done
by computing the slope of each triangle’s edge in
hope to improve the quality of the image being
produced and by allowing more detailed
information to be assigned to the triangles

132

Sometimes when two triangles are touching, or
even overlapping each other, a rough pixel “stair-
step” occurs in which the edges between the two
triangles create non realistic images of edges
extruded surfaces that would not normally occur.

Another thing that occurs in the triangle setup
phase is the assignment of color and depth values
for each pixel. Since the edges of the triangles
were calculated, the color and depth values may be
interpolated using each triangle’s vertex vales of
color and depth. Along with the color and depth,
the texture coordinates of each pixel is also
interpolated in which they will be processed in the
fourth stage.

Pipeline Process : Stage 4

The last stage of the pipeline is considered the
rendering / rasterization stage. “To fill the frame
buffer the drawing primitives are subdivided into
pixels, a process known as scan-conversion or
rasterization” (Schneider, Benyt-Olaf, pg 245).
After all the processes of computing location,
color, geometric values, etc., this last stage puts it
all together and produces the 3D environment onto
a 2D screen.

After the triangle setup is completed in the third
stage, the next step is to provide shading values.
Shading values are similar to the color and depth
values contained in stage 3 and add the finishing
touches on the scene. There are three common
shading methods: Flat, Gouraud, and Phong
shading.

Flat Shading - operates per triangle and provides a
quick render of the scene that does not involve
extensive computations. This type of shading does
not produce a high quality image.

Gouraud Shading - operates per vertex of the
triangles. Compared to flat shading, Gouraud
shading produces a higher quality image while
sacrificing render speed. Because of Gouraud
shading takes the lighting values of each vertex of
the triangle and interpolates the values across the
surface of the triangle, the object will appear
smother and not as rigid as flat shading.

Phong Shading - operates per pixel and is the most
computation demanding shading process compared
to flat and Gouraud shading. Phong shading
incorporates the Gouraud Shading idea of taking
the average shading of the vertices and also
implies its own process that includes other

triangle’s shading as well. This makes the object
blend together easier for more complex designs
and results in a higher quality image making it
more realistic.

3.2 Memory

Random Access Memory (RAM) assists the
graphics card process information. RAM is
composed of transistors and memory cells that are
arranged in a row and column grid that allows date
to be stored and accessed quickly. New
technology yielded the Double Date-Rate
Synchronous Dynamic Random Access Memory
(DDR SDRAM, commonly referred to as DDR),
and the DDR2 RAM modules. These types of
RAM modules are economically beneficial as they
have higher efficiency, cost less, and have a higher
potential for improvement.

The memory cells of the RAM can read either the
number 1 or 0, which changes due to the capacitor
change in gain or loss of electrons. Dynamic
memory has a slight flaw, the capacitors have a
natural electron leak and are drained of electrons
every few milliseconds. To solve this problem, the
CPU or the memory controller has to recharge all
of the capacitors holding a 1 before they discharge.
That is why RAM refreshes thousands of times per
second. Memory cells have their own special
support infrastructure of circuits that enables it to
identify each row and column in the memory cell,
keeping track of the refresh sequence, reading and
restoring signals from a cell, and telling a cell if it
should take a charge or not. Figure 3.2.1 shows the
The General flow chart of Gouraud/Phong
shadingull .

The memory of the graphics card (VRAM) is
controlled by the GPU that stores data in
specialized video memory storage space. This
storage space operates by the use of common
storage space but is especially reserved for
graphical processing. The memory operates along
with the GPU to produce quick instructions and
processing that the graphics card can accomplish.
VRAM is necessary to keep the entire screen
image in memory. The CPU sends instructions to
the video card which undergoes the graphical
process and eventually is able to be displayed on a
screen.

133

Fig. 3.2.1. General flow chart of Gouraud/Phong
shading

 Fig.3.2.2: General flow of information exchanges
by RAM.

3.3 Connections

Computer Bus Connector - the graphics card itself
is connected directly to the motherboard either
through an Accelerated Graphics Port (AGP) or a
Peripheral Component Interconnect Express
(PCIe) slot.

Recently PCIe has replaced the AGP in becoming
the quickest method to transfer information
between a additional device and the computer. “A
connection between a PCIe device and the system
is known as a ‘link’ and this link is built around a
dedicated, bi-directional, serial (1-bit), point-to-
point connection known as a ‘lane’.

This allows the GPU and CPU to interact with one
another at high speeds to process different
instructions. Because of the PCIe high bandwidth
there can be up to 32 “lanes.”. The links and lanes
that is illustrated in the figure 3.3.1.

 Fig 3.3.1: Overview of PCIe capabilities .

4 Performance

How much faster can one make applications run
by using GPU? , the answer is: it depends. It
depends on the nature of the application itself, and
what you using as the basis for comparison, for
example, code that is single-core or multi-core, or
optimized or not. Given some approximation of
expected performance, one can evaluate other
considerations such as the effort to port,
price/performance, performance/watt, and
performance/space. [1]

4.1 Configuration

The configuration tested is:

• OPTIPLEX GX-360 – 1U Intel server
with one of the two processors installed.
This server contains one 2.66GHz E5430
quad-core processor and 16GB of
memory.

• Nvidia Geforce 8600 GTS

• The Nvidia Geforce 8600 GTS connects
to the OPTIPLEX GX-360 via 16x PCIe
slot.

• The OPTIPLEX GX-360 is running
Ubuntu 9.04. CUDA 1.1 is installed.

The program

Individual
Instructions

Please Load
Program

134

4.2 Benchmarks

Four benchmarks have been ported to the Nvidia
Geforce 8600 GTS so far:

1.matmatmul – matrix matrix multiply

2.FFT – One and two dimensional FFT
benchmark

3.bandwidthTest – tests bandwidth for writing to
and reading from the card

4.Monte Carlo Black-Scholes

4.2.1 Matmatmul (matrix matrix multiply)
Benchmark.

This benchmark computes C = A*B + C, where A,
B, and C are matrices. It is run for a range of
dimensions from 100 to 10000. In all cases the
matrices are dimensioned as square matrices.
Thus, it is testing a subset of the functionality of
the BLAS SGEMM and DGEMM routines.[8].

Only the single precision version of matmatmul
was run, since Nvidia Geforce does not support
double precision. The Nvidia CUDA SDK
includes a cublas library that provides a subset of
the blas library functions. The cublasSgemm
function was used to implement this benchmark on
Nvidia Geforce. The cublas library includes
functions to copy data from the host to the card
and copy results back from the card to the host,
and these were also used for all tests. Thus, no
board-side code needs to be written or compiled to
use these cublas functions, but C code needs to be
written to make the CUDA and cublas calls to:

1. Select which Nvidia Geforce card to use

2. Copy input data from the host to the card

3. Calculate the result by calling
cublasSgemm

4. Copy the results back to the host

This sequence is straightforward to code in C and
does not require any knowledge of optimizing
board-side code. The benchmark is illustrated in
the figure 4.2.1.

In addition to the cublasSgemm included in the
CUDA 1.1 SDK, we tested a tuned version of a
sgemm sent to us by Nvidia. Comments in the

code say that it was written at UC Berkeley. Note
that sources for the cublas library are available
from the Nvidia web-site. This version runs faster
than the cublasSgemm function. It implements a
subset of sgemm options and only accepts array-
size parameters that are certain multiples of
powers of 2. While all multiples of 64 can be
used, some array dimensions can be multiples of 4
or 16. Some results for this function are included.

The bottom two curves show the performance
measured using SGEMM in the Intel MKL library
with one or four cores of the processor. The MKL
library implementation of SGEMM should be
considered highly optimized code that has been
tuned carefully by experts. This implementation
also allows SGEMM to use multiple threads under
the control of the environment variable
OMP_NUM_THREADS, so it is code that has
already been modified to take advantage of
multiple cores.

The next line shows the performance using
cublasSgemm from the CUDA 1.1 library. This
measurement of Gflops/second includes the time
needed to copy data to and from the GPU card.
Note that there are some significant peaks in the
results at certain array sizes. The next line
(cublasSgemm N*64) uses the same code but uses
only array sizes that are multiple of 64. The top
line shows the performance of the CUDA
SGEMM that has been tuned for a subset of
SGEMM arguments.

SGEMM - GPU vs. CPU

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000

Array Size

G
flo

ps

CPU MKL 1 core
CPU MKL 4 cores
GPU cublasSgemm
GPU cublasSgemm N*64
GPU sgemm-subset

Fig 4.2.1 Shows the Gigaflops/second measured
for a single-precision matrix-matrix-multiply

4.2.2 Bandwidth Tests

This benchmark is an HP test tool used to evaluate
the data transfer characteristics of multiple
GPGPUs on different system platforms. It is
based on the original “bandwithTest” example
contained in the NVIDIA CUDA SDK. There are
four basic transfer types provided, device to host,

135

host to device, device to device, and read after
write. The transfer type, length of transfer, host
memory buffer type (pinned or paged) can be
selected on a per GPGPU basis, and any of the
available GPGPUs may be selected in a test,
providing a wide variety of test cases that can be
performed.

The bandwidth tests whose results are shown
below were conducted using the OPTIPLEX GX-
360 system platform configured with an NVIDIA
Geforce 8600 GTS. The 8600 GTS is connected
to the OPTIPLEX GX-360 via PCIe x16 interface.

Bandwidth tests were conducted using data
transfer sizes from 1,000,000 to 100,000,000 bytes
in increments of 1,000,000 bytes. The transfer rate
of a 50,000,000 byte transfer was selected to
display in the graphs. Transfer types of host to
device and device to host, using both pinned and
paged host memory buffers are presented.

The software used to conduct these tests consists
of NVIDIA CUDA SDK and TOOLKIT version
1.1, NVIDIA Driver for Linux with CUDA
(171.05) and Linux Ubuntu 9.04.The benchmarks
are illustrated in the figure 4.2.2.1 and 4.2.2.2

Overall, these are impressive I/O rates, with
transfers from device to host reaching a maximum
of about 3GB/sec, showing that these GPU devices
and host OPTIPLEX GX-360 are utilizing the
available PCIe 16x bandwidth.

4.2.3 1D FFT and 2D FFT

These benchmarks compute the discrete Fourier
transform (DFT) using the fast Fourier transform
(FFT) algorithm in one and two dimensions. The
1D FFT is performed for sizes varying in size from
2^1 to 2^20. The 2D FFT is performed for sizes
varying from 2^2 to 2^12 in each dimension.

Only the single precision version of FFT
benchmarks was run, since 8600 GTS Nvidia
Geforce does not support double precision floating
point. The NVIDIA CUDA SDK includes a cufft
library that provides APIs for 1D, 2D, and 3D real

and complex FFTs. The cufft library provides a
programming interface that is similar to the well
known FFTW open source software package.

Fig. 4.2.2 .1 Hows the measured transfer rate, Host
to device

Fig. 4.2.2.2 Hows the measured transfer rate,
Device to Host

To use the cufft library, one first creates a plan that
defines the size, number of dimensions, and type
of FFT to be performed, real to real, complex to
complex, etc.

As cufft library does not include functions to copy
data to/from the GPGPU, the cudaMemcpy
function is used for this purpose. Once the data
has been moved to the GPGPU, the FFT is
performed by calling the cufftExecC2C function.
This then performs a complex to complex FFT.

The benchmark consists of a timed loop that
performs two FFTs, one forward and one inverse.
The results of the inverse transform are compared
to the input data to the forward transform and
tested for accuracy as they should be same. Unlike
Intel’s MKL library, the cufft library does not
offer the ability to scale the result of an FFT.

In order to do the comparison the results of the
inverse transform are scaled by the reciprocal of

136

the transform size using a small CUDA kernel
written as part of this benchmark. Thus the timed
portion of the benchmark looks like this:

1. Create the FFT plan

2. Copy input data from the host to the
Nvidia Geforce GPGPU

3. Calculate the forward FFT

4. Calculate the inverse FFT

5. Scale the results

6. Copy the results from the Nvidia Geforce
GPGPU to the host

7. Destroy the FFT plan

In order to provide accurate timing, smaller FFTs
may be performed up to a 100 or a 1000 times
before the execution time is calculated. Larger
transform sizes may be performed a few as 1 or 10
times. he benchmarks are illustrated in the figure
4.2.3.1and 4.2.3.2.

Fig. 4.2.3.1 Shows the Gigaflops/sec. measured for
1D complex-to-complex forward and inverse FFT.
The lines on the graph represent results for a single
core OPTIPLEX GX-360

These results only show an advantage to FFT on
the GPU vs. CPU for large sizes. However, this
does not take into consideration that a real
application would perform some computations on
the GPU between the forward and inverse FFT. It
should also be noted that forward transforms can
be considerably faster than inverse transforms on
the GPGPU. We have measured speeds that are up
to 3 times as fast for forward transforms when

compared to inverse transforms for larger problem
dataset sizes.

Fig. 4.2.3.2 Show the Gigaflops/sec measured
results for 2D complex-to-complex forward and
inverse FFT. The bars on the graph represent
results for a single core. The results shown are
only for square transform sizes, this was done for
sake of simplicity of the graph.

4.3.3 Monte Carlo Black-Scholes

This benchmark is an evaluation of European
Stock Option Pricing using a Monte Carlo
simulation of the Black-Scholes equation. The
benchmark evaluates only a single stock option,
from 1 to 256 million times, each evaluation is
referred to as an experiment. An experiment
consists of a draw from the random number
generator, an evaluation of the equation, and a sum
of the option price and sum of the square of the
option price. This benchmark was chosen for its
very high computational density and minimal
amount of input/output data.[9].

The benchmark uses a Hammersley sequence to
generate a uniform random number sequence.
This is then transformed to a normal distribution
using a polar form Box-Muller transform. This
method of generating random numbers was chosen
for its ability to be implemented in a highly
parallel form. In both implementations of the
benchmark, for multi-core CPUs and the GPGPU,
the same random number sequence is generated.

In the multi-core CPU version of the benchmark
parallelism is achieved through the use of
OpenMP pragmas and setting the

137

OMP_NUM_THREADS environment variable to
specify the number of threads to be used in the
simulation. In the GPGPU version, a CUDA
kernel was developed to execute on the GPGPU.
The GPGPU operates as a coprocessor to the host
system and is capable of executing a very high
number of threads in parallel. The number of
threads used in the simulation is determined at run-
time, when the kernel is launched. For this
benchmark, 4096 threads where used.

The benchmark as implemented on the NVDIA
GPGPU generates an array of partial sums of the
option price and the square of the option price.
Each partial sum is generated by a single thread
running on the GPGPU. At the end of the
simulation, the array is transferred to the host and
the CPU generates the final sums and option
pricing.

Only a single precision version of the benchmark
was run, as the 8600 GTS only supports single
precision floating point format.

The Black-Scholes NVIDIA GPU results shown
below were conducted using the OPTIPLEX GX-
360 system platform configured with an NVIDIA
8600 GTS. The CPU results are from running the
benchmark on a BL460c server blade. The
BL460c is a dual-socket quad-core 3.0GHz Intel
Xenon based platform. The software used to
conduct NVIDIA 8600 GTS test consists of
NVIDIA CUDA SDK and TOOLKIT version 1.1,
NVIDIA Driver for Linux with CUDA (171.05)
and Linux Ubuntu 9.04.

The software used to conduct the CPU based test
consists of the Intel C++ compiler for Linux, Intel
Math Kernel Library for Linux and Linux Ubuntu
9.04. The benchmark is illustrated in the figure
4.2.3.1

The results for the NVDIA GPGPU demonstrate
the computational capability of the GPGPU,
providing a 23X increase when compared to a
single CPU core and a 3X increase for an 8-core
platform. In addition to the execution time of the
benchmark on the GPGPU, results include all of
the necessary overhead operations to allocate
memory on the GPGPU and host, transfer of
parameters and the execution kernel to the
GPGPU, transfer of the results from the GPGPU to
the host, and final calculations on the host. [2] In
this benchmark, the overhead items are essentially
fixed for each simulation and have an effect on the
results that can be achieved for a given simulation
size. For example, in a simulation with 4 million

experiments the GPGPU results are 12X that of a
single-core CPU result; with 16 million
experiments one sees 19X that of a single-core
CPU result. Simulations with larger numbers of
experiments rapidly approach the maximum
observed.

Fig. 4.2.3. Shows the results of the Monte Carlo
Black-Scholes simulation in millions of
experiments per second. The data points shown
are for the maximum results achieved over the
course of simulations containing 1 to 256 million
experiments. For the CPU results, one sees a near
linear scaling over 1 to 8 CPU cores. This is an
expected result given the highly parallel nature of
the benchmark.

5 Conclusion

A applications demand more processing power,
graphic cards will continue to advance in
technology to meet these demands. The world of
graphics, either through movies, games, or regular
software applications, is a huge industry that is
pushing graphical processing to it’s limits.
Graphical pipelines are annual being added to
newer models of graphic cards to increase
processing speeds. Also, with the added potential
of processing graphics, displays such as monitors,
projectors, or even televisions will be affected by
the graphic cards to meet the demand of displaying
higher quality images. Graphical technology has
increased exponentially since the first computers
were invented and will continue to do so meeting
the demands for more life-like graphics in
applications.

A number of things have been learned thus far in
our investigations:

• A GPU can deliver 10x the single-
precision Gflops of CPU core, but a wide

138

range of speedups can be stated for a
given problem. It is important to describe
the conditions of both the GPU and CPU
execution of the computation.

• In making comparisons to CPU
performance, it is important to note if the
GPU performance includes the time to
transfer data to and from the GPU board.

• CUDA BLAS and FFT libraries provide
optimized GPU implementations of these
functions, and do not require expertise in
optimizing code for the GPU. However,
applications will likely require some user-
written GPU code to be used in
combination with calls to these libraries.

• FFT on the GPU outperforms the CPU,
but only if the transform size is
sufficiently large. Smaller sizes may be a
win depending on the other computations
to be carried out on the data prior
transferring the data back to host
memory. Using pinned verses paged
memory buffers may also be a win
depending on transfer sizes. Also,
batching of 1D transforms needs to be
considered, these are likely to effective
over many transforms. A key to
achieving good acceleration is to have a
high ratio of computation to data
movement.

• Applications that require little data
transfer, have long computation times,
and are readily adapted to use parallelism
such as Monte Carlo Black-Scholes show
impressive speed-ups compared to
optimized multi-core implementations.

• The addition of additional interfaces to
the overall benchmark framework to
accommodate the features of accelerators
is clearly a beneficial endeavor. For
instance, allowing a particular accelerator
to allocate memory using a mechanism
optimal for that accelerator is likely to
provide an improved result.

Future investigations will include an analysis of
the effect of competition between GPU’s for I/O
bandwidth. Comparisons to CPU performance
using up to 8 cores will also be done. The results
will be extended to include AMD FireStream
9170, which we have just begun to test.

REFERENCES:

[1] J. L. SPEC CPU2000: measuring CPU
performance in the new millennium. IEEE
Computer, 33(7):28-35, 2000.

[2] D. Kirk. The future: programmable GPUs &

cinematic computing. Presentation at
WinHEC'03, 2003. On line available at
http://developer.nvidia.com/object/cg_tutorial_t
eaching.html.

[3] W. R. Mark. Future visualization platform.

Panel Presentation at IEEE Visualization
(VIS'04), 2004. On line available at
http://wwwcsl.
csres.utexas.edu/users/billmark/talks.

[4] J. Lengyel, M. Reichert, B. R. Donald, and D.

P. Greenberg. Real-time robot motion planning
using rasterizing computer graphics hardware.
In Computer Graphics (SIGGRAPH'90
Proceedings), volume 24, pages 327-335,
August 1990.

[5] G. Kedem and Y. Ishihara. Brute force attack

on UNIX passwords with SIMD computer. In
USENIX Security Symposium (SECURITY'99
Proceedings), pages 93-98, August 1999.

[6] K. E. Hof III, T. Culver, J. Keyser, M. Lin, and

D. Manocha. Fast computation of generalized
Voronoi diagrams using graphics hardware. In
Computer Graphics (SIGGRAPH'99
Proceedings), pages 277-286, July 1999.

[7] P. Kipfer, M. Segal, and R.Westermann.

UberFlow: A GPU-based particle engine. In
ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware (EGGH'04 Pro-ceedings),
pages 115-122, 2004.

[8] E. S. Larsen and D. McAllister. Fast matrix

multiplies using graphics hardware. In High
Performance Networking and Computing
(SC'01 Proceedings), November 2001.

[9] T. Jansen, B. von Rymon-Lipinski, N.

Hanssen, and E. Keeve. Fourier Volume
Rendering on the GPU using a Split-Stream-
FFT. In Vision, Modeling, and Visualization
(VMV'04 Proceedings), November 2004.

