
Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

83

EFFICIENT ROUTING OF LOAD BALANCING IN GRID
COMPUTING

MOHAMMAD H. NADIMI-SHAHRAKI*, FARAMARZ SAFI, ELNAZ SHAFIGH FARD

Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran
nadimi@iaun.ac.ir, fsafi@iaun.ac.ir, shafighfard@azaruniv.edu

ABSTRACT

In this decade, grid computing is a well-known solution for applying a large collection of connected
heterogeneous systems and sharing various combinations of resources. It creates a simple but large,
powerful and self-managing virtual computer, which leads to the problem of load balancing. The main goal
of load balancing is to provide a distributed and low cost scheme that balances the load across all the
processors. In this paper, a new load balancing algorithm named optimal anti-directed chord is proposed. In
this overlay structured network that load information and processes among nodes have been organized for
tradeoffs (load balancing), reaching time to a particular process or entity is reduced because of
anticlockwise movement. Experimental results show that the proposed method reduces reaching time by
33% in comparison to simple chord and 16% ABC method.

Keywords: Load Balancing, Grid Computing, Anti-Clockwise-Direction Chord.

1. INTRODUCTION

Recent researches in computing architectures
allowed the emergence of a new computing
paradigm known as Grid computing. Grid is a type
of distributed system which supports the shared and
coordinated use of resources, independent of their
physical type and location. This technology allows
the use of geographically distributed and multi-
owned resources to run large-scale applications like
meteorological Simulations, data intensive
applications, DNA research, and very important
projects like SETI@home [1]. Grid computing [2]
is a type of parallel and distributed system that
enables the dynamic distribution, selection and
aggregation of geological resources in run time
depending on their availability, capability,
performance, cost, and user quality of self-service
requirements. In Grid computing, individual users
can retrieve computers and data transparently
without taking into account the location, operating
system, account administration, and other details.
Furthermore, in Grid computing, the details are
abstracted and the resources are virtualized.

Reaching time is a very important factor in
distributed systems. Considering this factor in chord
[3] that is a structure looking for an item in
clockwise direction, reaching time might suffer.
Reaching time is important because it can influence
the response time. Therefore, in this paper an
efficient algorithm named optimal anti-directed
chord is proposed to reduce the looking time to

have a good response time. This algorithm firstly
determines whether the search must be done
clockwise or anti-clockwise. In fact the main
objective of this work is reducing the reaching time
in comparison to chord and ABC method which is a
kind of P2P overlay network.

The rest of paper is organized as follows. In
section 2, background of load balancing and its
algorithms are considered. In section 3, related
works are presented. In section 4, our proposed
anti–directed chord algorithm is introduced. In
section 5, we present the evaluation of proposed
algorithm and its comparison with the simple chord
and ABC method that dramatically reduces
reaching time (hopes) in entities and processes
among nodes in grid computing. Finally, the last
section is to discuss about conclusions and future
works.

2. RELATED WORK

The goal of load balancing is to fully utilize the
computing power of multiple hosts without
disturbing the user and improve the overall
performance, regardless of the number of hosts
available in the background. Besides, load
balancing aims to ensure that the workload is fairly
distributed among the nodes and that none of the
nodes are overloaded or under loaded. Basically,
there are two load balancing strategies which are
static load balancing and dynamic load balancing.
Static load balancing [4], [6] makes the balancing
decision at compile time, and will remain constant.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

84

However, the dynamic load balancing makes
more informative decisions in sharing the system
load based on runtime state. Comparatively,
dynamic load balancing has the potential to provide
better performance than static load balancing.
Dynamic load balancing [5], [6] is based on
runtime state, and needs to process the collected
information with firm procedures. The balancing
procedures are placed in the dynamic load
balancing policy. It contains a set of rules referred
by the system to run and to employ dynamic load
balancing for better performance.

The distributed hash tables or DHT is the basic
core of the load balancing. The authors developed
algorithms that completely rely on the
implementation of the underlying DHT without
making any programmable change to it. They are
using CHORD in their example. CHORD was one
of the first which used the virtual servers to
improve node imbalance. Many literatures aim to
improve the routing load on structured P2P based
on Chord algorithm such as a collaborative file
system CFS [7], low latency and high throughput
user net DHT [8], Back-Up chord for P2P file
sharing over MANETs [9], a geographic hash table
(GHT) for data-centric storage [10], low overhead
Usenet server User net DHT. In [11], M.
Bienkowski et al utilize methods to manipulate the
peer ID generating procedure to ensure peers’
interval lengths differ at most by a constant factor
to mitigate one of the designing issues. In [12], P.
B. Godfrey and I. Stoica use virtual server’s
instantiated by physical node to act as peers in the
network. Once a node becomes heavily loaded, it
transfers some of its virtual servers to a proper node
with fewer loads. It also imports virtual servers
[13]. However, above proposals suffer from high
maintenance overhead and extra complexity. Paper
[14] presents a different way by selecting finger
peer dynamically among certain local area. This
simple enhancement of finger selection mechanism
improves load fairness on Chord substantially and
in last work [15] B. Hu, X. Zhang and X. Zhang
called ABC method that is a dynamic load
balancing mechanism, It also has the advantage of
average 1-2 hops of lookup and better effect of load
balancing.

Although there have many works have been
proposed to distribute workload fairly among the
nodes, they do not fulfill the need of short reaching
time. Therefore, in the next section Chord protocol
is investigated and then an efficient algorithm is
proposed to reduce the reaching time in comparison
to chord and ABC method.

3. ANTI-CLOCKWISE CHORD PROTOCOL

3.1 Chord Protocol

The Chord protocol supports just one operation:
given a key, it maps the key onto a node.
Depending on the application using Chord, that
node might be responsible for storing a value
associated with the key. Chord uses a variant of
consistent hashing to assign keys to Chord nodes.
Consistent hashing tends to balance load, since
each node receives roughly the same number of
keys, and involves relatively little movement of
keys when nodes join and leave the system.

Chord protocol is a structured p2p that can
balance processes or entities among all nodes which
cooperate with each other. The paper shows how
chord can work.

3.2 Chord Structure

Chord improves the scalability of consistent
hashing by avoiding the requirement that every
node should know about every other node. A Chord
node needs only a small amount of “routing”
information about other nodes. Because this
information is distributed, a node resolves the hash
function by communicating with a few other nodes.
As shown Fig 1, in an N-node network, each node
maintains information only about O (logN) other
nodes, and a lookup requires messages. Chord must
update the routing information when a node joins or
leaves the network; a join or leave requires O (log
n^2N) messages.

Figure1. Fingers Sketch

A very small amount of routing information
suffices to implement consistent hashing in a
distributed environment. Each node needs to be
only aware of its successor node on the circle.
Queries for a given identifier can be passed around
the circle via these successor pointers until they
first encounter a node that succeeds the identifier;

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

this is the node the query maps to. A portion of the
Chord protocol maintains these successor pointers,
thus ensuring that all lookups are resolved
correctly. However, this resolution scheme is
inefficient: it may require traversing all nodes to
find the appropriate mapping. To accelerate this
process, Chord maintains additional routing
information. This additional information is not
essential for correctness, which is achieved as long
as the successor information is maintained
correctly. As is shown in the Fig 1, successor is a
node that stores information about other nodes; for
example, node 0 is 6’s successor.

4. OPTIMAL ANTI-DIRECTED CHORD

Chord offers an efficient structure for load
balancing. Besides, it can lookup item from their
key among other nodes. However, pure chord is not
good because it is in one direction and its reaching
time can be longer. Therefore an Anti-Clockwise
Direction Protocol is proposed to solve this
problem even in clockwise direction. It is expected
that its results are equal to those of pure chord. This
protocol is as follows:

1- In optimal chord, in all situations such as
crashing, failure or leaving node, mobile agents
present in any node can send messages to any
successor and predecessor node to update their
finger table.

2- For solving the second problem, second finger
table must be created for anticlockwise direction
according to some rules.

4.1 Assumptions

For using this protocol, we assume that:

- Each node n’ maintains a routing table with up
tom entries (the number of bits in identifiers),
called finger table.

- The ith entry in the table at node n contains the
identity of the first node s that succeeds n by at
least 2i-1 on the identifier circle.

- To look up O (logN), messages must be
exchanged.

- For adding or removing a node from the network,
it can get O (loglogN) messages.

4.2 The hypothesis

There is a hypothesis as follows: to reach to the
key of any data item, there are two routes, one of
which is related to the position of start node that
can be more optimal than the other one.

- Before finding the key, algorithm under codes
must be attached: The maximum active number
(2^m) div 2=j

- If (key - node start)> j => looking up must move
in anti-clockwise direction.

Fig 2 is to illustrate this hypothesis for looking
up k54 in clockwise direction, there are three
hopes, but in anti-clockwise direction, there is one
hope. So, in one of the directions, the number of
hopes can be decreased. Thus, to achieve this
optimal reaching time, we need two finger tables:
first anticlockwise direction finger table, and
second, clockwise direction finger table.

Fig 2. The Number Of Hopes For Looking Up K54 In
Clockwise Direction Compared With Anti-Clockwise

Direction

4.3 Creating anticlockwise direction

There are following steps to create the
anticlockwise direction.

- Find m as the count of maximum number of
identifier rings.

- Result = N –2^ (k-1), 1<=k<=m

- If result is negative then N= 2^m +result

To find key in clockwise direction, the start node
tries to find address node which is the maximum in
its finger table smaller than key. However, in anti-
clockwise direction, the start node looks for another
node in its finger table that is bigger, and the closest
one to key. Table 1 shows new finger table for
optimal chord. As chord protocol shown, in finger
table, successor and predecessor are very important
for look up keys in their finger table.

- Finger [k]: first node on circle that succeeds (n+2^
(k-1)) mod 2^m, 1<=k<=m

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

- Successor: the next node on the identifier circle:
finger [1].node.

- Predecessor: the pervious node in the identifier
circle.

Table1. Enhanced Finger Table For Optimal Chord

Finger table For
anticlockwise

N8-1 N7

N8-2 N6

N8-4 N4

N8-8 N0

N8-16 N56

N8-32 N40

In summarize, there are two following main
differences between Anti-clockwise Algorithm and
Clockwise Algorithm.

1- After considering m (identifier bit) in clockwise
chord, active id node +2^ (k-1), reverse in anti-
clockwise chord active id node, is subtracted from
2^ (k-1) because our chord tries to look up entity or
processes that are anti-clockwise.

2- In anti–clockwise chord, it is important that the
value of upper bound interval node be put in other
nodes. But in clockwise chord, it is important that
the value of lower bound interval node be put in
other nodes.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Experiments have been done in Mini laptop with
the following properties: intel®Atom™ Cpu N270
@ 1.60GHz with memory of 1.00GB. Matlab is
adaptive software for this kind of algorithms that
need considerable computing function. Then, the
algorithm has been implemented in such an
environment.

5.2 The Number Of Hopes

In the first experiment, to prove that anti-
clockwise has less hopes than simple chord in
reaching the same point, we consider a distributed
system in which m=7, the count of active nodes is
10 ,and from lower to upper active, nodes are
[32,40,52,60,70,79,80,85,102,113]. The experiment
was repeated four times. The input parameters were

nodes, and they were independent variables. The
numbers of hopes comprise our output. The
variables were dependent and relative. Fig 3shows
that, to reach node 39 from node 70 in anti-clock
wise chord (by the propose algorithm), we need just
one hope because by reaching to node 40 (active
node), node 39 is saved there in clockwise chord
with two hopes: 32 and 40. Then we can reach to
node 39. As shown in Fig 4, the first experiment is
run again for reaching to node 65 from node 80. In
the proposed algorithm, node 70 should save
information about node 65 in system load
balancing. This is because, with calculation of node
65, we need two hopes. But in clockwise chord
from node 80, node 32 must be met, after that node
70, and then node 65. So, in this process, there is
one hope more than the number of hopes in anti-
clock wise chord.

In the second experiment, our identifying space
has 6 bits, and our input parameters (active nodes)
are [1, 8, 14, 21, 32, 38, 42, 48, 51, and 56]. Like
the previous experiment, nodes are independent
variables, and the number of hopes is our output.
Also, the variables are dependent and relative. In
this evaluation, in anti-clockwise direction,
reaching from N54 to N8 with 1 hope is possible.
On the contrary, in clockwise direction, the process
is possible only with 3 hopes because N56 contains
the information about N54. Fig 5 shows that, to
reach to node 54 from node 8 in by using the
proposed algorithm, we need 1 hope. But in
clockwise direction chord, we need 3 hopes.

5.3 The Effectiveness Of Proposed Method

The goal of this experiment is to evaluate the
effectiveness of proposed method and effect of load
balancing. We have implemented both Chord and
ABC and in each experiment, addition load are
timed by a random Poisson process ranged in
[1...1000]. The network delay is set to 10. The main
operations of our Mechanism are as follows.

In the third experiment, we investigate the
efficiency of proposed work in compared to ABC
algorithm and chord method. We study the average
lookup hops with varying the initial number of
peers at different rate of joining peers. The load is
varying with inserting 5 objects per second. Fig 6
shows the average lookup hops with peers in the
steady state. We observe that the average lookup
hops is 1-2 hops round from Fig 6, the reason is that
every peer has almost the whole ring routing
information. Thus, the average lookup is obviously
shorter than O (logn) in Chord protocol.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

In the fourth experiment, we consider a network
consisting of 1,000 peers and the load distributed in
[1 ... 1,000] by random. For each value, we pick up
the average of three times in experiments. To assess
the performance of proposed work, we compare our
algorithm with ABC and Chord algorithm. Fig. 7
shows the maximum number of loads under
continuing to insert objects while peers are in
steady state.

6. CONCLUSION AND FUTURE WORK

In this paper, the concept of grid computing and
the challenge of load balancing has been addressed.
In load balancing, we showed that chord structured
system has a very important role in representing
load balancing information among nodes. This
report proposed anti-clockwise direction lookup
algorithm based on the Open Chord simulation
platform. We built anti finger table by changing
some algorithms derived from clockwise chord that
we simulated in Matlab. Our proposed method can
reduce reaching hopes down to 1/3 times, about
33% improvement in comparison to simple chord
and 16% improvement in compared to ABC
method. The future works can be to improve the
algorithm, and to implement lists of paths where the
source node can be connected to target node by
choosing the shortest path among its connected
nodes using that list.

Acknowledgment: The authors would like to thank
Islamic Azad University, Najafabad branch for
supporting this research.

REFRENCES:

[1] I. Foster, and C. Kesselman, the Grid: Blueprint
for a new Computing Infrastructure, 2nd ed.:
Morgan Kauffman publishers, 2004.

[2] M. Bote-Lorenzo, Y. Dimitriadis, and E. Gomez-
Sanchez, “Grid characteristics and uses: a grid
definition,” in Proc. 1st European Across Grids
Conference (ACG’03), 2004, pp. 291-298.

[3] I. Stoica, R. Morris, D. Karger, M. Kaashoek,
and H. Balakrishnan.Chord: A scalable peer-to-
peer lookup service forinternet applications. In
Proceedings of ACM SIGCOMM, 2001,
pp.149–160.

[4] A.N.Tantawi, and D. Towsley, “ Optimal static
load balancing in distributed computer
systems,” Journal of Association for
ComputingMachinery, Vol. 32, No. 2, April
1985, pp. 445-465.

[5] J. 1Xu, and K. Hwang, “Heuristic methods for
dynamic load balancing in a message-passing
multicomputer,” Journal of Parallel and
Distributed Computing, Vol. 18, 1993 pp. 1-13.

[6] S. K. Goyal, R. B. Patel, and M. Singh,
“Adaptive and dynamic load balancing
methodologies for distributed environment: a
review,”International Journal of Engineering
Science and Technology (IJEST), vol. 3, no. 3,
2011, pp. 1835-1840.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris
and I.Stoica, "Wide-area cooperative storage
with CFS," in Proceedings of the eighteenth
ACM symposium on Operating systems
principles, 2001, pp. 202-215.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F.
Kaashoek and R.Morris, "Designing a DHT for
low latency and high throughput," in
Proceedings of the 1st conference on
Symposium on Networked Systems Design and
Implementation - Volume 1, 2004, pp. 7.

[9] H. Jeong, D. Kim, J. Song, B. Kim and J. Park,
"Back-Up chord: chord ring recovery protocol
for p2p file sharing over MANETs," in
Proceedings of the 5th international conference
on Computational Science - Volume Part II,
2005, pp. 477-484.

[10] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin
and R.Govindan, et al., "GHT: a geographic
hash table for data centric storage," in
Proceedings of the 1st ACM international
workshop on Wireless sensor networks and
applications, 2002, pp. 78-87.

[11]M. Bienkowski, M. Korzeniowski, F. M. a. d.
Heide, and F. M. Heide,"Dynamic Load
Balancing in Distributed Hash Tables," in
Proc.IPTPS, 2005, pp. 217-225.

[12] P. B. Godfrey and I. Stoica, "Heterogeneity and
load balance in distributed hash tables," in
INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications
Societies, vol. 1, 2005, pp. 596-606.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R.
Morris, and I. Stoica," Widearea cooperative
storage with CFS," SIGOPS Oper. Syst.Rev.,
vol. 35, 2001, pp. 202-215.

[14] R. Cuevas, M. Uruena, and A. Banchs,
"Routing Fairness in Chord:Analysis and
Enhancement," in Proc. INFOCOM 2009,
IEEE, 2009, pp.1449-1457.

[15] B. Hu, X. Zhang and X. Zhang 2013 Fourth
International Conference on Emerging
Intelligent Data and Web Technologies, 2013.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

Fig 3. Reaching Hopes To Node 39 From Node 70.

Fig 4. Reaching Hopes To Node 65 From Node 80.

Fig 5. Reaching Hopes To Node 54 From Node 8.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

Fig 6. The Average Lookup Hops As Peers In Steady State.

Fig 7. Maximum Number Of Loads Under Continuing To Insert Objects As Peers In Steady State.

