
Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

456

SPACE-EFFICIENT AND ACCURATE FORWARDING LOOP

DETECTION METHOD USING BLOOM-FILTER FOR FAST

AND RELIABLE INTERNET ROUTING

GHADAH ALDABBAGH

1
, HALABI HASBULLAH

2
, KARAN VERMA

2
, OMAIMAH BAMASAK

1

1
Dept. of Comp. Science, Faculty of Computing & IT, King Abdulaziz Univ., Saudi Arabia
2
Dept. of Computer & Information Sciences, Universiti Teknologi PETRONAS, Malaysia

E-mail: galdabbagh@kau.edu.sa
1
, halabi@petronas.com.my

2
, karan.verma.phd@gmail.com

2
,

obamasek@kau.edu.my
1

ABSTRACT

Link or router node failure in a network of Internet is a typical cause of traffic congestion due to the

developed forwarding loop at the router. This failure has a significant impact on Internet performance,

contributed from the inability of the affected router to find alternative link/route in fast manner and from

the high probability of packet dropping during the attempt of re-routing. The existing Internet approach in

handling this issue is to use TTL (time-to-live) of TCP/IP, by which a packet will be dropped whenever the

TTL timer expires. However, this approach was found inefficient due to long convergence period. Hence,

the effort now is to develop a faster re-routing mechanism, by reducing the possibility of forwarding loop

incidents for any cases of link/node failures, whilst minimizing packet losses during the convergence period.

This work proposes a novel detection method for possible forwarding loop incidents at a router with

support of Bloom-filter. Bloom-filter is a probabilistic data structure that helps to ensure the availability of

an item in a set, which never lead to false negative results, but may produce false positive results. With this

Bloom-filter-based method, link’s or node’s failure information is attached at the packet header of a packet

in a space-efficient manner and to accurately detect for possible incidents of forwarding loop when the

packet is traversing through its route from source to destination. If the possibility can be more accurately

detected, then packets losses can be minimized to very least during the convergence period and hence, fast

and reliable routing shall be achieved. Through simulations, it was found that the proposed method of BF-

k/2 has outperformed the other re-routing methods. It has not only efficiently used the limited space of the

packet header, but also adaptively reducing the false positive probabilities for reliable routing.

Keywords: Internet, Link/Node Failure, Forwarding Loop, Bloom-Filter.

1. INTRODUCTION

For many reasons, a link or a router node in

the network of Internet may fail at any point of

time, leading to network unavailability, temporarily

or permanently. The failure of network links or

router nodes can disrupt Internet traffic for long

periods of time, and leading to severe traffic

congestion [1]. Traffic congestion at a router may

arise not only from hardware failures and malicious

traffics (such as DoS attacks), but also from

legitimate usage spikes, e.g. flash crowds. One

reason for traffic congestion is due to forwarding

loop for a packet at a router, where a number of

attempts were being made by a router to find an

alternative link (and ultimately an alternative route),

when the next outgoing link for the said packet is

failed, or the router node itself is failed [17, 21]. If

the network failure is caused by a router node, then

the previous router node on that link may

experience congestion due to the fact that the

expected link for a packet toward the failed router

node is now cannot be used to forward any packets.

In either cases, the result is that a packet intended

for a destination will keep looping at the router

trying to find an outgoing link, until finally the

packet may be discarded after a number of tries,

ruled by the TTL (time-to-live) timer. If congestion

has happened, the Internet-based service offerings

will not be available to users, and thus not reliable

for the users to use.

Hence, the general problem faced by the

Internet is that it is currently suffering from

reliability measures due to congestion, which is

referring to the inability of the network to find

alternative links/routes in fast manner, leading to

packet looping and packet dropping, and thus

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

457

packets lost during its convergence period.

Convergence period is defined as the time taken

from the moment when the failure is detected to the

moment when the alternative link/route is found

[19]. Simply, congestion is the result of packet

looping whenever a packet cannot be forwarded

through its outgoing link [22, 27]. At the same time,

other packets from different routers have arrived at

the affected router, and leading to even worst

traffic congestion scenario, with some packets sent

from a source to an intended destination must be

dropped when the TTL timer has expired.

Therefore, congestion affects the performance of

the router, and ultimately to the overall Internet

performance. As a result, from user point of view,

the Internet is considered as ‘unreliable’, as it has

failed to provide the demanded services. This may

lead to a conclusion that the Internet cannot be

fully adopted as a universal communication

infrastructure. However, the existing Internet

method of providing solution to the traffic

congestion problem, and hence the problem of

forwarding loop/packet looping, by using the TTL

approach is inefficient due to long convergence

period and high packet losses.

To overcome the problem of link/node

failures, and the subsequent problem of forwarding

loop/packet looping at a router, a number of new

re-routing protocols were proposed. This allows

emergency re-routing of traffic flows in case of

failure of link or router node, as depicted in

Figure 1, to be performed. This helps traffic to

continue reaching its destination from the point

where the failure is detected, until the inter-domain

routing algorithm re-converges to a solution that

bypasses the affected link or router node.

Figure 1: A Re-Routing Technique For Routing

Reliability

In this research work, a general solution is

proposed that addresses this reliability problem

with the anticipation that it will lead to a better

performing communication infrastructure of

Internet. The proposed approach is based on a

layered set of interventions aimed to increase

reliability at each level of abstraction: network

links, network routes, and application services [2,

18]. With this approach, a packet is expected to be

sent and received reliably over the Internet.

However, the focus of this work is to seek solution

at the network-link level only, which is an inter-

domain links, rather than at sources-destinations

level. With this focused method, further

advancement in the representation and

dissemination of link’s and node’s failure

information are needed to be developed. With that

motivation, this research objective can be

understood as seeking the answer to the following

two general questions: how can probabilistic data

structure be used to detect forwarding loop/packet

looping incidents in a space-efficient and fast

manner?; and how can the forwarding loop/packet

looping detection results be more accurate?

In summary, from the network-link level

abstraction, developing a space-efficient and a

highly accurate detection method for incidents of

forwarding loop/packet looping is proposed to

resolve the problem of traffic congestion at a router

node. Based on the review of literature, it was

found that there are opportunities to research

further on a more efficient and fast method of

carrying failure information in the packet header of

a packet, while providing routing reliability with

the use of Bloom-filter [12, 28]. Based on the

identified problems and the capability of Bloom-

filter, the following research questions have now

been developed:

a) How can failure information be carried in

the packet header of a packet in a space-

efficient manner, which can be used to

detect the possibility of forwarding

loop/packet looping incidents at a router

node in a fast manner?

b) How can forwarding loop/packet looping

incidents be detected as accurate as

possible, in order to minimize the

convergence period to a very minimal, or

to eliminate it if possible?

By solving this reliability problem, Internet

can be expected to satisfy the demands of user’s

requirements, which is getting more stringent day

by day.

The general aim of this research work is to

design and develop reliable links between nodes of

Internet when they are communicating with each

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

458

other in a task of routing for sending data packets

from a source to a destination. In achieving this

aim and based on the research questions mentioned

above, the followings are the specific objectives of

this research work:

a) To exploit the storing and checking

capability of Bloom-filter set membership

data structure to carry failure information

in the limited packet header’s storage

space in a space-efficient manner, and to

detect for possible incidents of forwarding

loop/packet looping at a router node at

earliest possible.

b) To exploit the probabilistic capability of

Bloom-filter to obtain as accurate as

possible the detection of forwarding

loop/packet looping incidents at a router,

so that packet dropping can be reduced, or

eliminated, and hence convergence-free

re-routing can be achieved.

2. RELATED WORK

Even after decades of development, the

Internet still suffers from reliability problems,

which is referring to the inability of the network to

efficiently find alternative link/route due to

congestion without packet lost during its

convergence period. However, if the failure

recovery is solely left to the routing algorithm only,

such as only relying on the TTL timer, then there

can be severe data losses during its long

convergence period. Hence, there is a serious need

to develop new method of fast and reliable re-

routing approach, by which the complete

information about the network topology for re-

routing decision shall no longer be carried along

with the packet that traversing the network. Instead,

to support applications that cannot cope with this

extra delay during the convergence period,

researchers have proposed forwarding plane

resilience mechanisms for fast and reliable re-

routing task. It is implemented at router level with

only requiring minimum network resources, and

thus lowest possible processing overhead. One of

the most significant proposals is [29], which

operates by transforming topology uncertainty (due

to node and link failures) into traffic volume

uncertainty (due to forwarding loop). Then, a

re-routing scheme is developed to find efficient

alternative link from the affected router that works

for a traffic congestion case and with a given set of

failure scenarios.

There are ways to explore alternative links in

case of link or router node failures with much

reduced resource requirements. Work by [30]

showed that full failure recovery can be achieved

by supplying negligible failure information in

packets that are traversing from source to

destination and with small extension to forwarding

table. This research work also improved the state-

of-the-art in forwarding plane full failure recovery

by investigating polynomial-time algorithms to

decompose the network into an appropriate basis of

oriented cycles, which can then be used to

implement emergency forwarding tables in routers.

However, they have been purely implemented on

off-line calculation basis, which the result is late-

produced and may be not as accurate as needed.

It is interesting to observe from literature that

many network solutions have reduced data

processing times and networking costs by

exploiting some probabilistic methods. Bloom-

filter (BF) is one of the methods, which was

conceived by Burton Bloom in 1970 [1]. BF is a

probabilistic data structure that helps to ensure the

availability of an item in a set. This data structure

is used to execute member queries that never leads

to false negative, but may be to false positive. An

important operation of a BF includes membership

testing and adding elements to a set. It is widely

used in many applications, like peer-to-peer

networking, databases, packet routing, resource

allocation, and applications like spell checkers [5,

6]. In a routing task, BF may be used at each edge

router node to filter incoming packets and to

forward them to the downstream router nodes when

meeting a set of specified conditions. When a

packet is received by a router, the destination

address in the packet is compared to a masked BF

at the router, and then forwarded to matching

interfaces. To implement this approach, a global

level map is required, which was managed by a

server in the network. In this approach, faster

processing is achieved as the router does not store

individual addresses, and hence the complete

topology, but only in the masked-BF form [28].

However, the states of the global map must be

updated instantaneously with each individual router

in the network to reflect the current topology of the

network. That is to say, the masked-BF of all the

routers in the network must always be in

synchronism with the global map.

Bloom-filter � � 	 ���, ��, … . , ���� is an m-

bit of array that represents an element set of

� � 	 ���, ��, …… . , ���. Initially all bits are set to 0,

as shown in Figure 2(a). Elements can be added

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

459

into the BF by computing a set of array positions in

the BF that are set to 1, as shown in Figure 2(b).

The presence of an element is tested by checking if

those array positions are set to 1. This means that

new elements can always be inserted into a BF, but

no elements can be deleted. With this testing

capability, false positives are always possible, i.e. a

membership test can return positive even if the

element has not been added to the BF. However,

false negatives are not possible to occur �1, 9].

Each element e is represented with k positions

in the array. For example, k separate hash functions

can be used to compute k array positions, each hash

function giving output [0, m-1]. The element can

be encoded as an m-bit long vector, in which the

array positions denoted by the k hash values are set

to 1, as shown in Figure 2(b). Two hash values in

BF can collide, as shown in Figure 2(c), which the

collision may indicate that an event has been

detected. In relation to this, it is interesting to know

of whether or not an incident of forwarding loop or

packet looping has occurred at a router node. For

example, if a set of excerpt queries is being

performed for a number of attempts to find

alternative links, but the results are always failed

(due to collisions in the BF), this would in turn

confirm that forwarding loop or packet looping has

actually occurred at the router. As the figure shows,

k = 5 hash values are inserted into the BF, but only

3 array positions are marked to 1 without collision,

but collision has happened at position 8 in the array.

Figure 2: (A) Empty Bloom-Filter (B) X Is Added To Bloom-Filter By Setting The Hash Value Array Positions To 1, K

= 4. (C) Shows A Hash Collision With Two Hashes For Element X’ Both Yield Position 8, K = 5.

An element can be added onto a BF by bitwise

ORing the element’s m-bit vector together with the

BF. The presence of an element is tested by

checking if the k array positions are set to 1. This

can be efficiently done with � ∈ � ∶ �⋀� � � ,

where m is the Bloom-filter and e the tested

element in m-bit long form. Figure 3(a) shows a BF

after elements X and Y have been added to it. The

membership of an element, such as W, is tested by

checking if each array position set to 1 in W is also

set to 1 in the BF. The membership testing for W

shows that W is not a member in the filter, since

the bit in array position 10 is set to 0. When an

element has not been added to the BF, but the array

positions of the element are set to 1, a false positive

happens. As an example, Figure 3(b) shows a false

positive. Only two elements, X and Y, have been

added to the BF. F is denoted by the array positions

{2, 4, 8, 9}, which have all been set to 1 due to X

and Y. Hence, membership testing will indicate that

F is in the BF, while it has, in fact, not been added.

Following the membership checking capability

of the BF, which may lead to false positive results

as discussed earlier, then there is question of what

is the chance of that false positive results to happen

for any checking instances. This can be expressed

as false positive probability (FPP), which is the

probability that a membership test for an element

will return true for an element not added to the BF.

Element count of original data set |�|, and count of

hash functions |�| used to calculate the BF are the

factors that determines the false positive

probability.

A BF is a simple space-efficient randomized

data structure representing a set that supports

membership queries. Its space efficiency is

achieved at the cost of a small probability of false

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

460

positives. A BF representing set � � 	 ���, … . . , ���
of n elements is described by an array of m-bits;

initially, all are set to 0. It uses a k independent

hash function ��, … . . , � 	with a range of �1 – �!.
When a given hash function �" is applied to input

#" , the result is a value between 1 and	� . Since

hash functions are uniform, the probability that this

result is equal to a particular number �	 is 	1/� .

Therefore, the probability of the bit at position

�	being 1 after one hash function is 1/�, and the

probability that it is 0 is (1%	1/�). The probability

that it is 0 after all & hash functions are applied

is	'1 % 1 �() . Since there are n elements in the set,

the probability that bit � is equal to 0	 (after

processing all	* elements) is	'1 % 1 �() �.

Figure 3: (a) Shows a Bloom-filter to which

elements X and Y have been added. The

corresponding array positions denoted by the blue

and red arrows have been set to 1. The element W

is not in the Bloom-filter, since the bit in array

position 10 is 0. (b) Shows the same Bloom-filter

and element F that has not been added to the

Bloom-filter. However, the test for membership

indicates that F has been added, since all the

corresponding array positions are set to 1. F is a

false positive.

Hence,	+1 % '1 % 1 �() �,	is the probability

that a given bit � is set to 1 after all input elements
���, ��, …… . , ��� are processed as depicted by

Figure 3. Since least false positive probability is

desired, the probability for an arbitrary input - and

corresponding & bits are 1 without - belonging to

the set is needed. This false positive probability is:

./ 	� �1 % �1 % �
� �

(1)

Similarly, equation (1) can be expressed as;

0 	11 %	�2345 6

� ��7 +& ln +1 % �� � �(,,

(2)

Finally, equations (1) and (2) are combined,

:;
: � ln +1 % �� � �(, < �

�
=234 5(

��=234 5(

(3)

It can be shown that the expression �1 %	�2435 is

minimized redundancy when & � ln 2 ∙ +��, ,

giving a false positive probability ./ of:

	./ � �1 %	�2435 	� 	 '1 2() 	0
�0.6185� �⁄ (4)

From Equation (4), it can be said that a false

positive probability fp depends on	& and the ratio

&/�. When the probability that some bits are 0,
then '1 % 1 �(). Using the & function and

*	elements in the BF, there is a need to set bits

from �-bits as 1 for	&* times. Therefore, after *

elements are stored, the probability that the bits are

still 0 ./D can be expressed as:

./D � +1 % �
�,

 � 0 	�� � �(

(5)

and

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

461

./E � 	 �&*'1 % 1 �()'1 % 1 �() ���

(6)

Hence, the probability that & �(bits is in collision

free region is given by '1 % ./4).
With this derivation, it is said that Bloom-

filter that used k hash function, i.e. (n+1)k is called

BF-k. The hash addresses of the elements in the set

and one element that being looked up should be

independent to each other. Filtration is essential

for the operation of Internet networks. Most of the

well-known approaches to filtration for Internet

focus on achieving high filtration accuracy for the

entire network without addressing the detection of

forwarding loop incidents. The BF of the bit vector

representing an element is constructed by applying

a fixed number of hash functions to the element. In

other words, all of the bit-vectors that represent

elements are constructed using the same number of

hash functions. Varying the number of used hash

functions has been proposed in the context of BF

forwarding [12, 17]. These proposals are

motivated by varying false positive rate in network

nodes of different degrees: if the same values of

are used at a low degree node and a high degree

node, the false positive forwarding rate of the high

degree node is greater.

Now, BF with its hash functions has been

extended to detect the possible forwarding

loop/packet looping incidents at a router node. BF

has been proposed and used to construct a hash

table that records TCP/UDP data flows with

limited storage cost at the packet header of a

packet.

Therefore, there is a chance to solve the issue

of traffic congestion (caused by forwarding loop

and packet looping) at a router node, by exploiting

the limited storage space of the packet header of a

packet that traverses over the network and passes

through the router to its intended destination. With

the use of BF and its variant, and the existence of a

global map of the network, this is achievable

where only encoded entry/access checking is

required to detect the present of forwarding

loop/packet looping incidents. Additionally, the

detection accuracy for any incident can be

improved when the false positive probability of BF

is enhanced, which shall lead to a fewer packet

losses for any traffic congestion scenario. All these

are the aims in providing a fast and reliable

Internet infrastructure.

3. METHODOLOGY

It is important to highlight that in this work,

the focus of investigation will be on two points

related to routing capability: 1) how to make use

of the limited storage space in the packet header in

carrying failure information of the links and router

nodes, and 2) how to accurately detect for possible

incidents of forwarding loop/packet looping at a

router node. Therefore, it is not so much on the

routing task itself; instead, they are the needed

supporting components for fast and reliable

routing.

The specific method in detecting forwarding

loop/packet looping incidents at a router node is by

attaching failure information at the packet header

of a packet that is traversing from a source node to

a destination node in the network of Internet, with

the help of Bloom-filter. Additionally, the BF will

also be used to accurately detecting these incidents,

such that a lower packets dropping is achieved. As

a platform for improvement, a previous work by

[28] will be used as the basis for developing a

convergence-free forwarding/routing scheme.

Based on this, the improvement will be made

on the carrying capacity of the packet header to

carry a ‘representative’ of the failure information

in a space-efficient manner. The failure

information will consist of two basic facts: 1)

probability of forwarding loop/packet looping

incidents at a router, and 2) false positive

probability that each link from that affected router

is associated with. However, the complete

information of these two is only available in the

global map, which is managed by an appointed

server in the network, and not at each the

individual router. All the routers in the network

will compute locally these probability values, and

updates synchronously with the global map,

together with the latest state of the network

topology. Each router node will have a masked BF,

which the BF will only use encoded-bits to check

the existence and status of the information in on-

line fashion, thus providing fast detection

mechanism with least overhead. Simply, with BF

and its encoded entry/access to the complete

information, the detection of forwarding

loop/packet looping can be made faster and space

efficient. This is an extension from that of

previous works, in which the earlier only carries

information about the failed links that the packet

has traversed so far, and full failure information is

being carried all the way in the packet. The

extension is also due to the added value for the

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

462

stored information, which they are now in

statistical forms. Additionally, previously off-line

computation was performed, leading to processing

overhead at a router and delay in routing, while the

proposed method will be able to perform on-line

computation. Furthermore, accuracy in detecting

any incidents of forwarding loop or packet looping

shall lead to better performing Internet by reducing

packets losses during its convergence period. The

BF capability is again will be used to decrease the

probability of false positive. The ultimate goal is

to provide a convergence-free re-routing

mechanism, thus reliable Internet services are

obtained.

The only difference in the BF-k is that the

incorrect deletion of a false positive item is

undetectable, while the incorrect deletion of a

multi-address item is detectable in advance. The

problem is that when performing lookup for an

element, this only has the element identifier and

will have to try all set IDs to see if any of them is

encoded in the filter. The number of different set

IDs is in thousands, causing huge lookup overhead.

So that to overcome such space cases of the

hashing schemes, where the addressing spaces will

be halved and then abolished is called BF-k/2.The

space advantages are more difficult to sum up;

again it depends on the error rate that is to be

tolerated. It also depends on the potential range of

the elements to be inserted; if it is very limited, a

deterministic bit vector can do better. If the

number of elements to be inserted cannot be

estimated, it is better to use hash table or a scalable

Bloom filter.

The proper management of Internet is a

challenging task due to the mobility of nodes and

their velocity as all devices work on open

channels. These are very challenging security tasks

since all of these characteristics markedly increase

the possibility of threats and attacks [10]. There

are three challenges for space efficient and

detecting the attack traffic. First, accurate rules are

needed to distinguish the attack model from the

legitimate so that legitimate can still reach the

victim while the attack is being space efficient

functioned. Second, the attack model should use

an intrinsic feature of the attack; otherwise the

HBF mechanism will be evaded by a simple

change of attack signature. Third, the space

efficient rule must be simple (not complicated) and

the HBF process should be computationally

efficient, otherwise the HBF process will not be

effective. Consequently, most detection schemes

developed for Internet assume high numbers of

available nodes within the network that act as

intermediates [8]. The basic assumption for all

schemes is that there is a limited number of attack

paths, and not all legitimate shares a path with the

attack. Without confidence in accurately

differentiating attack from legitimate at a single

location; all schemes try to detect attack paths

based on space and HBF detection mechanisms.

A BF-k/2 is a simple space-efficient

randomized data structure representing a set that

supports membership queries. Its space efficiency

is achieved at the cost of a small probability of

false positives. A BF representing set � �
	���, … . . , ��� of n elements is described by an

array of m-bits; initially, all are set to 0. It uses a k

independent hash function ��, … . . , � 	with a range

of �1–�!. Here, it is assumed that hash functions

are perfectly random (Golle et al. 2001). For each

element	� ∈ �, bits �"�� are set to 1 for	�1 F G	 F
&; checking to see equation 6.

It has been found that the value of 	k that

minimizes the false positive probability of a single

BF-k (i.e.�1 % 	�2435) also minimizes BF % k/2

approximately up to five decimal places based on

our empirical results. Hence, the number of hash

functions is set to �1 % 	�2435 in the BF-k/2

scheme, and the �� % &/2 � '1 2() 	 0
�0.6185� �⁄ . The value of 	BF % k/2 as the ratio

of
�
� varies from 1 to 10. It can be shown that

when
�
� � 5,	it is about 0.16. When

�
� � 10	 drops

to 0.016 only. (Note that when 	�� � 5	 and

when
�
� � 10	 , the false positive rates of BFICK

are 0.39 and 0.15 respectively). If the nodes

independently chose the k, each node could set the

value so high that the average number of false

positive is less than the one and packet storms are

avoided. If internet router use globally decided

values for generating forwarding hop identifies,

the BF-k/2 forwarding scheme uses global k.

3.1 Improving space efficiency

It is proposed in this work a method to

improve the storage capacity limitation of the

packet header with the help of Bloom-filter. BF is

a compact data structure for high-speed on-line

membership checking against large data sets.

Some BF variants can be used to improve the

space efficiency issue [2]. However, it has been

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

463

proven that BF is not space optimal [3]. Therefore,

the aim for space efficiency is that it should reduce

the number of bits it takes to encode (represent)

each member and its set ID, particularly in

checking for the failure information. This is

extremely important if the data structures are

placed in on-die static random-access memory

(SRAM). It should reduce the number of memory

entries/accesses onto the SRAM on a per-packet

basis in a router. Additionally, possibly the idea

for space efficiency can be implemented with the

use of large and sparse BF at the sender/receiver,

and compress/decompress the filter before/after

transmission.

To reduce the number of bits needed per

entry/access, it should encode each entry/access

just once, capturing both the member identifier and

the set ID, i.e. (e, Se). However, the problem is

that when performing a lookup for an element, this

only has the element identifier and will have to try

all set IDs to see if any of them is encoded in the

filter. The number of different set IDs is in

thousands, causing huge lookup overhead. The

target is to create indirection in the lookup process,

by separating the membership encoding and the set

ID storage in two data structures, called the index-

encoder and set-id table (abbreviated as SID-table),

respectively. In the index-encoder, it encodes the

membership of a member, as well as a small index

that points out where to find the right set ID in the

SID-table. This index may take a few different

values (e.g., from 1 to 10).

The lookup process consists of two steps:

given a member identifier, the first step tests

whether the member is a member and checks few

index values (instead of the set IDs in the

thousands) to see which one is encoded in the

index-encoder. Using the right index, the second

step finds out where to fetch the set ID from the

SID-table. In order to support efficient lookup, it

encodes the primary index K	in the index-encoder

by two steps: 1) it hashes the member identifier �

to a number L of blocks in the index-encoder,

where L	may be one or a small integer. It will then

fetch these blocks to the processor. They can be

logically thought of as a small BF, denoted as M�,

now residing in the processor for encoding a; 2) it

hashes a (together with �) to &′ bits in M� and sets

them to 1. The sequence in executing the encoding

processes is shown as the following, and is

depicted in Figure 4 and Figure 5.

i. It performs hash operations on the

member’s ID � and obtains a

sequence of hash bits.

ii. Using the hash bits, it finds &

candidate entries from the SID-table,

and stores the set ID Se of �	with a

check-sum computed from e to one

of the entries; the index of the entry

is K.

iii. Using the obtained hash bits, g

blocks are fetched from the index-

encoder, which form a virtual

Bloom-like filter M�.

iv. Encodes ��, K to M�.

Figure 4: Insertion Member To Multi Set Membership Function

Figure 5: Candidate-To-Right Policy To Insert A Member To A SID-Table. An Entry Marked With X(0) Means It is

used.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

464

The effect of the above candidate-to-right

policy (in one place only store only one bits, mean

corresponding bits are checked, if all bits are equal

to 0 or 1 then it can be said that the element

belongs to the set, then a false positive is returned.

It also avoids collision within space efficient data

structure) may be amplified by allowing more than

one value in one position. As shown in Figure 6, it

follows the steps to determine the set ID. First, it

generates a sequence of hash bits using element	�.

Using the hash bits, it locates and fetches L	blocks

in the index-encoder, i.e. to the processor. The

processor has & units that test, in parallel, whether

any candidate index G	is encoded, for 1	 F 	G	 F 	&.

Each unit hashes G	to the &′ bits in M� and checks

whether all the bits are 1s. If so, i is encoded in M�.

Figure 6: Looking Up A Member

An important factor from using this highly

space-efficient (reduced) data structures scheme is

that the size of the filter does not linearly

dependent on the number of elements inserted.

Once the BF is sufficiently saturated, it can save a

copy of the filter and start afresh with a new one.

Using this technique, the limited storage space at

the packet header is expected to efficiently store

the least requested information, but has the

capability to compute the complete information at

a router node in on-line fashion, leading to fast

decisions being made at a router.

Hence, BF-k scheme needs improvement

packet header overhead. We can reduce the two

independent hash function requirement of the

double hashing technique to a single hash

computation based on e.g., CRC32 or BOB. This

result can be applied to BF-k/2 networking

applications with on-line element hashing instead

of pre-computed element names. Moreover, the

hash segmentation technique may be useful in

other multiple-hashing-based data structures (e.g.,

d-left hash tables) that require hashing on a packet

basis. The main idea of is to reduce the number 1s

by choosing the “best” set of hash functions.

Besides our in-packet header scope, our approach

differs in that we include the information of which

group of hash functions was used (d value) in the

packet itself, avoiding thereby the caveat of

checking multiple sets. As for routing, when a

packet is received, the destination address in the

packet is compared to each BF on the router and

forwarded to matching interfaces. This mechanism

does not store any individual addresses in the

router. There are two main ideas here: concentrate

the & bits in one (or only few) cache blocks and

precompute random bit patterns in order to save

both hash bits and access time. While these

Bloom-filter variants improve execution time at

the cost of slightly increased FPR, the filters save

space by engineering practical variants of the

theoretically space optimal Bloom-filter

replacements.

3.2 Improving detection accuracy for the

Forwarding Loop incidents

A false positive of BF means that the BF

predicts an element to be present even though it is

not present in the set. The probability of such an

error is called the False Positive Probability (FPP),

and it is relatively small. On the other hand, a false

negative means that the BF predicts an element to

be not present even though it exists in the BF.

Such False Negative Probability (FNP) is not

present in the BF. As more numbers of elements

are inserted into the BF, the bit vector saturates,

and once that happens, the FPP increases. The

saturated BF need to be preserved and a new

empty BF must be created. Therefore, there are

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

465

two possible ways to reduce the increase of FPP:

to decrease the number of entries/accesses

(element insertions) used for membership

checking, and to develop more efficient BF

preserving method.

There is a need to reduce FPP to achieve

accuracy in detecting forwarding loop/packet

looping incidents, and hence to reduce to very

minimal the dropped packets during convergence

period. Hierarchical Bloom-filter (HBF) is

proposed in this work, which is a method of BF

preservation when a BF is saturated as the result of

higher number of elements being inserted into BF

for checking. With HBF, all the blocks present in

the single packet are inserted into the BF in the

form of a hierarchy. At level 1, the HBF behaves

similar to the Block Bloom-filter (BBF), where

initially the packet payload is split into blocks of

equal size, and they are inserted into the BF along

with their offset values. At level 2, adjacent blocks

are concatenated forming a super block of double

the size, and inserted into the same BF. The same

process is followed for further higher levels, till all

the blocks are inserted as one block.

Packet data is split into multiple blocks and

each block is appended with ‘Interface Id’ from

which packet arrived. After splitting the blocks

from the packet payload, the first block is

concatenated with offset value of 0, second block

with offset value of 1. Then the modified blocks

are passed through hash functions and stored in the

BF. Hence, actual block data being stored into the

block of BF would be appended with inbound

interface (IP Address or MAC) or unique

interface-id given to each interface. All

combinations of offset are tried with initial block

and incrementing offset is attached to other blocks

in the sequence. If all the blocks in sequence are

present in the BF, which may lead to collision, it

would validate the existence of excerpt query. This

would in turn confirm the forwarding loop or

packet looping has happened at the router.

By having multiple hierarchical levels of the

insertion of blocks into the BF, it will increase the

querying accuracy and reduce collisions (reducing

packets dropped). Even better, the querying

accuracy increases as the HBF checks the offset

values using only the set ID, which implies

reduced collisions, as if there is any duplicate

request came for the same set ID, HBF neglects

the request. By identifying a number of routers,

and if all the routers in the network tree process an

excerpt query at the same time, this can also lead

to packet drops, and affecting the network

bandwidth. Hence, it would be better to minimize

packet losses by an alternative packet attribution

method.

The existing packet attribution process can

be modified to maintain multiple BF (at the same

time), one for each interface (separately). An extra

attribute called Interface Address would be added

to the existing BF data structure to identify the

BFs that are associated with different interfaces. In

this way, the modified attribution process

initializes multiple BF at a time, one for each

interface. Packets are segregated based on the

interface, and packet payload can be stored into

respective BF based on interface they arrived,

which then determine the next router. This is

depicted in Figure 7. Each block is concatenated

with the corresponding offset number, and then

inserted into the BF.

Block = Content || Inbound Interface-id ||

Offset,

where Content = Block content and Offset = 0 <

(Packet length / Block size)

Figure 7: Hierarchical Bloom-Filter With Its Attribution Process

level 2

level 1

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

466

How BF-k/2 improve detection accuracy for

incidents of forwarding loop/packet looping

probabilistically filters a certain percentage of the

received messages based on its computing capacity,

and then reports all the invalid messages detected.

HBF detection technique first extracts the IP

addresses of the incoming network traffic. It then

determines whether the source IP address has been

seen previously or is a new IP address. The

resulting time series of the rate of previously

unseen or new IP addresses is then analyzed by the

levels to identify whether the system is under

attack. The system being protected against DoS

attacks is represented in terms of two independent

states: not under attack, which is the system state

when receiving non-attack normal traffic, and

under attack, the system state when receiving DoS

attack traffic. Low-rate attacks can be as harmful

as the high-rate ones, yet even more dangerous due

to the fact that they are difficult for routers and

counter-DoS mechanisms to detect. Where the BF

is used to keep track of the set of nodes visited.

Each node has a corresponding mask that can be

ORed into the BF as it passes; if the filter does not

change, there may be a loop. False positives may

lead to packets incorrectly being dropped because

of an assumed loop. The authors discuss ways to

limits the negative effects of false positives in this

context.

Bloom filters can yield an acceptably low rate

of false positive drops if we use failures and

reprieves. We demonstrate that Bloom filters still

retain good loop detection accuracy, especially for

small loops. The results in this section were

obtained analytically, using the simulation data

derived in the previous section. Again, we do not

consider network effects such as packet loss.

Therefore, these results represent an upper bound

on the number of redundant packets allowed by a

particular loop detection technique. To simplify

the analysis, we only consider multicast packets.

For a loop of size k, this implies that TTL’s allow

for d-k redundant packets or d=k -1 redundant

packets per link:

O�PQ*PK*R	 � 	P/& % 1

(1) 	
For the Bloom filter mechanism, packets are

dropped once the failures and reprieves are

exhausted. In the absence of reprieves, each failure

allows a looping packet to traverse an extra loop of

k hops. Therefore, the number of redundant

packets. To minimize the overhead of loop

detection, system comprises a set of containment

layers that are tailored to the needs of different

kinds of protocols. Restricted protocols use the

routes of an underlying multicast routing protocol

such as OSPF rather than compute their own.

Packets are dropped once the failures and reprieves

are exhausted. In the absence of reprieves, each

failure allows a looping packet to traverse an extra

loop of k hops. Therefore, the number of

redundant packets per link is simply the number of

failures. The packet’s Bloom filter is bitwise ORed

with the interface’s Bloom mask. If the Bloom

filter does not change, then the packet might be

looping. Possible responses to failing the Bloom

test include dropping the packet, and using failures

and reprieves to deter false positives. We can

reduce the Bloom filter space requirement if we

are willing to forego perfect detection accuracy.

The basic idea is to permit a small number of

Bloom collisions before dropping a packet, there

by trading off detection accuracy for reduced false

positives

4. RESULTS ANALYSIS AND DISCUSSION

The main outcomes to be analyzed and

discussed from this results section are the ability of

the BF to efficiently carry failure information in

the limited space of packet header and to

accurately determine the false positive probability

for reliability in term of packets dropping during

the convergence period. To achieve this, the

proposed method is compared against the

established available methods, such as TTL (time-

to-live) and FCP (failure-carrying packet), through

a set of simulations. Also, the performance of the

proposed method is validated with a range of

practical and randomly generated topologies.

Table I defined the simulation parameters.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

467

Table I: Simulation parameters

Parameter Typical Value

No. of nodes 20, 50

Node speeds 10, 20, 30 ms

Simulation time 400 sec

Environment size 1500 x 800 meter

Packet sizes 1.0 MB, 2.0MB

Data transmission size 1400 bytes

Packet type TCP/UDP

Antenna model Omni-directional Antenna

Traffic type CBR

Visualization tool NAM

4.1 Improvement in space efficiency of the

packet header

In this section, efficient use of the limited

packet header storage space is evaluated by

comparing the performance of the proposed BF-

k/2 with other contemporary methods. The main

aim is to provide proofs that the BF-k/2 proposed

solution has significantly improved the usage of

the storage capacity of the packet header, and

hence supporting the fast Internet re-routing

mechanism.

a) Packet attribution

Through simulation, the performance of HBF-

with packet attribution is compared against Block-

BF and Hierarchical-BF with respect to their

storage size, compression ratio, and processing

time. As shown in Table II, the proposed HBF-

with packet attribution approach requires less

storage space, while achieving higher compression

ratio and faster processing time as compared to the

other two solutions. Lesser processing time

implies that the convergence period is shorter. In

overall, the proposed HBF-with packet attribution

approach has improved the space efficiency in

carrying the failure information at the packet

header, and has also providing faster processing

time for any incidents of forwarding loop/looping

packet incidents at a router.

Table II: Storage size, compression ratio, and processing time for different BF approaches

No. BF approaches Storage size
(KB)

Compression
ratio

Processing time
(ms)

1 Block Bloom-filter 10,978.8 72.635 48,018

2 Hierarchical Bloom-filter 10,977.7 72.643 21,061

3 Hierarchical Bloom-filter with
packet attribution

6,123.7 130.222 21,059

b) Memory access counts

The number of memory accesses to SRAM at

a router node to forward packets in an attempt to

find alternative links is having impact on the

limited storage space of the packet header. A lower

count is required as it will reflect minimum

forwarding efforts for finding alternative links. In

Figure 9, variation in memory access counts with

the increase in load factor (a scenario of traffic

congestion) is observed. A general observation

indicated that as the number of traffic load (due to

congestion) increases at a router node, the required

memory access counts is also increases because

now more attempts are needed to search for

alternative links during its convergence period.

The previous solutions of TTL, FCP (failure-

carrying packets), and BF-k (Bloom-filter with k

value) for convergence period showed that the

memory access counts increases exponentially

with the increase in load factor. Simply, all these

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

468

methods are not effective in handling congestion,

especially at earlier stage, where sharp increases in

memory accesses are experienced, and maintaining

that high memory accesses throughout the

convergence period. However, with the proposed

solution of BF-k/2, the memory access counts are

significantly much reduced. Importantly, it is

steadily maintaining a consistence lowest memory

access counts regardless of the traffic loads being

experienced. It showed that the limited storage

capacity of the packet header has been successfully

used to carry the required failure information (in

encoded forms), and the proposed method of BF-

k/2 has been able to exploit powerfully the

memory access to encode its bits representation to

check for the required failure information from the

global map via the local router. With this

improvement, it can detect incidents of forwarding

loop/packet looping in a fast and efficient manner.

Ultimately, it implies that faster or shorter

convergence period is achieved.

With the significant performance

improvement made by BF-k/2 method as

compared to the others, then it is real possible that

a convergence-free re-routing can be obtained at

the affected router. As can be seen from Figure 8,

regardless of the traffic loads, the memory access

is maintaining a lower count. This indicates that

the number of trials in the attempts to find

alternative link is keep low, possibly with only one

time attempt, and hence convergence free period.

As the router must encounter situation of traffic

congestion at any point of times, the BF-k/2 is

readily available to serve the re-routing

requirement in a convergence-free manner.

Figure 8: Memory Access Performance For N = 25000 And M = 64.

c) Packet header overhead

It is important to see the overhead being

experienced by the packet header in handling a

convergence period in a traffic congestion scenario.

Figure 9 showed the performance of TTL, FCP,

BF-k, and BF-k/2 with respect to their packet

header overhead over a fixed convergence time

period, which was set to 10000 milliseconds. It is

observed that BF-k/2 has experienced an almost

consistent packet header overhead throughout the

convergence period, while the others have

experienced a heavier packet header overhead. At

time 0 msec., each of the method is consuming an

overhead, in which BF-k/2 has consumed the least

overhead of about 4

bytes/packet/second. It then starts to decrease

sharply until 1000 msec. for each of the method. It

follows that each method decreases steadily until

the set time of 10000 msec. However, BF-k/2 has

shown a flatter decrease as compared to the others.

It means that BF-k/2 offered much less packet

header overhead, and thus, a faster convergence

period. Importantly, BF-k/2 has efficiently used

the limited storage space to carry the full failure

information at the header of the packet. The

maximum header size during the simulation run is

8 bytes, assuming each failure header takes 2 bytes.

It is important to note that the failure information

is only inserted into the header when link or router

node failure is detected.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

469

Figure 9: The Effect Of Packet Header Overhead On Space Efficiency

d) Packet loss rate

It can be expected that any re-routing schemes will

experience packet losses during their convergence

period. The lower packet losses implied that better

reliability of the re-routing scheme. Figure 10

showed the packet lost rate against the number of

failures per second for any failed links or failed

router nodes. It can be observed that the lost rate

for BF-k/2 has increased to 0.009 packet/sec as

compared to BF-k, FCP and TTL schemes (which

are 0.026 packet/sec, 0.028 packet/sec, 0.029

packet/sec, respectively) at the early stage when

the number of failures is small. These early stage

packet losses happened due to the fact that this is

the first time that a forwarding loop or packet

looping incident is detected, and when the packets

cannot be forwarded to its alternative links, then it

may be dropped. However, after that early stage

packet losses and when the number of failures

getting higher, the lost rate from BF-k/2 scheme is

significantly reduced regardless of the number of

failures recorded at that point of time, while the

others have increased their lost rates as the number

of failures increase. It is also observed that the

packet lost rate for BF-k/2 reducing steadily over

the number of failures, while the other schemes of

TTL, FCP and BF-k have shown significant

increases over the number of failures. Hence, it

can be concluded that BF-k/2 has performed much

better than the other schemes when the number of

failures getting higher. This is achievable due to

efficient use of the limited space storage of the

packet header, where the memory access for

membership checking through the use of BF-k/2

scheme is being applied as discussed above.

P
ac

k
et

 h
ea

d
er

 o
v

er
h

ea
d

(b

y
te

s/
p

ac
k
et

/s
ec

)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

470

Figure 10: The Effect Of Loss Rate On Space Efficiency

4.2 Detection accuracy for looping incidents

In this section, the performance of the

proposed BF-k/2 method in term of its detection

accuracy is compared with others contemporary

methods. The proofs are provided to support the

claim that BF-k/2 is performing better in providing

a reliable re-routing mechanism for the Internet.

a) Detection accuracy vs. Number of looping

incidents

It can be expected that when the number of

forwarding loop/packet looping incidents is high,

then the detection accuracy will be better. As

proposed, the performance of BF-k/2 scheme is

evaluated by simply comparing with its initial

derivative of BF-k scheme under different numbers

of looping incidents. This is done when BF-k/2

performance is checked in terms of its detection

accuracy as the number of forwarding loop/packet

looping incidents increased at a router node. As

can be observed from Figure 12, BF-k/2 is

achieving higher detection accuracy for any

number of looping incidents as compared to its

counterpart of BF-k. Therefore, it is suggested to

use BF-k/2 scheme in detecting the looping

incidents when traffic congestion has occurred so

that higher accuracy can be achieved.

Figure 12: Detection Accuracy Between The Existing BF-K And The Proposed BF-K/2

0

20

40

60

80

100

2 4 6 8 10

BF-k/2 BF-k

Number of looping incidents

D
et

ec
ti

o
n

 a
cc

u
ra

cy
 (

%
)

P
ac

k
et

 l
o
st

 r
at

e
(p

ac
k
et

/s
ec

)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

471

b) Detection accuracy vs. false positive

probability

It can be understood that traffic congestion

may happen at a router at any point of time. The

main task now is to understand further this

behavior so that the reason for the cause is more

visible. Intuitively, any incidents of forwarding

loop or packet looping must be triggered by an

instant of traffic congestion at a router node, which

the congestion must be caused by the forwarding

attempts onto a failed outgoing link, at least once.

If the incidents of forwarding loop/packet looping

can be accurately detected, then the chance of false

positive to happen can be reduced to minimum,

leading to a convergence free re-routing.

Figure 11 gives a representation that there

must be a limit point between the ability to

accurately detect incidents of forwarding

loop/packet looping and the possibility of

obtaining a reasonable false positive results. In

general, during a congestion period, when the

number of looping incidents is low and the traffic

density is also low, then the accuracy in detecting

the looping incidents is low but with high false

positive probability (FPP). Inversely, when the

number of looping incidents and the traffic density

are high, then the detection accuracy is high with

lower FPP. Therefore, there must a limit point for

the detection accuracy and FPP to perform at their

best during a congestion period, and while a

convergence process is running. This is practically

true in the sense that when the detection accuracy

cannot be provided, then the FPP to occur is higher.

From Figure 11, it is observed that the limit point

for detection accuracy and FPP for the proposed

method of BF-k/2 is achieved when the number of

looping incidents is at about 10 and the traffic

density is at about 65%. That is to say, the

proposed BF-k/2 method is expected to perform at

its best when the traffic load (congestion level) is

less than 65% and when the number of looping

incidents is less than 10 incidents – these are the

limit. Above these values, the two requirements

will be compromised severely. By understanding

this behavior, then the proposed BF-k/2 method

can always be tuned to work with lower number of

forwarding loop/packet looping incidents and with

less traffic loads.

Figure 11: A Balance Between Loop Detection Accuracy And False Positive Results

c) Packet lost rates over a convergence period

It is also important to see what would be the

number of packets dropped when the proposed

BF-k/2 is run over a time of convergence period as

compared to TTL, FCP and BF-k schemes. This is

for the reason that when a scheme is offering

lower packet lost over a shorter convergence

period, it would be a better choice in handling the

forwarding loop/packet looping issue. From Figure

13, it can be observed that the packet lost rate per

link with BF-k/2 method is much less than the

TTL, FCP and BF-k. Importantly to note that BF-

k/2 is offering much stable packet lost rates over a

period of convergence process, hence, its

performance is much more predictable as

compared to the others. With this predictable

behavior, BF-k/2 is then the best choice to handle

any case of traffic congestion. Ultimately, the

convergence period will be faster with higher

reliability.

0

20

40

60

80

100

0 5 10 15 20 25 30 35

Number of looping incidents

False Positive Rate Detection Accuracy

T
af

fi
c

d
en

si
ty

 (
%

)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

472

Figure 13: Packet Lost Over A Failed Link During A Convergence Period

d) Convergence period with different topology

setting

Also, it is interesting to see the performance

of the proposed BF-k/2 method with respect to its

detection accuracy in different topology setting.

As can be seen from the earlier discussion that

when the incidents of forwarding loop/packet

looping can be accurately detected, then the

convergence period will be shorter. For this

purpose, comparison was made between BF-k/2

with TTL, FCP and BF-k in different topologies of

Abilene [9], Exedus [11] and Random [13].

Generally, Abilene, Exedus and Random are the

kind of topology that high-performance backbone

network, peering network, and scale-free network.

Figure 14 showed the convergence period of the

BF-k/2 as compared with TTL, FCP and BF-k. As

can be observed, the BF-k/2 method has always

out-performed the other methods in terms of

convergence period with different network

topologies.

Figure 14: Impact Of Topology On Convergence Period

e) Processing times

Lastly, processing time of BF-k/2 is compared

with BF-k, FCP and TTL in three different

interface-id. From Figure 15, it is observed that

BF-k/2 has performed much better than the other

re-routing schemes. BF-k/2 has obtained the

lowest processing time …..

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

P
ac

k
et

 l
o

st
 p

er
 l

in
k
 (

b
y
te

)

Time (ms)

TTL

FCP

BF-k

BF-k/2

0

0.2

0.4

0.6

0.8

1

1.2

abilene exedus random

C
o

n
v
er

g
en

ce
 p

er
io

d
 (

se
c)

Topology setting

TTL

FCP

BF-k

BF-k/2

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

Figure 15: Processing Time With Different Interface-Id

5. Conclusion

In this research work, a novel method has

been developed to provide full failure recovery

through forwarding plane re-routing. It is a

network-link abstraction, where space-efficient of

packet header and accurate detection of packet

looping probability has been proposed and

evaluated. The main theoretical contribution in this

approach was the design of a scheme that

efficiently uses the limited storage space of the

packet header and that accurately detects any

possible incidents of forwarding loop or packet

looping at a router node, regardless of traffic load

being experienced at a router node in question. In

achieving the said contributions, the Bloom-filter

capability in performing membership checking has

been extended to handle more complex cases of

routing functions as it is demanded from the

nowadays highly congested Internet traffic

scenario.

It was found that Bloom-filter has also been

able to be used as a space-efficient technique for

data storage into a narrow storage capacity of a

packet header. It was found that Bloom-filter is the

best data structure, which can be used to provide

reliability in detecting forwarding loop incidents at

a router to as high accuracy. However, it is

relatively a new area and topic to use BF in routing

decisions.

It is when compared with the other previously

reported contemporary and BF-based re-routing

schemes for reliability, the proposed BF-k/2

method has not only retains reliability properties,

but also bears smaller packet loss ratio and less

transmission overhead, especially when the traffic

is heavy. With the BF-k/2 method, it has been

observed that the detection for forwarding loop/

packet looping incidents has increased its as

compared to the existing methods. Hence, the

proposed method has a great potential to be used

with any Internet routing protocols, with least

resource requirements and less overhead in

mitigating the forwarding loop/packet looping

problem due to traffic congestion at a router node

in the network. With this reliability results, the

provisioning of Internet toward a universal

communications infrastructure is more promising

than before.

ACKNOWLEDGEMENT

This paper has been funded by the National

Plan for Science, Technology and Innovation

(MAARIFAH) – King Abdulaziz City for Science

and Technology - the Kingdom of Saudi Arabia –

award number (12-INF 2723-03). The authors also,

acknowledge with gratitude the Science and

Technology Unit in King Abdulaziz University for

technical support.

REFERENCES:

[1] B. H. Bloom. Space/time trade-offs in hash

coding with allowable errors. ACM of the

Communications, 13(7), p. 422-426, 1970.

[2] G. Carl, G. Kesidis, R. R. Brooks, and S.

Rai. Denial-of-service attack-detection

0

10000

20000

30000

40000

50000

60000

None IP MAC

BF-k/2 BF-k FCP TTL

Interface-id appended

P
ro

ce
ss

in
g
 T

im
e

(u
n

it
??

?)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

techniques. IEEE Internet Computing,

10(1) , p. 82-89, 2006.

[3] C. Douligeris and A. Mitrokotsa. DDoS

attacks and defense mechanisms:

classification and state-of-the-art. Computer

Networks, 44(5), p. 643-666, 2004.

[4] E. Page. Continuous inspection schemes.

Biometrika, 41, p. 100-115, 1954.

[5] S. Geravand and M. Ahmadi. Bloom filter

applications in network security: A state-of-

the-art survey. Computer Networks, vol. 57,

pp. 4047-4064, 2013.

[6] M. Sarela, C. E. Rothenberg, T. Aura, A.

Zahemszky, P. Nikander, and J. Ott.

Forwarding. Anomalies in Bloom filter-

based multicast. In Proceedings of the IEEE

INFOCOM, p. 2399-2407, 2011.

[7] S. Tarkoma, C. E. Rothenberg, and E.

Lagerspetz. Theory and Practice of Bloom

Filters for Distributed Systems. IEEE

Communications Surveys & Tutorials,

14(1), p. 131-155, 2012.

[8] P. Francois and O. Bonaventure. Avoiding

transient loops during the convergence of

link-state routing protocols. IEEE/ACM

Transactions on Networking, 15(6), p 1280-

1292, 2007.

[9] M. Särelä, C. E. Rothenberg, A. Zahemszky,

P. Nikander, and J. Ott. BloomCasting:

security in Bloom filter based multicast.

Springer in Information Security

Technology for Applications, p 1-16, 2012.

[10] K. El Defrawy and G. Tsudik. PRISM:

Privacy-friendly routing in suspicious

MANETs (and VANETs. In Proceedings of

the IEEE International Conference on

Network Protocols (ICNP), p 258-267,

2008.

[11] P. P. Lee, T. Bu, and T. Woo. On the

detection of signaling DoS attacks on 3G

wireless networks. 26
th

 IEEE International

Conference on Computer Communication

(INFOCOM), p 1289-1297, 2007.

[12] P. P. Lee, T. Bu, and T. Woo. On the

detection of signaling DoS attacks on

3G/WiMax wireless networks. Computer

Networks, 53(15), p 2601-2616, 2009.

[13] D. Comer. Network Systems design Using

Network Processors. Prentice Hall, 2003.

[14] R. Jain. Characteristics of destination

address locality in computer networks: a

comparison of caching schemes. Computer

Networks and ISDN Systems, 18(4), p 243-

254, 1990.

[15] S. lyer, R. K. Rao, and A. Shelat. Classipl:

an architecture for fast and flexible packet

classification. IEEE Network, 15(2), p 33-

41, 2001.

[16] S. McCreary, and k. claffy. Trends in wide

area IP traffic patterns a view from Ames

Internet exchange. In Proceedings of the

ITC Specialist Seminar, Monterey, 2000.

[17] A. C. Snoeren, C. Partridge, L. A. Sanchez,

C. E. Jones, F. Tchakountio, B. Schwartz, S.

T. Kent, and W. T. Strayer. Single-packet

IP traceback. IEEE/ACM Transactions on

Networking, 10(6), p 721-734, 2002.

[18] [19] J. Saltzer, D. Reed, and D. Clark.

End-To-End Arguments In System Design.

ACM Transactions on Computer Systems,

2(4), p 277-288, 1984.

[20] V. Srinivasan, G. Varghese, S. Suri, and M.

Waldvogel, Fast and Scalable Layer Four

Switching In Proceedings of the ACM

SIGCOMM, p 191-202, 1998.

[21] Broder, A. and Mitzenmacher, M. Network

Applications of Bloom Filters: A Survey.

Internet Mathematics 1 (4), p 485–509,

2002.

[22] B. Zhou, R. Zhu, Y. Zhang, and L. Cheng,.

An Efficient Data Fingerprint Query

Algorithm Based on Two-Leveled Bloom

Filter. Journal of Multimedia, 8, p 73-81,

2013.

[23] A. Pagh, R. Pagh, and S. S. Rao. An

optimal Bloom filter replacement. In

Proceedings of the 16
th

 Annual ACM-SIAM

symposium on Discrete algorithms, p 823-

829, 2005.

[24] A. Broder and M. Mitzenmacher. Network

applications of bloom filters: A survey.

Internet mathematics, 1, p 485-509, 2004.

[25] R. Chikhi and G. Rizk. Space-efficient and

exact de Bruijn graph representation based

on a Bloom filter. Algorithms for Molecular

Biology, 8, p 1, 2013.

[26] M. Rhu, M. Sullivan, J. Leng, and M. Erez.

A locality-aware memory hierarchy for

energy-efficient GPU architectures. In

Proceedings of the 46
th

 Annual IEEE/ACM

International Symposium on

Microarchitecture, p 86-98, 2013.

[27] M. Shand, S. Bryant, S. Previdi, C. Filsfils,

P. Francois, and O. Bonaventure.

Framework for Loop-Free Convergence

Using the Ordered Forwarding Information

Base (oFIB) Approach. 2013.

[28] K. Lakshminarayanan, M. Caesar, M.

Ragan, Achieving convergence-free routing

Journal of Theoretical and Applied Information Technology
 30

th
 September 2015. Vol.79. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

using failure-carrying packets. In

proceeding of ACM SIGCOMM, 2007.

[29] Y. Wang, H. Wang, A. Mahimkar, R. Alimi,

Y. Zhang, L. Qui, and Y. R. Yang, R3-

Resilient Routing Reconfiguration, in

Proceeding of ACM SIGCOMM, 2010.

[30] S.S. Lor, R. Landa, R. Ali, and M. Rio,

Packet re-cycling: eliminating packet losses

due to network failure, in Proceeding ACM

HotNets, 2010.

