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ABSTRACT 
 

In many applications, different kinds of moments have been utilized to classify images and object shapes. 
Moments are important features used in recognition of different types of images. In this paper, three kinds 
of moments: Geometrical, Zernike and Legendre Moments have been evaluated for classifying 3D object 
images using Nearest Neighbor classifier. Experiments are conducted using ETH-80 database, which 
contains 80 objects. 
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Classifier 
 
1. INTRODUCTION  
 

In image analysis, it is of utmost importance to 
look for pattern features that are invariant with 
respect to change of size, translation, and/or 
rotation [1]. There are two different moment 
approaches to this problem: (i) direct description by 
moment invariants and (ii) image normalization [2]. 
The direct description of moment invariants was 
first introduced by Hu, showing how they can be 
derived from algebraic invariants in his 
fundamental theorem of moment invariants [3]. He 
used geometric moments to generate a set of 
invariants that were then widely used in pattern 
recognition [4], ship identification [5], aircraft 
identification [6], pattern matching [7], scene 
matching [8], image analysis [9], object 
representation [10], edge detection [11], and texture 
analysis [12].  

The Hu’s invariants became classical and, 
despite of their drawbacks, they have found 
numerous successful applications in various areas. 
Major weakness of the Hu’s theory is that it does 
not provide for a possibility of any generalization 
[13]. 

Examples of moment-based feature descriptors 
include Cartesian geometrical moments, rotational 
moments, orthogonal moments, and complex 
moments. Moments with an orthogonal basis set 
(e.g., Legendre and Zernike polynomials) can be 
used to represent the image with a minimum 
amount of information redundancy [14]. These 
orthogonal moments and their inverse transforms 
have been used in the field of pattern representation 

[15], image analysis [16], and image reconstruction 
[17] with some success. As is well known, the 
difficulty in the use of moments is due to their high 
computational complexity, especially when a 
higher order of moments is used.  

Teague proposed Zernike moments based on the 
basis set of orthogonal Zernike polynomials [18]. 
Other orthogonal moments are Legendre and 
pseudo-Zernike moments which are derived from 
Legendre and pseudo-Zernike polynomials, 
respectively. Zernike moments have been proven to 
be more robust in the presence of noise. They are 
able to achieve a near-zero value of redundancy 
measure in a set of moment functions where the 
moments correspond to independent characteristics 
of the image [19]. Since their moment functions are 
defined using a polar coordinate representation of 
the image space, Zernike moments are commonly 
used in recognition tasks requiring rotation 
invariance. However, this coordinate representation 
does not easily yield translation invariant functions, 
which are also sought after in pattern recognition 
applications [1]. 

Since the Zernike and Legendre polynomials are 
defined only inside the unit circle, the computation 
of those moments requires a coordinate 
transformation and suitable approximation of the 
continuous moment integrals [20]. 

In various computer vision applications widely 
used is the process of retrieving desired images 
from a large collection on the basis of features that 
can be automatically extracted from the images 
themselves. These systems called CBIR (Content-
Based Image Retrieval). The algorithms used in 
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these systems are commonly divided into three 
tasks [21]: 
- extraction, 
- selection, and 
- classification. 

The extraction task transforms rich content of 
images into various content features. Feature 
extraction is the process of generating features to be 
used in the selection and classification tasks. 
Feature selection reduces the number of features 
provided to the classification task. Those features 
which are likely to assist in discrimination are 
selected and used in the classification task. Features 
which are not selected are discarded [22]. 

Image classification helps the selection of proper 
features and descriptors for the indexing and 
retrieval purpose. It enhances not only the retrieval 
accuracy but also the retrieval speed, since a large 
image database can be organized according to the 
classification rule and search can be performed 
within relevant classes [23]. 

In this paper three kinds of moments 
(Geometric, Zernike, and Legendre) are used for 
feature extraction. While Nearest Neighbor 
Classifier is used for classifying the contours of 3D 
images. 

The rest of the paper is organized as follows. In 
Sec. 2 feature extraction methods based on different 
kinds of moments are presented. Classification 
method using nearest neighbor is intruduced in Sec. 
3. Finally, experimental results and a comparative 
study are given in Sec. 4, followed by conclusions 
in Sec. 5. 
 
2.  FEATURE EXTRACTION 
 

The feature is defined as a function of one or 
more measurements, each of which specifies some 
quantifiable property of an object, and is computed 
such that it quantifies some significant 
characteristics of the object. In pattern recognition 
and in image processing, feature extraction is a 
special form of dimensionality reduction. When the 
input data to an algorithm is too large to be 
processed and it is suspected to be notoriously 
redundant (much data, but not much information) 
then the input data will be transformed into a 
reduced representation set of features (also named 
features vector). Transforming the input data into 
the set of features is called features extraction. If 
the features extracted are carefully chosen it is 
expected that the features set will extract the 
relevant information from the input data in order to 
perform the desired task using this reduced 
representation instead of the full size input [21]. 

Feature extraction involves simplifying the 
amount of resources required to describe a large set 
of data accurately. When performing analysis of 
complex data one of the major problems stems 
from the number of variables involved. Analysis 
with a large number of variables generally requires 
a large amount of memory and computation power 
or a classification algorithm which overfits the 
training sample and generalizes poorly to new 
samples. Feature extraction is a general term for 
methods of constructing combinations of the 
variables to get around these problems while still 
describing the data with sufficient accuracy. There 
are various features currently employed [21]: 
1) General features: Application independent 
features such as color, texture, and shape. 
According to the abstraction level, they can be 
further divided into: 
- Pixel-level features: Features calculated at each 
pixel, e.g. color, location. 
- Local features: Features calculated over the results 
of subdivision of the image band on image 
segmentation or edge detection. 
- Global features: Features calculated over the 
entire image or just regular sub-area of an image. 
2) Domain-specific features: Application dependent 
features such as human faces, fingerprints, and 
conceptual features. These features are often a 
synthesis of low-level features for a specific 
domain. 

 Moment functions of the two-dimensional 
image intensity distribution are used in a variety of 
applications, as descriptors of shape. Image 
moments that are invariant with respect to the 
transformations of scale, translation, and rotation 
find applications in areas such as pattern 
recognition [26], object identification [17] and 
template matching [27]. 

Orthogonal moments have additional properties 
of being more robust in the presence of image 
noise, and having a near-zero redundancy measure 
in a feature set. Zernike moments, which are proven 
to have very good image feature representation 
capabilities, are based on the orthogonal Zernike 
radial polynomials. They are effectively used in 
pattern recognition since their rotational invariants 
can be easily constructed. Legendre moments form 
another orthogonal set, defined on the Cartesian 
coordinate space. Orthogonal moments also permit 
the analytical reconstruction of an image intensity 
function from a finite set of moments, using the 
inverse moment transform. Both Legendre and 
Zernike moments are defined as continuous 
integrals over a domain of normalized coordinates 
[28]. 
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In retrieval applications, a small set of lower 
order moments is used to discriminate among 
different images. The most common moments are: 
1) Geometrical moments. 
2) Zernike moments. 
3) Legendre moments. 
                   
2.1 GEOMETRICAL MOMENTS 
 

The shape of an object is a very important 
character in human’s perception, recognition, and 
comprehension. Because geometric shape 
represents the essential characteristic of an object, 
and has invariance with respect to translation, scale, 
and orientation, the analysis and discernment like 
geometry is of important significance in computer 
vision [24]. 

Historically, Hu published the first significant 
paper on the use of image moment invariants for 
two-dimensional pattern recognition applications 
[3]. His approach is based on the work of the 19th 
century mathematicians Boole, Cayley and 
Sylvester, and on the theory of algebraic forms. 
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Geometric moments of a 1D signal S(x) are 

defined by [25]: 

∫
ω
ω− =+= ...,,,ndtt)tx(S)x(M n

n 210  
where Mn(x) is the moment of order n calculated 
from a window of size (2w + 1) pixels centered at 
the point x. Geometric moments of a 2D image I(x, 
y) are defined by [25]: 

...,,,n,mdvduvu)vy,ux(I)y,x(M nm
n,m 2102
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1
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ω
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where Mm,n(x) is the moment of order (m, n) 
calculated from a window of size (2ω1 + 1) × (2ω2 
+ 1) pixels centered at the pixel (x, y). 
    
2.1 ZERNIKE MOMENTS 
  Teague first introduced the use of Zernike 
moments to overcome the shortcomings of 
information redundancy present in the popular 

geometric moments [18]. Zernike moments are a 
class of orthogonal moments and have been shown 
effective in terms of image representation. 

Zernike moments, a type of moment function, 
are the mapping of an image onto a set of complex 
Zernike polynomials. As these Zernike polynomials 
are orthogonal to each other, Zernike moments can 
represent the properties of an image with no 
redundancy or overlap of information between the 
moments [29]. Due to these characteristics, Zernike 
moments have been utilized as feature sets in 
applications such as pattern recognition [30] and 
content-based image retrieval [31]. 

To calculate the Zernike moments, the image (or 
region of interest) is first mapped to the unit disc 
using polar coordinates, where the centre of the 
image is the origin of the unit disc. Those pixels 
falling outside the unit disc are not used in the 
calculation. The coordinates are then described by 
the length of the vector from the origin to the 
coordinate point. An important attribute of the 
geometric representations of Zernike polynomials is 
that lower order polynomials approximate the 
global features of the shape/surface, while the 
higher ordered polynomial terms capture local 
shape/surface features. Zernike moments have the 
following advantages [21, 32]: 
1) Rotation invariance: the magnitude of Zernike 
moments has rotational invariant property. 
2) Robustness: they are robust to noise and minor 
variations in shape. 
3) Expressiveness: Since the basis is orthogonal, 
they have minimum information redundancy. 
4) Effectiveness: an image can be better described 
by a small set of its Zernike moments than any 
other types of moments such as geometric 
moments. 
5) Multilevel representation: a relatively small set 
of Zernike moments can characterize the global 
shape of pattern. Lower order moments represent 
the global shape of pattern and higher order 
moments represent the detail. 
6) The ease of image reconstruction from them.  

The computation of Zernike moments from an 
input image consists of three steps [29]: 
1) Computation of radial polynomials. 
2) Computation of Zernike basis functions. 
3) Computation of Zernike moments by projecting 
the image on the basis functions. 

The procedure for obtaining Zernike moments 
from an input image begins with the computation of 
Zernike radial polynomials. The real-valued 1-D 
radial polynomial Rnm(ρ) is defined as [29]: 

∑
−
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In equation (1), n and m are generally called 
order and repetition, respectively. The order n is a 
non-negative integer, and the repetition m is an 
integer satisfying n-|m|=even and |m| ≤ n. The radial 
polynomials satisfy the orthogonal properties for 
the same repetition [29]: 

'nnif
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2
0       (2) 

 Using the radial polynomial, 
complex-valued 2-D Zernike basis functions, which 
are defined within a unit circle, are formed by [29]: 

1≤ρθρ=θρ ),jmexp()(R),(V nmnm      (3) 
where j = √-1. Zernike basis functions are 
orthogonal and satisfy [29]: 

∫ ∫
π ==
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The orthogonality implies no redundancy or 
overlap of information between the moments with 
different orders and repetition. This property 
enables the contribution of each moment to be 
unique and independent of the information in an 
image. 

Complex Zernike moments of order n with 
repetition m are finally defined as [29]: 

∫ ∫
π θρρθρθρ

π
+

= 2
0

1
0

1 dd),(V),(fnZ *
nmnm     (5) 

where f(x, y) is the image function and * denotes 
the complex conjugate. As can be seen from the 
definition, the procedure for computing Zernike 
moments can be seen as an inner product between 
the image function and the Zernike basis function. 

To compute Zernike moments from a digital 
image, the integrals in (5) are replaced by 
summations and the coordinates of the image must 
be normalized into [0, 1] by a mapping transform. 

The discrete form of the Zernike moments of an 
image size N x N is expressed as follows [29]: 
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where 0 ≤ ρxy ≤ 1 and λN is a normalization factor. 
In the discrete implementation of Zernike moments, 
the normalization factor λN must be the number of 
pixels located in the unit circle by the mapping 
transform, which corresponds to the area of a unit 
circle π in the continuous domain.   
  
 

2.2 LEGENDRE MOMENTS 
Moments with Legendre polynomials as kernel 

function, denoted as Legendre moments, were first 
introduced by Teague [18]. Legendre moments 
belong to the class of orthogonal moments, and 
they were used in several pattern recognition 
applications [33]. They can be used to attain a near 
zero value of redundancy measure in a set of 
moment functions, so that the moments correspond 
to independent characteristics of the image [34]. 

By convention, the translation and scale 
invariant functions of Legendre moments are 
achieved by using a combination of the 
corresponding invariants of geometric moments. 
They can also be accomplished by normalizing the 
translated and/or scaled images using complex or 
geometric moments. However, the derivation of 
these functions is not based on Legendre 
polynomials. This is mainly due to the fact that it is 
difficult to extract a common displacement or scale 
factor from Legendre polynomials. The two-
dimensional Legendre moments of order (p + q), 
with image intensity function f(x, y), are defined as 
[19]: 

],[y,x;dxdy)y,x(f)y(P)x(P)q)(p(L qppq 11
4

1212 1
1

1
1 −∈Χ

++
= ∫∫ −−       (1) 

Where Legendre polynomial, Pp(x), of order p is 
given by [39]: 
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The recurrence relation of Legendre polynomials, 
Pp(x), is given as follows [33]: 

p
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)x(P pp

p
21 112 −− −−−

=     (3) 

Where Po(x) = 1, P1(x) = x and p>1. Since the 
region of definition of Legendre polynomials is the 
interior of [-1, 1], a square image of N x N pixels 
with intensity function f(i, j), 0 ≤ i, j ≤ (N - 1), is 
scaled in the region of -1 < x, y < 1. In the result of 
this, equation (1) can now be expressed in discrete 
form as [33]: 
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where the normalizing constant, 
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xi and yi denote the normalized pixel coordinates in 
the range of [-1, 1], which are given by [33]: 
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3. CLASSIFICATION 
 

Image classification methods can be roughly 
divided into two broad families of approaches:  
(i) Learning-based classifiers, which require an 
intensive learning/training phase of the classifier 
parameters (e.g., parameters of Support Vector 
Machines [35], Boosting [36], parametric 
generative models [37], decision trees [38], 
fragments and object parts [39]. These methods are 
also known as parametric methods.  
(ii) Nonparametric classifiers, which base their 
classification decision directly on the data, and 
require no learning/training of parameters. The 
most common non-parametric methods rely on 
Nearest-Neighbor distance estimation [35].  

Non-parametric classifiers have several very 
important advantages that are not shared by most 
learning-based approaches [35]: 
(i) Can naturally handle a huge number of classes. 
(ii) Avoid overfitting of parameters, which is a 
central issue in learning based approaches.  
(iii) Require no learning/ training phase. Although 
training is often viewed as a one-time preprocessing 
step, retraining of parameters in large dynamic 
databases may take days, whereas changing 
classes/training-sets is instantaneous in non-
parametric classifiers. 
  
3.1 NEAREST NEIGHBOR CLASSIFIER 

The nearest neighbor classifier relies on a metric 
or a distance function between points. For all points 
x, y and z, a metric D(·, ·) must satisfy the 
following properties: 
1) Nonnegativity: D(x, y) ≥ 0. 
2) Reflexivity: D(x, y) = 0 if and only if x = y. 
3) Symmetry: D(x, y) = D(y, x). 
4) Triangle inequality: D(x, y) + D(y, z) ≥ D(x, z). 

The nearest neighbor classifier is used to 
compare the feature vector of the prototype image 
and feature vectors stored in the database. It is 
obtained by finding the distance between the 
prototype image and the database. Let C1, C2, C3, 
…, Ck be the k clusters in the database. The class is 
found by measuring the distance d(x(q),Ck) 
between x(q) and the kth cluster Ck. The feature 
vector with minimum difference is found to be the 
closest matching vector. It is given by [40]:   
d(x(q), Ck) = min{|| x(q) – x || : x  Ck } 
 Nearest-Neighbor classifiers provide 
good image classification when the query image is 
similar to one of the labeled images in its class.  
  
 

4. RESULTS AND DISCUSSION 
 

The database used here is ETH-80 [41]. It 
contains 80 objects from 8 categories. The contours 
version set is chosen from ETH-80 database. It 
consists of 3280 images. The images are resized 
into 60x60 pixels. Some examples of original 
colored images and the contours are given in Fig. 1 
and Fig.2, respectively. Our work is implemented 
using Matlab 6.1.  
  

 
 

Fig. 1. Some examples of objects from ETH-80 
database 

 

 
Fig. 2. Samples of image contours for the objects in 

Fig.1. 
 

The experiments are made based on eight classes 
as shown in Fig. 1. The number of prototypes per 
class is 5. The number of shapes in testing data set 
is 160. 
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In our experiments, the number of input 
featyures(h1,h2,…,h7) extracted using Hu 
invariants feature extraction method is 7 while the 
number of inputs(Zernike features) extracted using 
Zernike moments is 5 and legendre is 16. These 
inputs are presented to the nearest neighbour 
classifier for testing to do matching with the feature 
values in reference database. 

The experimental results showed that the 
recognition rate of the nearest neighbour classifier 
based on Legendre moments is higher than the 
recognition rate of Hu and Zernike moments. The 
results are given in Table 1. 

 
Table 1. Recognition Rate of Hu, Zernike and 
Legendre Moments using Nearest Neighbor 

classifier 
 

Objects Hu Zer. Leg. Ave. 
Apple 85% 75% 95% 85% 
Car 65% 65% 65% 65% 
Cow 65% 65% 65% 65% 
Cup 65% 65% 85% 72% 
Dog 65% 75% 85% 75% 
Horse 85% 75% 95% 85% 
Pears 75% 65% 95% 78% 
Tomato 65% 65% 65% 65% 
Average 71% 69% 81% 74% 

 
5. CONCLUSION 
 
This paper introduced a comparative study of three 
most popular moments feature extraction methods 
(Hu, Zernike, and Legendre) to recognize the 
images of 3D objects using Neatest Neighbor 
classifier. The experimental results showed that the 
recognition rate of the nearest neighbour classifier 
based on Legendre moments is higher than the 
recognition rate of Hu and Zernike moments. 
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