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ABSTRACT 
 

A computer graphics card is an additional peripheral that enhances the performance of rendered graphics. 
Recently, there has been an increasing interest in general purpose computation on graphics hardware. The 
ability to work independently alongside the CPU as a coprocessor is interesting but not motivating enough 
to learn how to apply problems to the graphics domain. This paper analyzes the overall architecture of the 
GPU and its performance.   

Keywords: GPU architecture, Computer graphics card, GPU performance, CPU alternative. 
 
1. INTRODUCTION  
 

Commodity graphics hardware has evolved 
tremendously over the last years – it started  with 
basic polygon rendering via 3dfx’s Voodoo 
Graphics in 1996, and continued with  custom 
vertex manipulation four years later, the graphics 
processing unit (GPU) now has  improved to a full-
grown graphics-driven processing architecture 
with a speed-performance  approx. 750 times 
higher than a decade before (1996: 50 b/s, 2006: 
36,8 b/s).  

 

This  makes the GPU evolving much faster than 
the CPU, which became approx. 50 times faster  in 
the same period (1996: 66 SPECfp2000, 2006: 
3010 SPECfp2000) [1]. Figure 1.1 shows the GPU 
performance over the last ten years and how the 
gap to the CPU increases. 

Experts believe that this evolution will continue 
for at least the next five years [2,3]. 

New graphics hardware architectures are being 
developed with technologies that allow more 
generic computation. GPGPU (general-purpose 
computation on GPUs) became very important and 
started a new area related to computer graphics 
research. This leads to a new paradigm, where the 
CPU (central processing unit)  does not need to 

compute every non-graphics application 
issue.[5,6,7]. 

 

Fig. 1.1. The performance-increase of computer 
graphics hardware over the last decade . The green 
trend line shows that the GPU doubles its speed-
performance every 13 months (i.e. GPU of 2006 
are approx. 750 times faster than G Pus of 1996). 
In contrast, the performance of the CPU doubles 
only every 22 months [1]. 

However, not every kind of algorithm can be 
allocated for the GPU (graphics processing unit ) 
but only those that can be reduced to a stream 
based process. Besides, even if a problem is 
adequate for GPU processing, there can be cases 
where using the GPU to solve such problems is not 
worthy, because the latency generated by memory 
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manipulation on the GPU can be too high, severely 
degrading application performance. 

 

Many mathematics and physics simulation 
problems can be formulated as stream based 
processes, making it possible to distribute them 
naturally between the CPU and the GPU. This may 
be extremely useful when real time processing is 
required or when performance is critical. However, 
this approach is not always the most appropriate 
for a process that can be potentially solved using 
graphics hardware. There are many factors that 
must be considered before deciding if the process 
must allocate the CPU or the GPU. 

 

Some of these factors may be fixed and some 
may depend on the process status. 

 

A correct process distribution management is 
important for two reasons: 

• It is desired that both the GPU and the CPU 
have similar process load, avoiding the cases 
where one is overloaded and the other is fully idle; 

• It is convenient to distribute processes 
considering which architecture will be more 
efficient for that kind of problem. 

2. THE COMPUTER GRAPHICS CARD 
 

A computer graphics card is an additional 
peripheral that enhances the performance of 
rendered graphics.  The card mainly consists of a 
graphical processing unit (GPU), memory, and a 
digital/analog converter and connections to and 
from the graphics card.  Most applications on a 
computer requires some type of graphics to be 
displayed.  The information is processed from the 
application to the central processing unit(CPU) 
which is then sent to the specialized graphics 
accelerator for quicker processing. After 
undergoing the transformation of computer code, 
the data is then sent to a monitor to be displayed. 
Figure 2.1 shows the general flow diagram of 
Graphics Card. 

Originally, computers were once all text based 
and did not come with a Graphical User Interface 
(GUI) that consumers have grown accustomed to. 
As computer technology has advanced, graphics 
has become an important part in the way humans 
interact with computers and the demand for 
graphic oriented computing has called for the need 

of specialized graphical processing. This is when 
the age of graphical accelerated cards began. 

Fig. 2.1. General Flow Diagram of Graphics Card. 

Most computer chips are produced as silicon 
chips.  A silicon chip is composed of thousands of 
transistors, which are in turn composed of three 
layers of conducting material, mainly silicon, 
forming a “sandwich” design.  The layer might 
contain either a positive or negative type of 
silicon.  With a difference in electrical charge, and 
allowance to accept and receive electrons, 
transistors are used as switches.  Current cannot 
pass through a transistor because of the diode 
effect.  Diodes are devices that block current going 
in one direction while allowing the opposite 
direction of the current to flow.  This is very 
important as it can keep sensitive electronics safe 
from a reverse charge.    

3. GPU DESING 

The GPU , The processor accelerates graphical 
processing while taking the CPU’s workload, 
which is used to process every instruction code for 
the computer.  Since graphical processing units are 
devoted to processing graphics, the processing of 
advanced graphical algorithms and coding are 
accelerated compared to the regular CPU, that is 
illustrated in the figure 3.1. 
 

Fig. 3.1. Basic Layout of Graphics Card 
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Originally, computers were once all text based 
and did not come with a Graphical User Interface  

2.1 Pipelined Architecture 

A pipelined architecture is the standard procedure 
for processors as it breaks down a large task into 
smaller individual grouped tasks.[4]  When a set of 
instructions are transferred to the GPU the GPU 
then breaks up the instructions and sends the 
broken up instructions to other areas of the 
graphics card specifically designed for decoding 
and completing a set of instructions.  These 
pathways are called stages.  The more stages the 
graphics card has, the faster it can process 
information as the information can be broken 
down into smaller pieces while many stages work 
on a difficult instruction, that is illustrated in the 
figure 3.1.1. 

 

Fig. 3.1.1 The Graphic Pipeline 

Pipeline Process : Stage 1 

The pipeline process starts with an 
“Application/Scene” stage, also known as the 
workload-reduction trick.  This stage is devoted to 
deciding which particular object will be rendered 
in the three dimensional(3D) environment.  The 
way that 3D environments are created is through a 
Cartesian Coordinate Systems (an x, y, and z axis) 
in which objects are placed to create a scene. 
Scenes can have multiple angles to view them, in 
which they are created by reference points 
(cameras).  The view space is determined by 
objects and angles depending on how the creator 
programmed the scene.  The first process of the 
graphics pipeline is to only render and produce the 
images of the view space and to skip over 
unnecessary instructions that will not be displayed 
even if it was processed.  This system allows the 
graphics card to produce scenes and graphics 
efficiently. 

 

There are also factors that involve in processing 
the image efficiently, mainly the Level of Detail 
(LOD).  An objects distance to the reference point 
of the view camera has an effect on the object’s 
LOD.  Some objects are assigned multiple 
resolution settings (the quality of image that is 
determined by the number of triangles that 
composes the object) in which the closer object 
might receive a higher resolution, while the same 
object farther away might be at a lower resolution 
to reduce the workload of the graphics card.   

Pipeline Process : Stage 2 

The second stage involves the scene’s geometry.   
Objects mainly get moved from frame to frame to 
give an illusion that the object is moving in a real 
time setting.  Objects can both be moved and 
manipulated in a scene depending on the 
application in which it is running.  This 
manipulation of objects is generally called 
transformation.  The objects can be stretched, 
skewed, moved or moved about an axis, or scaled 
differently.  It is in the second stage of processing 
that the objects in the environment are altered. 

 

Geometric lightning also occurs in the second 
stage after the objects are in their proper place, and 
once the figures receive their shape through the 
geometric transform process.  Different types of 
lightning, depending on the application being run, 
will be processed to give the graphics a realistic 
appearance.   

 

After the lighting is calculated the scene needs to 
get rid of unnecessary triangles that are only 
partially shown through the view space.  This 
process is similar to the process which occurs in 
the first stage and also includes the process of 
“clipping.” “Clipping is the operation to discard 
only the parts of triangles that in some way 
partially or fully fall outside the view volume”.   

 

Pipeline Process : Stage 3 

The third stage implies an algorithm called the 
digital differential analyzer (DDA) which 
calculates the position of each part of all the 
triangles, and determines if the triangles are 
connected to other triangles.  This process is done 
by computing the slope of each triangle’s edge in 
hope to improve the quality of the image being 
produced and by allowing more detailed 
information to be assigned to the triangles  
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Sometimes when two triangles are touching, or 
even overlapping each other, a rough pixel “stair-
step” occurs in which the edges between the two 
triangles create non realistic images of edges 
extruded surfaces that would not normally occur.   

 

Another thing that occurs in the triangle setup 
phase is the assignment of color and depth values 
for each pixel.  Since the edges of the triangles 
were calculated, the color and depth values may be 
interpolated using each triangle’s vertex vales of 
color and depth.  Along with the color and depth, 
the texture coordinates of each pixel is also 
interpolated in which they will be processed in the 
fourth stage. 

  

Pipeline Process : Stage 4 

The last stage of the pipeline is considered the 
rendering / rasterization stage. “To fill the frame 
buffer the drawing primitives are subdivided into 
pixels, a process known as scan-conversion or 
rasterization” (Schneider, Benyt-Olaf, pg 245).  
After all the processes of computing location, 
color, geometric values, etc., this last stage puts it 
all together and produces the 3D environment onto 
a 2D screen.   

After the triangle setup is completed in the third 
stage, the next step is to provide shading values.  
Shading values are similar to the color and depth 
values contained in stage 3 and add the finishing 
touches on the scene.  There are three common 
shading methods: Flat, Gouraud, and Phong 
shading. 

Flat Shading - operates per triangle and provides a 
quick render of the scene that does not involve 
extensive computations.  This type of shading does 
not produce a high quality image.   

Gouraud Shading - operates per vertex of the 
triangles.  Compared to flat shading, Gouraud 
shading produces a higher quality image while 
sacrificing render speed.  Because of Gouraud 
shading takes the lighting values of each vertex of 
the triangle and interpolates the values across the 
surface of the triangle, the object will appear 
smother and not as rigid as flat shading.  

Phong Shading - operates per pixel and is the most 
computation demanding shading process compared 
to flat and Gouraud shading.  Phong shading 
incorporates the Gouraud Shading idea of taking 
the average shading of the vertices and also 
implies its own process that includes other 

triangle’s shading as well.  This makes the object 
blend together easier for more complex designs 
and results in a higher quality image making it 
more realistic. 

3.2 Memory 

Random Access Memory (RAM) assists the 
graphics card process information.  RAM is 
composed of transistors and memory cells that are 
arranged in a row and column grid that allows date 
to be stored and accessed quickly.  New 
technology yielded the Double Date-Rate 
Synchronous Dynamic Random Access Memory 
(DDR SDRAM, commonly referred to as DDR), 
and the DDR2 RAM modules.  These types of 
RAM modules are economically beneficial as they 
have higher efficiency, cost less, and have a higher 
potential for improvement.  

The memory cells of the RAM can read either the 
number 1 or 0, which changes due to the capacitor 
change in gain or loss of electrons.  Dynamic 
memory has a slight flaw, the capacitors have a 
natural electron leak and are drained of electrons 
every few milliseconds. To solve this problem, the 
CPU or the memory controller has to recharge all 
of the capacitors holding a 1 before they discharge. 
That is why RAM refreshes thousands of times per 
second. Memory cells have their own special 
support infrastructure of circuits that enables it to 
identify each row and column in the memory cell, 
keeping track of the refresh sequence, reading and 
restoring signals from a cell, and telling a cell if it 
should take a charge or not. Figure 3.2.1 shows the 
The General flow chart of Gouraud/Phong 
shadingull . 

The memory of the graphics card (VRAM) is 
controlled by the GPU that stores data in 
specialized video memory storage space.  This 
storage space operates by the use of common 
storage space but is especially reserved for 
graphical processing.  The memory operates along 
with the GPU to produce quick instructions and 
processing that the graphics card can accomplish.  
VRAM is necessary to keep the entire screen 
image in memory. The CPU sends instructions to 
the video card which undergoes the graphical 
process and eventually is able to be displayed on a 
screen. 
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Fig. 3.2.1. General flow chart of Gouraud/Phong 
shading 

 

 Fig.3.2.2: General flow of information exchanges 
by RAM. 

3.3 Connections 

Computer Bus Connector - the graphics card itself 
is connected directly to the motherboard either 
through an Accelerated Graphics Port (AGP) or a 
Peripheral Component Interconnect Express 
(PCIe) slot.   

Recently PCIe has replaced the AGP in becoming 
the quickest method to transfer information 
between a additional device and the computer.  “A 
connection between a PCIe device and the system 
is known as a ‘link’ and this link is built around a 
dedicated, bi-directional, serial (1-bit), point-to-
point connection known as a ‘lane’.   

This allows the GPU and CPU to interact with one 
another at high speeds to process different 
instructions.  Because of the PCIe high bandwidth 
there can be up to 32 “lanes.”. The links and lanes 
that is illustrated in the figure 3.3.1. 

 

  Fig 3.3.1: Overview of PCIe capabilities . 

4    Performance 

How much faster can one make applications run 
by using GPU? , the answer is: it depends.  It 
depends on the nature of the application itself, and 
what you using as the basis for comparison, for 
example, code that is single-core or multi-core, or 
optimized or not.  Given some approximation of 
expected performance, one can evaluate other 
considerations such as the effort to port, 
price/performance, performance/watt, and 
performance/space. [1]  

4.1 Configuration 

The configuration tested is: 

• OPTIPLEX GX-360 – 1U Intel server 
with one of the two processors installed.  
This server contains one 2.66GHz E5430 
quad-core processor and 16GB of 
memory. 

• Nvidia Geforce 8600 GTS   

 

• The Nvidia Geforce 8600 GTS connects 
to the OPTIPLEX GX-360  via 16x PCIe 
slot.   

• The OPTIPLEX GX-360  is running 
Ubuntu 9.04.  CUDA 1.1 is installed. 

The program

Individual 
Instructions

Please Load
Program
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4.2 Benchmarks 

Four benchmarks have been ported to the Nvidia 
Geforce 8600 GTS so far: 

1.matmatmul – matrix matrix multiply 

2.FFT  – One and two dimensional FFT 
benchmark 

3.bandwidthTest – tests bandwidth for writing to 
and reading from the card 

4.Monte Carlo Black-Scholes 

4.2.1 Matmatmul (matrix matrix multiply) 
Benchmark. 

This benchmark computes C = A*B + C, where A, 
B, and C are matrices.  It is run for a range of 
dimensions from 100 to 10000.  In all cases the 
matrices are dimensioned as square matrices.  
Thus, it is testing a subset of the functionality of 
the BLAS SGEMM and DGEMM routines.[8]. 

 

Only the single precision version of matmatmul 
was run, since Nvidia Geforce does not support 
double precision.  The Nvidia CUDA SDK 
includes a cublas library that provides a subset of 
the blas library functions.  The cublasSgemm 
function was used to implement this benchmark on 
Nvidia Geforce.   The cublas library includes 
functions to copy data from the host to the card 
and copy results back from the card to the host, 
and these were also used for all tests.  Thus, no 
board-side code needs to be written or compiled to 
use these cublas functions, but C code needs to be 
written to make the CUDA and cublas  calls to: 

 

1. Select which Nvidia Geforce card to use 

2. Copy input data from the host to the card 

3. Calculate the result by calling 
cublasSgemm 

4. Copy the results back to the host 

This sequence is straightforward to code in C and 
does not require any knowledge of optimizing 
board-side code. The benchmark is illustrated in 
the figure 4.2.1. 

In addition to the cublasSgemm included in the 
CUDA 1.1 SDK, we tested a tuned version of a 
sgemm sent to us by Nvidia.  Comments in the 

code say that it was written at UC Berkeley.  Note 
that sources for the cublas library are available 
from the Nvidia web-site.  This version runs faster 
than the cublasSgemm function.  It implements a 
subset of sgemm options and only accepts array-
size parameters that are certain multiples of 
powers of 2.  While all multiples of 64 can be 
used, some array dimensions can be multiples of 4 
or 16.  Some results for this function are included. 

The bottom two curves show the performance 
measured using SGEMM in the Intel MKL library 
with one or four cores of the processor.  The MKL 
library implementation of SGEMM should be 
considered highly optimized code that has been 
tuned carefully by experts.  This implementation 
also allows SGEMM to use multiple threads under 
the control of the environment variable 
OMP_NUM_THREADS, so it is code that has 
already been modified to take advantage of 
multiple cores.   

The next line shows the performance using 
cublasSgemm from the CUDA 1.1 library.  This 
measurement of Gflops/second includes the time 
needed to copy data to and from the GPU card.  
Note that there are some significant peaks in the 
results at certain array sizes.  The next line 
(cublasSgemm N*64) uses the same code but uses 
only array sizes that are multiple of 64.  The top 
line shows the performance of the CUDA 
SGEMM that has been tuned for a subset of 
SGEMM arguments. 

SGEMM - GPU vs. CPU
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Fig 4.2.1 Shows the Gigaflops/second measured 
for a single-precision matrix-matrix-multiply 

4.2.2 Bandwidth Tests 

This benchmark is an HP test tool used to evaluate 
the data transfer characteristics of multiple 
GPGPUs on different system platforms.  It is 
based on the original “bandwithTest” example 
contained in the NVIDIA CUDA SDK.  There are 
four basic transfer types provided, device to host, 
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host to device, device to device, and read after 
write.  The transfer type, length of transfer, host 
memory buffer type (pinned or paged) can be 
selected on a per GPGPU basis, and any of the 
available GPGPUs may be selected in a test, 
providing a wide variety of test cases that can be 
performed. 

The bandwidth tests whose results are shown 
below were conducted using the OPTIPLEX GX-
360 system platform configured with an NVIDIA 
Geforce 8600 GTS.  The 8600 GTS is connected 
to the OPTIPLEX GX-360  via PCIe x16 interface.  

Bandwidth tests were conducted using data 
transfer sizes from 1,000,000 to 100,000,000 bytes 
in increments of 1,000,000 bytes.  The transfer rate 
of a 50,000,000 byte transfer was selected to 
display in the graphs. Transfer types of host to 
device and device to host, using both pinned and 
paged host memory buffers are presented.   

The software used to conduct these tests consists 
of NVIDIA CUDA SDK and TOOLKIT version 
1.1, NVIDIA Driver for Linux with CUDA 
(171.05) and Linux Ubuntu 9.04.The benchmarks 
are illustrated in the figure 4.2.2.1 and 4.2.2.2 

Overall, these are impressive I/O rates, with 
transfers from device to host reaching a maximum 
of about 3GB/sec, showing that these GPU devices 
and host OPTIPLEX GX-360 are utilizing the 
available PCIe 16x bandwidth. 

4.2.3  1D FFT and 2D FFT 

These benchmarks compute the discrete Fourier 
transform (DFT) using the fast Fourier transform 
(FFT) algorithm in one and two dimensions.  The 
1D FFT is performed for sizes varying in size from 
2^1 to 2^20.  The 2D FFT is performed for sizes 
varying from 2^2 to 2^12 in each dimension.  

Only the single precision version of FFT 
benchmarks was run, since 8600 GTS Nvidia 
Geforce does not support double precision floating 
point.  The NVIDIA CUDA SDK includes a cufft 
library that provides APIs for 1D, 2D, and 3D real  

and complex FFTs.   The cufft library provides a 
programming interface that is similar to the well 
known FFTW open source software package.   

Fig. 4.2.2 .1 Hows the measured transfer rate, Host 
to device 

Fig. 4.2.2.2  Hows the measured transfer rate, 
Device to Host  

To use the cufft library, one first creates a plan that 
defines the size, number of dimensions, and type 
of FFT to be performed, real to real, complex to 
complex, etc. 

As cufft library does not include functions to copy 
data to/from the GPGPU, the cudaMemcpy 
function is used for this purpose.  Once the data 
has been moved to the GPGPU, the FFT is 
performed by calling the cufftExecC2C function.  
This then performs a complex to complex FFT. 

The benchmark consists of a timed loop that 
performs two FFTs, one forward and one inverse.  
The results of the inverse transform are compared 
to the input data to the forward transform and 
tested for accuracy as they should be same.  Unlike 
Intel’s MKL library, the cufft library does not 
offer the ability to scale the result of an FFT.   

In order to do the comparison the results of the 
inverse transform are scaled by the reciprocal of 
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the transform size using a small CUDA kernel 
written as part of this benchmark.  Thus the timed 
portion of the benchmark looks like this: 

 

1. Create the FFT plan 

2. Copy input data from the host to the 
Nvidia Geforce GPGPU 

3. Calculate the forward FFT 

4. Calculate the inverse FFT 

5. Scale the results 

6. Copy the results from the Nvidia Geforce 
GPGPU to the host 

7. Destroy the FFT plan 

 

In order to provide accurate timing, smaller FFTs 
may be performed up to a 100 or a 1000 times 
before the execution time is calculated.  Larger 
transform sizes may be performed a few as 1 or 10 
times. he benchmarks are illustrated in the figure 
4.2.3.1and 4.2.3.2. 

Fig. 4.2.3.1 Shows the Gigaflops/sec. measured for 
1D complex-to-complex forward and inverse FFT.  
The lines on the graph represent results for a single 
core OPTIPLEX GX-360  

These results only show an advantage to FFT on 
the GPU vs. CPU for large sizes.  However, this 
does not take into consideration that a real 
application would perform some computations on 
the GPU between the forward and inverse FFT.  It 
should also be noted that forward transforms can 
be considerably faster than inverse transforms on 
the GPGPU.  We have measured speeds that are up 
to 3 times as fast for forward transforms when 

compared to inverse transforms for larger problem 
dataset sizes.   

 

Fig. 4.2.3.2 Show the Gigaflops/sec measured 
results for 2D complex-to-complex forward and 
inverse FFT.  The bars on the graph represent 
results for a single core.  The results shown are 
only for square transform sizes, this was done for 
sake of simplicity of the graph. 

4.3.3 Monte Carlo Black-Scholes 

 

This benchmark is an evaluation of European 
Stock Option Pricing using a Monte Carlo 
simulation of the Black-Scholes equation.  The 
benchmark evaluates only a single stock option, 
from 1 to 256 million times, each evaluation is 
referred to as an experiment.  An experiment 
consists of a draw from the random number 
generator, an evaluation of the equation, and a sum 
of the option price and sum of the square of the 
option price.  This benchmark was chosen for its 
very high computational density and minimal 
amount of input/output data.[9]. 

The benchmark uses a Hammersley sequence to 
generate a uniform random number sequence.  
This is then transformed to a normal distribution 
using a polar form Box-Muller transform.  This 
method of generating random numbers was chosen 
for its ability to be implemented in a highly 
parallel form.  In both implementations of the 
benchmark, for multi-core CPUs and the GPGPU, 
the same random number sequence is generated. 

In the multi-core CPU version of the benchmark 
parallelism is achieved through the use of 
OpenMP pragmas and setting the 
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OMP_NUM_THREADS environment variable to 
specify the number of threads to be used in the 
simulation.  In the GPGPU version, a CUDA 
kernel was developed to execute on the GPGPU.  
The GPGPU operates as a coprocessor to the host 
system and is capable of executing a very high 
number of threads in parallel.  The number of 
threads used in the simulation is determined at run-
time, when the kernel is launched. For this 
benchmark, 4096 threads where used. 

The benchmark as implemented on the NVDIA 
GPGPU generates an array of partial sums of the 
option price and the square of the option price.  
Each partial sum is generated by a single thread 
running on the GPGPU.  At the end of the 
simulation, the array is transferred to the host and 
the CPU generates the final sums and option 
pricing.     

Only a single precision version of the benchmark 
was run, as the 8600 GTS only supports single 
precision floating point format. 

The Black-Scholes NVIDIA GPU results shown 
below were conducted using the OPTIPLEX GX-
360 system platform configured with an NVIDIA 
8600 GTS.   The CPU results are from running the 
benchmark on a BL460c server blade.  The 
BL460c is a dual-socket quad-core 3.0GHz Intel 
Xenon based platform.  The software used to 
conduct NVIDIA 8600 GTS test consists of 
NVIDIA CUDA SDK and TOOLKIT version 1.1, 
NVIDIA Driver for Linux with CUDA (171.05) 
and Linux Ubuntu 9.04. 

The software used to conduct the CPU based test 
consists of the Intel C++ compiler for Linux, Intel 
Math Kernel Library for Linux and Linux Ubuntu 
9.04. The benchmark is  illustrated in the figure 
4.2.3.1  

 

The results for the NVDIA GPGPU demonstrate 
the computational capability of the GPGPU, 
providing a 23X increase when compared to a 
single CPU core and a 3X increase for an 8-core 
platform.  In addition to the execution time of the 
benchmark on the GPGPU, results include all of 
the necessary overhead operations to allocate 
memory on the GPGPU and host, transfer of 
parameters and the execution kernel to the 
GPGPU, transfer of the results from the GPGPU to 
the host, and final calculations on the host. [2]  In 
this benchmark, the overhead items are essentially 
fixed for each simulation and have an effect on the 
results that can be achieved for a given simulation 
size. For example, in a simulation with 4 million 

experiments the GPGPU results are 12X that of a 
single-core CPU result; with 16 million 
experiments one sees 19X that of a single-core 
CPU result.  Simulations with larger numbers of 
experiments rapidly approach the maximum 
observed. 

Fig. 4.2.3. Shows the results of the Monte Carlo 
Black-Scholes simulation in millions of 
experiments per second.  The data points shown 
are for the maximum results achieved over the 
course of simulations containing 1 to 256 million 
experiments. For the CPU results, one sees a near 
linear scaling over 1 to 8 CPU cores.  This is an 
expected result given the highly parallel nature of 
the benchmark. 

5 Conclusion 

A applications demand more processing power, 
graphic cards will continue to advance in 
technology to meet these demands.  The world of 
graphics, either through movies, games, or regular 
software applications, is a huge industry that is 
pushing graphical processing to it’s limits. 
Graphical pipelines are annual being added to 
newer models of graphic cards to increase 
processing speeds.  Also, with the added potential 
of processing graphics, displays such as monitors, 
projectors, or even televisions will be affected by 
the graphic cards to meet the demand of displaying 
higher quality images. Graphical technology has 
increased exponentially since the first computers 
were invented and will continue to do so meeting 
the demands for more life-like graphics in 
applications.   

A number of things have been learned thus far in 
our investigations: 

• A GPU can deliver 10x the single-
precision Gflops of CPU core, but a wide 
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range of speedups can be stated for a 
given problem.  It is important to describe 
the conditions of both the GPU and CPU 
execution of the computation. 

• In making comparisons to CPU 
performance, it is important to note if the 
GPU performance includes the time to 
transfer data to and from the GPU board. 

• CUDA BLAS and FFT libraries provide 
optimized GPU implementations of these 
functions, and do not require expertise in 
optimizing code for the GPU.  However, 
applications will likely require some user-
written GPU code to be used in 
combination with calls to these libraries. 

• FFT on the GPU outperforms the CPU, 
but only if the transform size is 
sufficiently large.  Smaller sizes may be a 
win depending on the other computations 
to be carried out on the data prior 
transferring the data back to host 
memory.  Using pinned verses paged 
memory buffers may also be a win 
depending on transfer sizes.  Also, 
batching of 1D transforms needs to be 
considered, these are likely to effective 
over many transforms.  A key to 
achieving good acceleration is to have a 
high ratio of computation to data 
movement. 

• Applications that require little data 
transfer, have long computation times, 
and are readily adapted to use parallelism 
such as Monte Carlo Black-Scholes show 
impressive speed-ups compared to 
optimized multi-core implementations. 

• The addition of additional interfaces to 
the overall benchmark framework to 
accommodate the features of accelerators 
is clearly a beneficial endeavor. For 
instance, allowing a particular accelerator 
to allocate memory using a mechanism 
optimal for that accelerator is likely to 
provide an improved result.  

 

Future investigations will include an analysis of 
the effect of competition between GPU’s for I/O 
bandwidth.  Comparisons to CPU performance 
using up to 8 cores will also be done.  The results 
will be extended to include AMD FireStream 
9170, which we have just begun to test. 
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