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ABSTRACT 

 

Providing security in Wireless Sensor Networks (WSNs) is a considerable challenge due to the concomitant 

limitations in processing time, power, area and energy consumption in sensor nodes and the nature of 

wireless links. A variety of cryptographic methods are available for security establishment. Among them, 

Elliptic Curve Cryptography (ECC) is the best candidate to accomplish this challenge because it provides 

high security in spite of a smaller key size. In addition, ECC was subject to many recent studies to optimize 

the time needed for base point selection and point multiplication operations. In this paper, the points on 

elliptic curves are analyzed, and an efficient implementation of ECC base point selection is proposed. The 

proposed implementation can be utilized by extremely constrained devices. We prefer to utilize projective 

coordinate representations of field elements than to utilize affine coordinates over prime finite field Fp, 

whereas projective coordinates reduce computational complexity by eliminating the multiplicative inverse 

in point additions and point doubling. This paper further analyzes non-prime order elliptic curves .The 

analysis results show that the order of the elliptic curve plays a critical role in determining how fast a base 

point can be selected. 

Keywords: Elliptic Curve Cryptography, Wireless Sensor, Prime Order, Adhoc Networks, Base Point 

 

1. INTRODUCTION 

 

A wireless sensor network (WSN) comprises a 

large number of sensor nodes that are designed for 

data gathering and propagation in areas that do not 

lend themselves to ordinary networks due to 

environmental and/or strategic reasons [1]. A WSN 

can be applied to a wide spectrum of applications, 

varying from critical military surveillance 

applications to evaluating forest fire progress and 

building security monitoring in the immediate 

future. To cover such vast fields in which the 

operational conditions are predominately harsh or 

even adverse, an abundance of sensors are arranged 

in these networks. The number of sensors deployed 

in the aforementioned networks is sufficiently large 

to enable the network to monitor these vast fields. 

Deployment in remote places and being left 

unattended predispose the networks to attacks, 

including node capture, physical tampering, 

eavesdropping and denial of service; in this regard, 

they should correspondingly be provided with 

highly defensive security mechanisms. 

Unfortunately, security requirements of resource 

constricted sensor nodes cannot be assured by 

classic security mechanisms with high overhead. 

WSN researchers have recommended various 

security schemes that are desirable and practical for 

such resource-constrained networks.   

Unlike ad hoc networks, wireless sensor 

networks exploit a large number of sensor nodes 

and cover a widespread area, whereas they have 

inconstant topology due to failure or mobility [2]. 

Figure 1 demonstrates the architecture of wireless 

sensor networks and the various constituents of a 

sensor node. The small circles and red-filled circles 

are the sensor nodes and the gateways, respectively. 

Each individual node is qualified to collect data 

from the environment, execute some computations 

over its inputs and share the information with other 

nodes on the network. A network can continue 

operating by deploying a sensor node just before the 

battery is depleted of sufficient power. WSNs are 

surrounded by a diversity of limitations, including 

energy restrictions, memory limitations, 

unreliability and high latency in communication. 

In wired data networks, a centralized control 

manipulates the nodes to establish a secure and 

reliable communication [2]; however, no 

recognized system exerts its authority on WSN 

nodes due to their limitations. Therefore, gaining a 
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knowledgeable selection on the proper 

cryptographic algorithms is substantial. 

Figure 1. The Architecture Of Wireless Sensor 

Networks 

Elliptic Curve Cryptography (ECC), proposed by 

Koblitz [3], has been employed in many 

applications recently because it offers numerous 

advantages over traditional public key cryptography 

schemes. Above all (advantages), ECC can provide 

higher security for equivalent key size in 

comparison to current asymmetric cryptosystems 

[4]. 

The security level in elliptic curve cryptosystems 

is based on the difficulty of the Elliptic Curve 

Discrete Logarithm Problem (ECDLP) and secure 

base point selection. To achieve a time optimization 

in constrained devices, such as WSNs, radio 

frequency identification (RFID) and mobiles, 

researchers have mainly focused on speeding up the 

following stages: 

1) Base point selection  

2) Scalar point multiplication 

Base point selection is a leading determinant in 

ECC security level; concomitantly, ECDLP is the 

other factor to be addressed. Additionally, scalar 

point multiplication, which is labeled as an 

underlying operation in ECC, can be performed by 

finite field arithmetic computations, such as field 

addition, field multiplication, field squaring, and 

multiplicative inverse [5-15]. 

In this paper, we analyze points on elliptic curves 

considering different features. We also propose an 

efficient condition to remove the most complicated 

step of base point selection algorithm known as 

scalar multiplication; thereby the processing time of 

ECC base point selection is reduced in WSNs and 

extremely constrained secure applications .First, 

related works and the security requirements in 

wireless sensor networks are explained in Section 2 

and 3. Then, an overview of elliptic curve 

cryptography with the advantage of projective 

coordinates is described in Section 4. Section 5 is 

dedicated to base point selection algorithms 

description. To achieve low computational 

complexity for base point selection, in Section 6, 

orders of points on non-prime order elliptic curves 

are analyzed, and an ultimate relationship between 

secure points and orders of elliptic curves is 

obtained. In Section 7, a mathematical deductive 

argument is provided to prove the achieved 

relationship. Following this, the efficiency 

comparison is presented in Section 8. Finally, the 

paper is concluded in Section 9. 

2. RELATED WORKS 

 

Basically, wireless sensor networks are 

numerously distributed around the monitored areas 

which are usually far away from human residential 

areas, e.g. dense forests. The information 

transmitted between the sensors can be readily 

intercepted by an intruder. In order to make the 

information inaccessible to the intruder, WSNs 

must deploy a highly secure cryptographic 

algorithm; this algorithm should be asymmetric to 

overcome the problem of key exchange as well. A 

number of publications [16-25] have employed such 

cryptographic algorithms. However, applicability 

and optimization of these algorithms are still key 

issues in WSN security since no efficient 

implementation of asymmetric algorithms on WSNs 

exists. 

Elliptic curve cryptography is the latest 

asymmetric cryptographic algorithm providing high 

security level for authentication and encryption. An 

explanation as to how this cryptosystem meet the 

security requirements is given in [26]. It also 

provided an evaluation of ECC efficiency in 

discovering wormholes in mobile ad-hoc networks. 

The speed and security level in ECC cryptosystems 

primarily depends on selecting an appropriate set of 

public key parameters. 

The bulk of research has been devoted to ECC 

implementation on various AVRs aiming at the 

performance improvement. The performed 

implementations differ in the characteristic features 

including finite field (binary-extension field or 

modular prime field), elliptic curve group formula, 

point representation (affine coordinate or projective 

coordinate), the technique of multiplication (group 

and fields of arithmetic), and the device type 
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(ATmega128, ATmega256 or ATmega328). This 

diversity therefore, makes a comparison difficult 

between those researches. 

In 2003, ECC was implemented on sensor 

networks [18, 19], but the employed hardware was 

almost strong including 16 bit microcontroller with 

16 MHz clock frequency. In this way, the results 

are confined to hardwares with high computational 

resources while WSNs do not utilize strong CPUs 

with high clock frequency to avoid exorbitant cost 

and energy consumption for the network. Kummar 

[20] used a microcontroller 8051 with the efficiency 

of 24 MIPS which was three times as fast as 

ATmega 128. His implementation was performed 

on a particular finite field which leads to fast 

computation of scalar multiplication. However, the 

protection of this particular finite field is uncertain 

against the Weil Descent Attack and has not been 

considered in the proposed work.  

Gura et al. [27], in 2004, demonstrated the 

implementation of ECC on ATmega128 using NIST 

standardized elliptic curves with sizes of 160, 192 

and 224 bits. However, the implementation 

consumes a considerable time to compute scalar 

multiplication. For instance, it needs 17.52 million 

clock cycles on a 224-bit curve. Uhsadel et al. [28] 

implemented ECC on 8-bit AVR using the same 

device as Gura's implementation in 2007. Their 

implementation requires 10 million clock cycles for 

a 160-bit elliptic curve. The proposed 

implementation is still unsatisfactory, although it is 

faster than Gura's work. 

ATmega128 chips have limited capabilities 

causing ECC-signature generation takes more than 

70 seconds [22, 23]. Considering these constraints, 

application of elliptic curves with particular 

characteristics can lead to a faster signature 

generation. Recently, Chu et al. [29] utilized a 

particular group of curves called "Twisted Edward 

curves" in 2013. It leads to an efficient 

implementation that requires 5.9 million clock 

cycles for 160-bit curves on ATmega128. However, 

they used data-dependent branch conditions which 

are extremely weak against a group of attacks such 

as timing analysis, fault analysis, differential power 

analysis and electromagnetic analysis attacks [30]. 

3. SECURITY REQUIREMENTS IN 

WIRELESS SENSOR NETWORKS 

 

A large number of vulnerabilities, which are 

attributed to wireless sensor networks and other 

sensor network applications, pose several threats to 

a WSN protocol and thus make security into a 

critical issue for these networks. Intrusion, 

interception, modification and fabrication are 

considered among the most important instances of 

the aforementioned vulnerabilities [31]. 

Conceptually, the threats can be listed from diverse 

aspects. In previous research [28, 32-50], the threats 

have been listed accordance with the method 

employed to achieve attacks, the layer of the 

communication stack on which they are recognized 

and, finally, whether the malevolent node joins the 

network whilst the attack is in progress. Security 

issues in WSNs are categorized as follows: survey, 

cryptography, secure routing, key management, 

data aggregation, location aware security and 

attacks, as demonstrated in Figure 2. 

 

Figure 2. Subcategorized and categorized security 

areas in WSNs 

Different subcategories for security issues in 

WSNs are illustrated in Figure 2. Security 

requirements in WSN [51, 52] are divided into the 

following categories: 

1) Data Confidentiality 

2) Data Authentication 

3) Data integrity 

4) Data Freshness 

5) Data Availability 

6) Time synchronization 

7) Secure Group management 

8) Secure localization 

Consequently, the security issues in wireless 

sensor networks, which are divided into seven 

categories, not only control the network operation 

but also guarantee the availability of the whole 

network. The wireless environment, as an unguided 

medium, is more vulnerable to threats and attacks in 

comparison to wired networks. Deployment of 

security measures in wireless sensor networks is 

easier than wireless ad hoc networks because of 

their architectural aspects, namely centralized base 
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stations or sinks [53]. The number of attacks in 

WSNs can be considerable, in spite of the security 

and routing mechanisms. 

This paper addresses confidentiality and 

authentication. To provide these requirements, 

cryptography is the most common mechanism that 

has been designed thus far. A variety of 

cryptographic approaches have been considered, 

depending on symmetric and asymmetric 

algorithms. Symmetric cryptographic algorithms 

efficiently provide (the network with) 

confidentiality and satisfy the power, space and 

memory requirements of WSN [54]. However, 

authenticity and proper key exchange mechanisms 

are best accomplished by asymmetric algorithms. 

Asymmetric key algorithms are most commonly 

used in end devices such as mobile devices, smart 

cards and servers. There are many asymmetric key 

algorithms, such as Diffie-Hellman (DH) key 

exchange, ElGamal Elliptic Curve, ECC, Number 

Theory Research Unit (NTRU) and Rivest-

Shamim-Adleman (RSA).  

Elliptic curve cryptography is an approach to 

public-key cryptography based on the algebraic 

structure of elliptic curves over finite fields [55]. 

ECC is a method based on the discrete logarithm 

problem over the points on an elliptic curve. It is 

important to consider that ECC is based on Discrete 

Logarithm Problem (DLP) [56]. Currently, elliptic 

curve cryptography is used in three different areas 

in the science of cryptography: key agreement, 

encryption scheme and digital signature. ECC 

delivers the highest strength-per-bit of any public-

key cryptography [57]. Recently, NIST and many 

experts have recommended ECC to be used in 

Secure Socket Layer (SSL) and Transport Layer 

Security (TLS) protocols [58]. Furthermore, ECC is 

especially well-suited for constrained environments, 

such as end devices, because it provides low 

process time, low storage space, low bandwidth and 

low power consumption. As part of the effort to 

promote the widespread use of ECC, Sun 

Microsystems has donated ECC code to OpenSSL 

and Network Security Services (NSS) library; this 

brings ECC to the Apache web server and Mozilla 

browsers and many other products. 

4. OVERVIEW OF ELLIPTIC CURVE 

CRYPTOGRAPHY 

 

The idea of the deployment of elliptic curves 

based on finite fields for cryptosystems was first 

proposed by Kobitz [3]. Occasionally, elliptic 

curves can be defined on any desirable type of field, 

for instance, real numbers, rational numbers and 

complex numbers. However, elliptic curves used for 

cryptographic purposes are generally defined over 

finite fields; these fields include a finite number of 

elements, as their name implies, and are commonly 

referred to "Galois fields". In the case of 

cryptosystems that are implemented by elliptic 

curves, the feasibility, cost and speed of the system 

is determined mainly by their finite fieldF�, 

where	�	 � 	 ��. Moreover, finite fields proposed 

for elliptic curves that are used as cryptosystems are 

further classified as two types: 

1) Prime finite field F�where p is an odd prime 

number larger than 3. 

2) Binary finite field 	
�2� or F��. 

An elliptic curve E�F� consists of elements (x, 

y) and coefficients that satisfy Equation (1). 

� → ���,� ≔ ��, �, �, � ∈ 
� � �1,2,3,… , � " 1#; 4�& '
	27���)*+	� , 0|�� � �& ' �� ' �/ (1) 

With constants � � 0 and � � 0, it is noticeably 

easier to solve the DLP for the respective curve. 

These parameter choices are cryptographically 

weak, and as a result, are vulnerable to attack. To 

prevent various attacks, such anomalous curve 

attacks, Weil and Tate pairing attacks, Weil 

Descent, invalid curve attacks and small subgroup 

attacks, parameters selection has been a prolific 

area of ECC research for the last 25 years [56-58]. 

For each value of �, one needs to prove whether it 

is a quadratic residue. If it is a quadratic residue, 

then a couple of values in the elliptic group can be 

considered for y. Otherwise, the point is not 

contained in the elliptic group ����, �. The 

number of points on the elliptic curve  ����, � is 

represented by the order of elliptic curve, which is 

denoted by #E�F�. By considering that at least 

50% of numbers modulo p are quadratic residues, 

the number of points is predicted to be 

approximately�	 ' 	1. Additionally, the precise 

bound for the order of the elliptic curve has been 

suggested by Helmut Hasse, and it is known as 

Hassse's theorem [59]. Equation (2) represents that 

the order of an elliptic curve satisfies #E�F� 1
	�	 ' 	1 " 	2 where |2| 	1 2	3� ; 2 is named as the 

trace of �. 

�	 ' 	1 " 	2	3� 		1 	#��
� 	1 	�	 ' 	1	 ' 	2	3�   (2) 

According to this theorem, there are 

approximately � points with error bounded that are 

the sum of two complex numbers by 4�3�. The 

order of the group is established to all parties; one 

can generate a curve randomly and count its order 
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by Schoof's algorithm. This algorithm has 

methodologies in ECC, especially when it is 

valuable to judge the difficulty of solving the 

discrete logarithm problem in the group of points on 

an elliptic curve, in accordance to the number of 

points. The total complexity of Schoof's algorithm 

is 4�5*67�[60]. 

Conceptually, a finite field is composed of field 

elements (finite set of objects) and addition and 

multiplication operations that can be performed on 

��, � field elements. Addition and multiplication 

operations in elliptic curve cryptography can be 

considered as equivalent operations to modular 

multiplication in common public key 

cryptosystems, and likewise multiple additions are 

comparable to modular exponentiation. Section 3.1 

and 3.2 are dedicated to describing the point 

addition and scalar multiplication operations and 

also the arithmetic analysis of proper operations. 

4.1 Sections and Subsections 

 

Fundamentally, one of the basic conditions that 

should be satisfied by any cryptosystem is that the 

system should be closed. This implies that any 

operation on any element of the system has a direct 

effect on another element of the system [61]. In this 

regard, non-canonical addition and multiplication 

operations should be created. 

Two types of point representations introduced in 

elliptic curve cryptography are affine coordinates 

and projective coordinates. Affine coordinate 

systems are less complicated because they use the 

communication between two parties requiring the 

lowest bandwidth. An affine point on an elliptic 

curve E can be specified by its respective pair of 

finite field elements ��, � known as the affine 

coordinates for the point. No affine representation is 

allocated to the point at infinity  8[62]. The points 

located on the curve are represented by upper cases, 

whereas their lower cases illustrate integers. The 

addition of two points on the curve generates 

another point that lies on the curve. This operation 

is known as point doubling when the points are 

equivalent. This procedure is explored as pseudo-

code in Figure 3. 

Affine coordinate prompt division in every 

addition and every doubling operation requires 

fewer multiplications in comparison to Jacobian 

projective coordinates. Briefly, affine coordinates 

are unfavorable with modular inversion arithmetic 

operation, whereas Jacobian projective coordinates 

do not require division in either addition or 

doubling operations, and merely a single division is 

executed in the last stage of the elliptic curve 

exponentiation computation. Because the ratio of 

the computation amount of division in 
� to that of 

multiplication in 
� is generally larger than 9, in 

this particular case, the computation of the elliptic 

curve exponentiation can be executed faster in 

Jacobian projective coordinates than in affine 

coordinates. Here the so-called addition formula in 

Jacobian projective coordinates is proposed. Let an 

elliptic curve over 
� where � 9 3 be as below: 

�: �� � �& ' �� ' �	;�, � ∈ 
�		, 4�& ' 27�� , 0< 

 

Figure 3. Point addition pseudo-code 

For the elliptic curve, the Jacobian coordinate 

sets � � =
>?  and  � � @

>A, i.e. 

�: B� � C& ' �CDE ' �DF  (3) 

the addition formulae in Jacobian coordinates is 

as follows: Let G � �CH, BH, DH, I � �C�, B�, D� 
and G ' I � J � �C&, B&, D&. For point addition of 

two points in projective coordinates, let 

�CH, BH, DH 	'	�C�, B�, 1 	� 	 �C&, B&, D& then: 

C& �	K�– �M& ' 2CHM�,B& 	� 	K. �CHM�	–	C&	–	BHM&, 

D& �	DHM 

where O	 � 	C�DH�, P	 � 	B�DH&, M � O–CH  and 

K	 � 	P	–	BH. For point doubling in Jacobian 

projective coordinates, let 2�CH, BH, DH �
�C&, B&, D& then: 

C& � K, B& � M�O	 " 	K	– 	P, D& � 2BH. DH 

where  O	 � 	4CH 	' 	BH�, P	 � 	8BHE, M � 3�CH 	"
	DH��CH '	DH�  and K	 � 	"2O	 ' 	M�. 

The scalar multiplication of a point G by a 

natural integer R is denoted by SRTG. Therefore, RG 

can be calculated using Equation (4). 

 I � UG � G ' G '⋯ .'GWXXXXYXXXXZ
[\]^���_`a

  (4) 

Here, the point P is an established point that 

gives rise to an extended prime subgroup of ;
�<. G 

can also be a consummate member in this subgroup. 
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Suppose that b is the order of elliptic curve ��
�. 
Thus, the constant R is an integer that exists in 

the	S1, b " 	1T interval. A large number of 

cryptographic protocols have been designated, in 

which security relies on the hardness of computing 

the discrete logarithm over the rational points of an 

elliptic curve, such as ECDH, ECDSA, ECAES and 

ECEIGamal. In general, the only algorithms known 

to solve this problem are exponential-time 

algorithms, and among various computations of all 

protocols that are based on elliptic curves, the scalar 

multiplications are mostly responsible for 

consuming a lot of CPU time [63]. The scalar 

multiplication is known as the underlying operation 

of most of these protocols. Efficient scalar 

multiplication arithmetic is hence considered as a 

critical issue in cryptography. Fortunately, some 

characteristics of elliptic curves allow optimization 

of scalar multiplication. The interested reader is 

referred to [64] for a good overview of the question.  

The inquiry to discover a scalar multiplication 

algorithm from point addition and point doubling 

operations is comparable to computing an 

exponentiation from multiplications and squares. In 

the context of elliptic curves, binary exponentiation 

or binary scalar multiplication should be taken into 

account as an efficient and straightforward 

algorithm, which is also called the square-and-

multiply algorithm or double-and-add algorithm. 

The binary algorithm performs the process of a loop 

that scans the bits of the scalar and then executes a 

point doubling, and whenever the current scalar 

equals 1, the aforementioned operations are 

followed by a point addition. 

Let k be an integer with binary 

expansion�R_\H, … , RH, Rc�, that is to say, R �
	∑ Re2ee , where Re ∈ �0,1# for every f g b " 1 and 

R_\H � 1. The binary scalar multiplication of some 

point P by R can be perceived as follows. Defining 

he � S�R_\H, … , RH, Rc�TG, we get a backward 

sequence where h_\H � G, hc � SRTG and he �
2heiH ' ReG, which is a binary algorithm. (see 

Algorithm 1). 

Algorithm 1. Binary Algorithm 

Input:	G ∈ �;
�<, R � �R_\H, … , RH, Rc� ∈ o	
Output:	I � SRTG	
Jc ← G; JH ← G	
For	f � b " 2	downto	0	do	

Jc ← 2Jc	
If	Re � 1	then	Jc ← Jc '	JH	
End	for	
Return	Jc 

The preceding binary algorithms are efficacious 

and uncomplicated; however they are not safe in a 

condition where the scalar is secret and where the 

implementation is subject to Side-Channel Analysis 

(SCA) (e.g., a WSN that performs an ECDSA 

signature). Simple Power Analysis (SPA) can 

retrieve the secret scalar from a single leakage trace 

of a binary algorithm computation, even in the 

existence of data randomization. To oppose SPA 

successfully, Coron [65] suggested performing a 

dummy addition in the binary algorithm loop 

whenever the scalar bit is equal to 0.  

Further regular binary algorithms are introduced 

in the literature and involve attractive features, such 

as the Montgomery ladder [66]. This algorithm 

depends on loop invariants and the point registers 

Jc and JH. In the Montgomery ladder, the relation 

JH "	Jc � G is fulfilled at the last stage of every 

loop iteration (see also [66] for further details). 

Algorithm 2. Montgomery Ladder 

Input:	G ∈ �;
�<, R � �R_\H, … , RH, Rc� ∈ o	
Output:	I � SRTG	
set	GH ← G, G� ← 2G	
for	f � 2 " 2	downto	0	do	
						if	Re � 1		then	
									set	GH ← GH ' G�, G� ← 2G�;	
						else	
									set	G� ← GH ' G�	, GH ← 2GH;	
							end	
End	for	
I � GH 

 

Algorithm 3. Montgomery Scalar Multiplication 

Algorithm using Projective Coordinates 

Input:	G ∈ �;
�<, R � �R_\H, … , RH, Rc� ∈ o	
Output:	I � SRTG	
If	R � 0	or	� � 0	then	
				Output	�0,0	and	stop;	
End	
Set	CH ← �,	D_1 ← 1,	C� ← �E ' �,	D� ← ��;	
For	f � 2 " 2	downto	0	do	
				If	Re � 1	then	
�& ← ��H. D� ' C�. DH�, C& ← �. D& ' �CH. D�. �C�. DH	
DE ← D��. C��,	CE ← C�E ' �. D�E;	
DH ← D&, CH ← C&, D� ← DE, C� ← CE;	
				Else	
�& ← ��H. D� ' C�. DH�, C& ← �. D& ' �CH. D�. �C�. DH	
DE ← DH�. CH�,	CE ← CHE ' �. DHE;	
DH ← DE, CH ← CE, D� ← D&, C� ← C&;	
				End	
End 

As in GF(p), projective coordinates �C, B, D are 

proposed to eliminate costly inversions by � � =
> 
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and � � @
> from affine coordinates ��, �. The 

Montgomery scalar multiplication in projective 

coordinates is listed below in Algorithm 3. 

In Section 4.2, elliptic curve cryptography 

operations are investigated based on their respective 

arithmetic. Moreover, an analysis of the point 

operations algorithm was conducted. Finally, a 

detailed explanation of the Montgomery ladder 

algorithm based on such arithmetic is presented. 

4.2 Arithmetic Analysis 

 

General-form elliptic curves selected arbitrarily 

from the set of curves that satisfy�� � �& ' �� '
�, are the only curves considered in this paper. Note 

that particular forms of elliptic curves (e.g., Koblitz 

curves and Edwards curves) are also convenient, the 

performance advantages of which exceed those of 

general-form elliptic curves. 

Point addition formulae such as in Figure 3 rely 

on different operations over 
� (e.g., multiplication, 

inversion, addition, and subtraction), which are 

characterized by different computational expenses. 

In the current section, the computational costs of a 

field inversion, a field multiplication, a field 

squaring, and a field addition are denoted by I, M, 

S, and A, respectively. Furthermore, a field 

doubling and a field subtraction cost the same as a 

field addition. In the condition where � is a large 

prime number, it is often supposed that: 

1) The inversion cost is I ≈ 100M  

2) The squaring cost satisfies S ≈ 0.8M 

3) The addition cost is preferred to be ignored.  

These assumptions arise from the regular 

software implementations of the field operations. 

However, when the second one depends on a 

hardware coprocessor, for example, in the case of 

embedded systems, its costs are based on the 

architecture. Generally, the costs of inversion 

operations should always total some dozens of 

multiplications, the squaring should cost the same 

as one multiplication (possibly a bit cheaper), and 

the addition should cost substantially loss, but not 

always negligible [67]. The rest of this section 

involves the computational cost of different point 

representations in field operations terms. 

Furthermore, their memory usage should be taken 

note of, in terms of field registers, namely memory 

registers of size log��qbits that can storeF� 

elements. 

Algorithm 4. Jacobian Doubling Algorithm 5. Jacobian Doubling �� � "3 
Input: G ≡ �CH, BH, DH 
Output: 2G ≡ �C&, B&, D& 

Input: G ≡ �CH, BH, DH 
Output: 2G ≡ �C&, B&, D& 

1.hE ← hH� SCH�T 10. hF ← �hF S�DHET 1.hE ← h�� SBH�T 10.h& ← hH ' hH S2�CH� " DHET 
2. h� ← h�� SBH�T 11. hE ← hE '

	hF 

S3CH� ' �DHET 2.h� ← hHhE CHBH� � O 11.hH ← hH '	h& S3�CH� " DHET 

3. hH ← hHh� CHBH� � O 12. hE ←
��
�

 �3CH� ' �DHE
2

� P 

3.hE ← hE� BHE 12.hH ←
��
�

 �CH� " DHE
2 � P 

4. h� ← h�� BHE 13. hF ← hE� SP�T 4.h� ← h�h& BHDH � D& 13.h& ← hH� SP�T 
5. hF ← h&� DH� 14.h� ← hH '

	hH 

S2OT 5.hF ← h&� DH� 14.h& ← h& " h� SP� " OT 

6. hF ← hF� DHE 15.hF ← hF "
h� 

SP� " 2O
� C&T 

6.hH ← hH ' h& SCH ' DH�T 15.h& ← h& " h� SP� " 2O � C&T 

7. h& ← h�h& BHDH � D& 16.hH ← hH "
hF 

SO " C&T 7.h& ← h&'h& S2DH�T 16.h� ← h� " h& SO " C&T 

8. h� ← hE '
	hE 

S2CH�T 17. hE ← hEhH SP�O " C&T 8.h& ← hH " h& SCH " DH�T 17.hH ← hHh� SP�O " C&T 

9. hE ← hE '
	h� 

S3CH�T 18. hH ← hE "
h� 

P�O " C&
" BHE � B& 

9.hH ← hHh& SCH� " DHET 18.hH ← hH " hE P�O " C& " BHE
� B& 

When points are revealed in affine coordinates, 

the addition of two points includes an expensive 

field inversion. Fortunately, representing points in 

projective coordinates is a possible approach to 

prevent this cost expenditure on the intermediate 

point additions in scalar multiplication. In 

projective coordinates, a point P = (x, y) is implied 

by a triplet (X, Y, Z), where ��, � � �C/D� , B/
D` 	 for some given integers c and d. The Jacobian 

coordinates for which �	 � 	2 and +	 � 	3 are 

proved as the most widely utilized among the 

projective coordinates. These coordinates enable 

performing a fast point doubling, which is the most 

frequently used operation in a scalar multiplication 

algorithm. Let G	 � 	 �CH, BH, DH, the Jacobian 

doubling of G is defined as G	 ' 	G	 � 	 �C&, B&, D& 
where: 
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C& 	� 	P� 	" 	2O, B& 	� 	P�O	–	C&	–	BHE	�b+	D& 	� 	BHDH,   (5) 

with O	 � 	CHBH�, P	 �
H
� �3CH

� 	' 	�DHE.  

The Jacobian doubling is indicated in Algorithm 

4 for the general context and in Algorithm 5 for the 

case of a = −3.  For the latter special case, where a 

= −3, we have P	 � &
� �CH ' DH�	�CH	– DH�. This 

equality enables trading 1M+ 2S for 1M+ 1A in the 

computation of B. The former has a cost of 4M + 

6S + 7A and uses 6 field registers, whereas the 

latter has a cost of 4M + 4S + 9A and uses 5 field 

registers. 

Tetsuya Izu [68] illustrates that a loop iteration of 

the Montgomery ladder using (X, Z)-coordinates 

can only be executed in 11�	 ' 	4�	 ' 	2�� 	'
	18O, where �� denotes the cost of the 

multiplication by the curve parameter a (which is a 

small number of additions if � is small, e.g., a = 

−3). 

5. BASE POINT SELECTION ALGORITHM 

 

In context of the elliptic curve cryptosystems, the 

key security correlates with the rationality of the 

chosen base points [14]. Base point selection 

implies choosing a point with a large prime order 

over a given field. This point is in turn termed as a 

base point. This section of the paper concentrates 

mostly on the point choosing algorithm over �2_. 
In security terms, the author preferred to adopt the 

non-super singular curve. Commonly, the approach 

to base point selection is the random point selection 

on the elliptic curve, the success rate of which is 

#	��	
�2_	/	2�_ 		� 	 2\_[14]. During the point 

selection procedure, b is assumed as the order of	, 

where b is a large prime number. The order of 

elliptic curve is denoted by #��	
�2_	. Assume 

�����	���is a large prime factor of 	#��	
�2_ , 
there is a cofactor which satisfies 

� � 	#	��	
�2b		/	�����	���, where � 

represents a small integer. The optimum base point 

is achieved when  b	 � 	�����	���. 

Definition: If 	
	 � 		
�� , U	 � 	
��_ , 

� � ��( F is the subfield of K ), �	 ∈ 	
��_, 
equation (4) is termed the trace of α, denoted by 

Tr(α ) . 

Tr�/��α � α ' α� '⋯' α���� � ∑ α���\H
��c  (6) 

For ��	, when h���	 	� 0, �� ' � � � can be 

solved, and its solutions are   and  	 ' 1, ¡ is the 

element in K, and h��¡	 	� 1. 

Theorem: Let α ，¡ be the elements in field K, 

  � �¡� ' �� ' ��¡�? '⋯' �� ' �� '⋯'
¡����¡����, then   "  � � ���h��θ " θ "
θ;h��α– α<. 

The selection of the base point algorithm with the 

customary method is given in the following 

succession [69]: 

�e . Randomly pick up an element θ in the field K 

and compute	h��¡. If h��¡ 	� 1, switch to (�ee); 
else return  (�e) to restart; 

�ee . Randomly choose an element in K as	�. Let 

A= x, � �& ' ��� ' �, and the original equation is 

rewritten as �� 	' 	O�	 � 	P, let �	 � 	O�£. Again, 

the equation will be transformed to �′� 	' 	�′	 �
	P	/	O�.Let ¥	 � 	P	/	O�, the equation will be 

transformed to �′� 		' 	�′	 � ¥; 
�eee . Computingh��¥	, if �¥	 	� 	0, switch to 

(�e¦),otherwise switch to (�ee); 
�e¦ . Then, β and β +1 are the two solutions of the 

equation �′� 	' 	�′	 � ¥, and �H 	� 	O  and 

�� 	� 	O� 	 ' 1, so  ��, �H and ��, �� are the two 

points lying on the curve �� 	' 	��	 � 	 �& 	'
	��� 	' 	�; 
�¦. Randomly adopt a point from the points 

acquired in (�e¦) as P. If�����	���G � 	8 , the 

point G is one of the base points, otherwise, switch 

to (�e) to re-choose. 

The preceding algorithm is not an optimal 

algorithm because there might be a point hP	that 

fulfillsp¨�©�	���	�hP 	� 	8, if hP ∈ E�GF�2« 
and the point hP	is situated on the curve	E, and then 

the point hP is considered as one of the base points 

of the given curve. 

When the base point was selected via the 

customary method [14], it is apparent that, as the 

source data seed was chosen at random, there is a 

substantial number of reiteration calculating (�e), 
(�eee), and (�¦), which will in turn provoke an 

increase in the running costs of the computing time 

and algorithm complexity. 

5.1 YIN Algorithm 

 

In this section an introduction to the 

parallelization algorithm is presented, which uses 

(�	 ¬ 	1 and �)*+	2	 ≡ 	0) processors; it also 

greatly reduces the computing time consumption in 

the base point selection, base point judgment and 

consequently enhances the time efficiency of the 

algorithm. 
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Initially, a shared area in a system will 

necessarily be dedicated to save the template 

outcomes during the interlude of the calculation, 

before the algorithm begins. For this, three public 

tables are convenient in this algorithm  h��®¯ , 

h��®° and h��®�  which are intended to save ¡, 

the random points G and the base points 	, 

respectively. 

In the remainder of this section, the 

parallelization of the base point selection algorithm 

is explained briefly: 

To � processors, each processor �e , do: 

�e . Scan h��®¯ to perceive if there is data in 

h��®¯ , and if so, switch to �ee, otherwise, adopt an 

element ¡ in the field U, and compute h��¡. If 

h��¡ 	� 1, put ¡ into h��®¯, and messages the 

other processors that ¡ selection is completed so 

that the processors in running will not do any 

operations after this round; otherwise, message the 

other processors that this element cannot be 

reselected and return �e . 
After the above period is finished, all of the s 

processors are idle, therefore the � processors 

should be divided into two groups, each with ) (p 

= 2m) processors. The ) processors of the first 

group do as follows: 

�ee . Randomly choose an element in K as x. 

Message the other processors to omit x from the 

field, then let O � 	�,P � 	�& 	' 	��� 	' 	�. The 

original equation is rewritten as �� 	' 	O�	 � 	P, let 

�	 � 	O�′. Again, the equation is transformed to 

�′� ' �′	 � 	P	/	O� ,let ¥	 � 	P	/	O�. The equation 

is then transformed to �′� 	' 	�£ � ¥;	 
�eee . Compute h��¥. If h��¥ 	� 	0, switch to 

�e¦ , otherwise switch to �ee; 
�e¦ . The two solutions of the equation �′� 	'

	�′	 � ¥are β and β +1. Then �H 	� 	O  and 

�� 	� 	O� 	 ' 1, thus��, �H and ��, �� are the 

two points of the curve �� ' �� � �& ' ��� '
�,and ��, �H and ��, �� are in the public table 

h��®°; 

As the first groups of processors are performing 

the above operations, the other groups of 

)	processors conduct the following operations: 

�¦. Scan the public table h��®°to discern if it is 

vacant. If so, the processor will wait until h��®°is 

not empty. Select a point G from h��®°. If 

�����	���G � 	8 , the point G is the base point. Let 

	 � G, put 	 into the public table h��®�, then stop 

the algorithm ,messaging the other processors that 

the algorithm has been fulfilled; otherwise, continue 

on; 

�¦e . Calculate and ascertain if �G	 � 	8. If so 

,eliminate the point G from h��®°; if not ,let 

G	 � 	�G, then compute if G is the point lying on 

the given curve �� ' �� � �& ' ��� ' �. If so, let 

	 � G, put 	 into the public table h��®�,then stop 

the algorithm, and message the other processors that 

the algorithm has been finished; if not, return �ee . 
In [69], �¦ when G is not a an expected base 

point, the algorithm can still be continued to �¦e  in 

the parallel algorithm, then judge again (the nature 

of the field computation determines �¦e  feasibility). 

If G is still not the base point of the curve, we go to 

�ee , but not [69]�e . When the point adopted 

randomly is not the curve base point, it is not due to 

inappropriate	¡, but it is due to the �. Therefore, the 

parallel algorithm will go to �ee  here, rather than �e , 
which will increase the efficiency of the original 

algorithm by almost twice. 

6. ANALYSIS ON NON-PRIME ORDER 

ELLIPTIC CURVES 

 

Opting for a cryptographically secure elliptic 

curve in advance of the deployment of an elliptic 

curve cryptosystem assures the robustness of the 

cryptosystem against all recognized attacks which 

were noted in Section 3, e.g., anomalous curve 

attack, Weil and Tate pairing attacks, and small 

subgroup attack. If the order of the underlying 

elliptic curve possesses certain qualities, the 

cryptosystem can be protected against all of these 

attacks. Generating cryptographically secure elliptic 

curves over prime fields is among the most 

fundamental and complicated problems in elliptic 

curve cryptography. The approaches most 

frequently exploited for the generation of ECs over 

prime fields are the Complex Multiplication (CM) 

method [70] and the point counting method [71]. 

Let E be an elliptic curve over a finite field F� 

and assume that the order of elliptic curve #E�F�	 
is non-prime	n. 

#��
� 	� 	b	 � 	�� , 

Where r and � are the divisor of n (for cases of 

interest, h will be the divisor of n). The set of points 

on an elliptic curve constitutes a group under a 

particular addition rule. With this operation, the set 

of points on the elliptic curve is structurally an 

abelian group: the sum is associative and 

commutative, has an identity element (namely O) 

and every element 	 has an inverse "	 (the inverse 
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of O is itself). While working over a finite field, this 

group is inevitably finite (because the existing 

points are all finite).  

All of the equations included in Table 1 have 

respective non-prime order ECs. Table 1 shows the 

factorization of the elliptic curve order	#��
�. 
According to the information derived from Table 1, 

the set of all points order is generated via prime 

factorization of the positive elliptic curve order, 

along with their multiplicities. 

Table 1 illustrates the elliptic curve 

characteristics, such as equation, finite field, elliptic 

curve order, set of all points order and its number of 

elements that was subject to analysis. As well, the 

order of the appropriate elliptic curve accompanied 

by its factorization is listed in the fourth column. 

Among the contents of the fifth column, the main 

divisors of elliptic curve order are bold and thus 

they can be readily observed. Table 1 shows the 

order (number of elements) of all points 
�	H, 	�, … , 	_# of E that divide the order of the 

elliptic curve	#��
�; for instance, let � ∶ 	 �� �
�& ' 	�� ' 	� be elliptic curve defined over finite 

field �  with order 	#��
�. The factorization of 

	#��
� is as follows: 

��H
²� ³ ��

²? ³	�&
²A ³	…³ �́²µ 	; �H g �� g �&… g �́ , ¶ ¬

1/. 

All points order satisfying 	#��
� have prime 

divisors of elliptic curve order ��H, ��, … , �́ # or 

together with multiplicities. The number of divisors 

of	#��
�, which are demonstrated in the sixth 

column of Table 1, can be obtained by Equation (7). 

�¶H ' 1�¶� ' 1�¶& ' 1… �¶´ ' 1 (7) 

Suppose that finding a number of divisors of 48 

is desired. It is convenient to start with 1 and then 

continue by working through the set of natural 

numbers and testing divisibility in each case. Note 

that divisors can be listed in factor pairs. 

48 � 1 ³ 48 � 2 ³ 24 � 3 ³ 16 � 4 ³ 12
� 6 ³ 8 

It is clear that 48 has exactly ten divisors. It can 

also be easily perceived that by utilizing this 

approach (to prove the divisors of a number), it is 

only ever required to work from 1 up to the square 

root of the number. This method can be quickly and 

easily performed with small numbers; however, it is 

not practical for larger numbers. 

Let ¸�b be the number of divisors for the natural 

number, b. As an initial step the number is written 

as a product of prime factors: b	 � 	������ …	 and 

the number of divisors ¸�b 	� 	 �� ' 1�� '
1�� ' 1. 

Table 1. Non-prime order ECs and set of all points order. 

No �¹, º Finite 

Field » 

Elliptic curve 

Order #¼�½» 
Set of all points order Number of 

elements 

1 (26,460) 12323 12315 
{1,3,5,821} 

{1,3,5,15,821,2463,4105, 
12315} 

8 

2 (968,18) 971 970 

{1,2,5,97} 

{1,2,5,10,97,194,485,970} 8 

3 (143,410) 1031 1027 
{1,13,79} 

{1,13,79,1027} 4 

4 (274,355) 1433 1430 

{1,2,5,11,13} 

{1,2,5,10,11,13,22,26,55, 

65,110, 130, 143, 286,715,1430} 

16 

5 (134,2538) 145177 145157 
{1,379,383} 

{1,379,383,145157} 4 

6 (46521,24508) 11210447 11210413 

{1,59,251,757} 

{1,59,251,757,14809,44663, 

190007,11210413} 

8 

7 (65179,32293) 530228077 530228063 
{1,1327,863,463} 

{1,463,863,1327,399569, 
614401,1145201,530228063} 

8 

8 (174,2120) 29753 29749 

{1,71,419} 

{1,71,419,29749} 4 

9 (1008,1825) 104827 104807 
{1,311,337} 

{1,311,337,104807} 4 

10 (573,523) 687893 687891 

{1,3,467,491} 

{1,3,467,491,1401,1473, 

244027, 687891} 

8 

 

To prove this, at first, numbers of the form 

b	 � 	�� are taken into account. The divisors 

are	1, �, ��, … , ��, that is, ¸��� � � ' 1. 

b � �� � 1, �, ��, … , ��WXXXYXXXZ
�iH
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In this step, considerb	 � 	����. The divisors 

will be as bellow: 

1 � �� … ��
� �� ��� … ���
��
⋮
��

���
⋮

���

���� …	 ����
⋮								⋮							⋮	

���� … ����

 

Therefore, it is proved that the function ¸�b is 

multiplicative and in this case, is computed 

by¸����� � �� ' 1�� ' 1. This can be 

extended any natural number that is written as a 

product of prime factors. 

Table 2. All possible points order over�:	�� � �& '
	26� ' 	460 

Point G(x, 

y) 

Order of 

point 

#G(x, y) 

Set of all points 

order 

8 1 {1,3,5,15,821,2463,41

05,12315} 

(10829, 5267) 3 {1,3,5,15,821,2463,41
05,12315} 

(3272, 3635) 5 {1,3,5,15,821,2463,41

05,12315} 

(1118, 5846) 15 {1,3,5,15,821,2463,41
05,12315} 

(6, 1154) 821 {1,3,5,15,821,2463,41

05,12315} 

(3, 3461) 2463 {1,3,5,15,821,2463,41
05,12315} 

(21, 4629) 4105 {1,3,5,15,821,2463,41

05,12315} 

(2615, 4332) 12315 {1,3,5,15,821,2463,41
05,12315} 

Suppose �	 � 	12323 and let the elliptic curve 

be�:	�� � �& ' 	26� ' 	460. The order of E is 

#��
� � 12315, which is factorized to	12315 �
3H ³ 5H ³ 821H. All points order fulfilling E have a 

prime factor of elliptic curve order or together with 

multiplicities. Hence, the feasible order 

probabilities of each point are only (1+1) (1+1) 

(1+1)=8={1, 3, 5, 15, 821, 2463, 4105, 12315} 

values. Table 2 illustrates several points on elliptic 

curve� ∶ 	 �� � �& ' 	26� ' 	460	 along with their 

respective order. 

7. MATHEMATICAL DEDUCTIVE 

ARGUMENT 

 

Definition: If G is a finite group (or subgroup) 

then the order of 	is defined as the number of 

elements of G. 

Scientific evidence for the idea will be given by 

proving that the cosets of a subgroup have the 

following features: 

1) they are disjoint – separate cosets do not 

have any member in common, and 

2) each coset has an exactly identical number 

of members as the subgroup . 

This represents that a subset with belements has 

Rcosets and each coset hasb elements; and because 

these cosets do not overlap and together they 

include every element in the group, the group must 

have Rbelements (a multiple of b). Three lemmas 

will lead to the proof. 

Lemma: Suppose that	À is one subgroup of a 

group 	, and let �, � ∈ 	 Then 

(i) �À	 � 	�À ⟺ �\H� ∈ À. 
(ii) If �À ∩ �À , Ã,	then �À	 � 	�À. 
(iii) |�À| 	� 	 |À| for all � ∈ 	. 

Proof: 

(i) Let �À	 � 	�À, then for any �H ∈ À 

there is �� ∈ À with ��H 	� 	���. This 

yields 

�\H�	 � 	���H\H ⟹ �\H� ∈ À, 
because �� ∈ À and �H\H ∈ À. Let �\H ∈ À. Put 

�\H�	 � 	�c. Then, 

�À ⊂ �À, because if � ∈ �À, then �	 � 	�� ⟹
�	 � 	���\H��	 � 	� �c�Æ

Ç?

� 	��H ∈ �À, 

�À ⊂ �À, becasue if � ∈ �À, then �	 � 	�� ⟹
�	 � 	���\H�\H�	 � 	� �c\H�È

Ç?

� 	��� ∈ �À. 

so, �À ⊂ �Àand �À ⊂ �À, which gives 

�À � 	�À. 

(ii) Let �À ∩ �À , ∅,	, then there exists 

an element x with	
� ∈ �À ∩ �À ⟹ ��H � 	�	 � 	��� ⟹ �\H�	

� 	���H\H ∈ À, 
so �À	 � 	�À by (i). 

(iii) Consider that if �Hand ��are two 

distinct elements from H, then ��Hand 

���are also distinct, because 

otherwise	
��H � 	��� ⟹ �\H��H � 	�\H��� ⟹ �H � ��, 

which is a contradiction. Therefore, if all 

elements of À	are multiplied by �,  the same 

number of elements will be attained, 

namely|�À| 	� 	 |À|. 
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Suppose that|	| � 2	 and 

��HÀ, ��À,… , �ÊÀ# 
is the family of all cosets of À in 	. Then 

	 � ��HÀ ∪ ��À	 ∪ …	∪ �ÊÀ# 
As 	 � ��H, ��	, … , �Ê# and 1 ∈ À. By 

considering part (ii) of the preceding Lemma for 

any two cosets �eÀ	and �ÌÀ , only two possibilities 

exist: 

�eÀ ∪ �ÌÀ � ∅ or �eÀ � �ÌÀ. 

Furthermore, from part (iii) of the Lemma above, 

it is concluded that all cosets have exactly |À| 
number of elements. So 

|	| � |À| ' |À| ' ⋯' |À| ⟹	 |	| � +|À|, 
and the result is accomplished. 

If H is a subgroup of a finite group G, then the 

following statement is correct. 

|À| divides |	|. 
Corollary: If � is a prime, then every group 	 of 

order � is cyclic. 

Proof: Pick up� ∈ 	with � , 1, and suspect that 

À � 〈�〉 is the cyclic subgroup that is generated by 

�. As a result, |À| is a divisor of |	| � �. Because 

p is a prime and |À| 9 1, it is achieved that 

|À| � � � |	|, 
and therefore	À � 	, as demanded. 

In conclusion, the orders of elements in a finite 

group are divisors of the group order. Therefore, if 

and only if the order of group �;
�< is a prime 

number�, then the two feasible orders are 1 and�. 

In this context, the identity (point at infinity	8) has 

order 1 and no other elements. Therefore, �is 

regarded as the prime order of all remaining 

elements. 

8. EFFICIENCY COMPARISON 

This section represents a comparison between the 

elliptic curves that are generated by respecting the 

condition that “the order of the curve should be a 

prime number” and non-prime order elliptic curves, 

which fail to satisfy the condition, in terms of 

number of secure base points. According to the 

principal breakthrough achieved in the investigation 

and analysis conducted on over 10000 non-prime 

order elliptic curves ,the number of secure points 

#N over non-prime order elliptic curves equals  
#¨
�  

in the optimum case; however, #N over prime order 

elliptic curves always follows #N= #E. A 

comparison between some non-prime order ECs 

and some prime order ECs is conducted by 

demonstrating information about elliptic curve 

characteristics, the order of elliptic curves, the set of 

all points order and the number of secure points 

over the proper EC in Table 3. All prime order 

elliptic curves in Table 3 are highlighted in green. 

By considering the information illustrated in 

Table 3, one can conclude that a greater number of 

secure points is provided by prime order ECs in 

comparison to non-prime order ECs such as 

y� � x& ' 274x ' 355		�mod	1433, with an 

identical finite field size. Therefore, those elliptic 

curves with prime order should be predominantly 

chosen whenever obtaining an optimal number of 

secure base points is demanded. Moreover, any 

point on elliptic curves with prime orders can be 

readily selected as a secure base point by users; this 

property of ECs with prime orders justifies their 

greater efficiency in base point selection in 

comparison to non-prime order elliptic curves. 

Basically, many arithmetic operations are 

involved in ECC, such as point addition, modular 

inversion and scalar multiplication. Among these 

operations, scalar multiplication not only consumes 

a significant portion of time and energy but also 

plays an important role in determining the speed of 

ECC implementation. Whenever scalar R in scalar 

multiplication R	 (where 	 denotes base point) has 

a large value, a crucial step to a fast implementation 

of ECC is to choose an efficient algorithm for 

computing the scalar multiplication from the 

various algorithms proposed. The scalar 

multiplication is considered as the most complex 

part of ECC applications irrespective of the 

algorithm used for scalar multiplication; because it 

requires a repetition of point additions and point 

doublings along with necessary inversions over the 

finite prime field [64]. Table 4 shows time 

consumed to calculate b-bit scalar multiplication 

R	 (b � Ólog� �Ô) in different standard ECs where 

� is finite prime field and the size of scalar R is 

equal to b. All computations are performed on a 1.6 

GHz Core™ i5-4200U CPU with 4 GB RAM and 

are implemented by using C# programming 

language (Visual Studio 2010) with no 

mathematical library. Moreover, the method used 

for scalar multiplication is left-to-right binary 

method. 

Among the base point selection algorithm steps, 

scalar multiplication demands longer time to be 

executed; it takes about 272 ms to compute the 

scalar multiplication when the size of EC is 512 bits 



Journal of Theoretical and Applied Information Technology 
 20

th
 September 2015. Vol.79. No.2 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
248 

 

as shown in Table 4. Thus, our study should focus 

on minimizing this step of the algorithm in order to 

minimize the time consumption of base point 

selection algorithms in EC defined in the affine 

space. 

Table 3. Comparison between non-prime order ECs and prime order ECs in terms of secure points number 

No. �¹, º, »	 Elliptic curve 

Order #¼�½» 
Set of all points order Number of 

Secure 

Points(#N) 

Percent 

Point 

Cover 
1 (26, 460, 12323) 12315 

{3,5,821} 

{3,5,15,821,2463,4105,12315} 3281 26% 

2 (999, 520, 135497) 135479 

{1,135479} 

{1,135479} 135479 100% 

3 (968, 18, 971) 970 
{2,5,97} 

{2,5,10,97,194,485,970} 192 19% 

4 (143, 410, 1031) 1027 

{13,79} 

{13,79,1027} 468 45% 

5 (974, 521, 84389) 84377 
{1,84377} 

{1,84377} 84377 100% 

6 (274, 355, 1433) 1430 

{2,5,11,13} 

{2,5,10,11,13,22,26,55, 

65,143,286,715,1430} 

241 16% 

7 (134, 2538, 145177) 145157 
{379,383} 

{379,383,145157} 72198 49% 

8 (46521, 24508, 

11210447) 

11210413 

{59,251,757} 

{59,251,757,14809, 

44663,190007,11210413} 

5481001 48% 

9 (57179, 520, 
183467569) 

183467539 
{1,183467539} 

{1,183467539} 183467539 100% 

10 (584, 521, 84653) 84649 

{1,84649} 

{1,84649} 84649 100% 

 

Table 4. The time consumption of scalar multiplication 

Size 160 

bit 

192 

bit 

224 

bit 

256 

bit 

320 

bit 

384 

bit 

512 

bit 

Time 

(ms) 

24.9 35.1 47.1 62.2 99.0 176.
5 

272.
1 

In the last step of the base point selection 

algorithm, we must ascertain that the selected base 

point is highly secure by proving whether the order 

of the point equals to the order of the curve or not; 

this step is performed by computing scalar 

multiplication and a point with an order equal to the 

order of the elliptic curve is confirmed as a secure 

base point. However, not only the time 

consumption of these operations is considerably 

high, but also these operations usually should be 

repeated in a base point selection process. These 

repetitions increase the time consumption by 

several folds. It can be seen from the results of last 

section that every point on the curve has the same 

order as EC whenever the order of chosen EC is a 

prime number. In this case, the second phase of the 

base point selection algorithm can be readily 

omitted. Figure 4 demonstrates a comparison 

between two base point selection methods; the 

random base point selection algorithm comprises 

the second phase, but this step is omitted in the 

proposed method. As the size of EC increases, the 

ratio of the time consumption of current method to 

the time consumption of proposed method 

decreases. This reduction is from approximately 6 

to 4 in 160- to 512-bit EC. 

As illustrated in Figure 4, time consumption of 

base point selection algorithm dramatically is 

decreased by omitting the fourth step which 

requires computation of scalar multiplication. 

Removing this step reduces the time consumption 

of the base point selection algorithm by about 24.8 

ms in a curve with the size of 160 bits and about 

272.1 ms in a 512 bit curve. In other words, 

choosing an elliptic curve with a prime order 

(especially having a large size) reduces the time 

consumed to perform the base point selection 

algorithm. 
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Figure 4. Efficiency comparison 

9. CONCLUSION 

Elliptic curve cryptography has an advantage 

over the other asymmetric cryptographic systems 

because it provides a higher security per bit for 

extremely constrained applications such as wireless 

sensor networks. This property of elliptic curve 

cryptography is exploited in portable constrained 

devices. Moreover, ECC even surpasses other 

asymmetric cryptosystems in exhibiting enhanced 

security with shorter bit sizes. Shorter key length in 

turn results in: 1) saving power and bandwidth, 2) 

performance improvements, 3) lower space 

requirements for key storage and 4) quicker 

arithmetic operations. In summary, by incorporating 

the ECC-based algorithms into existing protocols, a 

constant backward compatibility and security is 

accomplished with smaller resources. However, 

these above-mentioned positive features of ECC in 

WSNs are confined to those elliptic curve 

cryptosystems that have appropriate underlying 

elliptic curves with proper parameters (e.g., base 

point with small order is not cryptographically 

secure). In this regard, choosing a proper elliptic 

curve has evolved into a critical issue in WSNs use 

because the recent sensor devices have restricted 

computational power and are intended to monitor 

the security of military facilities. In this paper, an 

efficient type of elliptic curve for WSNs, termed as 

prime -order elliptic curve, is proposed. Analysis 

are applied on secure base point numbers of prime- 

order elliptic curves and then on non-prime order 

elliptic curves in succession. According to the 

results of the analyses, any point on prime order 

ECs can be selected as base point for secure 

communication. 

Thus, the two following reasons are proposed to 

justify the suitability of elliptic curves with prime 

order (cofactor = 1) for WSNs. First, prime order 

elliptic curves provide quick and uncomplicated 

base point selection in hardware. Furthermore, these 

elliptic curves bring low area complexity required 

for secure resource constrained environments; i.e. in 

certain cases, even nodes, without considering 

security aspects, can automatically select any point 

as a base point randomly. On the other hand, non- 

prime order elliptic curves are recommended by 

some security agencies, such as NIST. The next 

attempt in the paper is an explanation for the 

mathematical deductive argument to provide 

reliable evidence to confirm the accuracy of the 

achievements. 

Finally, possible directions for future research are 

discussed. Elliptic curve cryptosystems (e.g., 

ECDSA) generally entail modular integer 

arithmetic in addition to elliptic curve operations. 

This requirement for two types of arithmetic (binary 

field and modular integer) creates challenges for all 

systems using binary curves in constrained 

environments. Recently some high-speed hardware 

architectures have been proposed [72-74] but none 

of them is practical for extremely constrained 

applications due to conversions between integers 

and ¸-adic representations in Koblitz curves. 

Extremely constrained applications typically require 

careful fine-tuning (e.g., by fixing certain 

parameters) of the cryptosystems that are used in 

the application, and these aspects should be taken 

into account when considering different 

cryptosystems for the application. 
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