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ABSTRACT

Mel Frequency Cepstral Coefficients (MFCCs) are the most widely used features in the majority of the
speaker and speech recognition applications. Since 1980s, remarkable efforts have been undertaken for the
development of these features. Issues such as use suitable spectral estimation methods, design of effective
filter banks, and the number of chosen features all play an important role in the performance and robustness
of the speech recognition systems. This paper provides an overview of MFCC's enhancement techniques
that are applied in speech recognition systems. The details such as accuracy, types of environments, the
nature of data, and the number of features are investigated and summarized in the table combined with the
corresponding key references. Benefits and drawbacks of these MFCC's enhancement techniques have been
discussed. This study will hopefully contribute to raising initiatives towards the enhancement of MFCC in
terms of robustness features, high accuracy, and less complexity.
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1. INTRODUCTION

Speech is probably the most crucial tool for
communication in our daily lives. Therefore
constructing a speech recognition system is
desirable at all times. Basically, speech recognition
is the process of converting an acoustic signal to a
set of words. The recognized words can be the final
results, as for applications such as commands and
control, data entry, and document preparation. They
can also serve as the input to further linguistic
processing in order to achieve speech
understanding. Many parameters have an impact on
the accuracy of speech recognition system such as
speaker dependency, vocabulary size, recognition
time, type of speech (continuous, isolated) and
recognition environment condition. A speech
recognition systems involve several procedures in
which signal modeling or what is known as feature
extraction and classification (pattern matching) are
typically important. Feature extraction refers to
procedure of transforming the speech signal into a
number of parameters, while pattern matching is a
task of obtaining parameter sets from memory
which closely matches the parameter set extracted

from the input speech signal. In simple words, the
essence a speech recognizer is to provide a
powerful and accurate mechanism to transcribe
speech into text [1].

Feature extraction is a crucial step of the speech
recognition process. The best presented algorithm
in feature extraction is Mel Frequency Cepstral
Coefficients (MFCC) introduced in [2], and the
perceptual linear predictive (PLP) feature
introduced in [3]. Between them MFCC features
are, the more commonly used, most popular, and
robust technique for feature extraction in currently
available speech recognition systems especially in
clean speech or clean environment [2]. On the other
hand the overall performance of MFCC features is
not a superior in noisy environment. In real world
applications the performance of MFCC degrades
rapidly because of the noise [4], for this reason the
researchers devoted themselves to find the solutions
to overcome the weaknesses of MFCC in noisy
speech. Since 1980, notable efforts have been
carried out to enhance MFCC feature in noisy
environments.
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The intention of this review is to examine and
classify the most significant enhanced approaches
in MFCC algorithm applied to speech recognition,
which will offer a beneficial knowledge on the
challenges and issues that have been confronted and
their solutions. The rest of this paper is organized
as follows: section 2 describes the conventional
MFCC feature extraction algorithm. Section 3
discusses the enhancement techniques for the
MFCC algorithm. Section 4 discusses the
enhancement techniques of MFCC, and the
conclusion is summarized in section 5.

2. MEL FREQUENCY CEPSTRAL
COEFFICIENTS (MFCC) FEATURE
EXTRACTION

The first stage of speech recognition is to
compress a speech signal into streams of acoustic
feature vectors, referred to as speech feature
vectors. The extracted vectors are assumed to have
sufficient information and to be compact enough
for efficient recognition [5]. The concept of feature
extraction is actually divided into two parts: first is
transforming the speech signal into feature vectors;
secondly is to choose the useful features which are
insensitive to changes of environmental conditions
and speech variation [6]. However, changes of
environmental conditions and speech variations are
crucial in speech recognition systems where
accuracy has degraded massively in the case of
their existence. As examples of changes of
environmental condition: changes in the
transmission channel, changes in properties of the
microphone, cocktail effects, and the background
noise, etc. Some examples of speech variations
include accent differences, and male-female vocal
tract difference. For developing robust speech
recognition, speech features are required to be
insensitive to those changes and variations. The
most commonly used speech feature is definitely
the Mel Frequency Cepstral Coefficients (MFCC)
features, which is the most popular, and robust due
to its accurate estimate of the speech parameters
and efficient computational model of speech [7].
Moreover, MFCC feature vectors are usually a 39
dimensional vector, composing of 13 standard
features, and their first and second derivatives. The
procedure of this MFCC feature extraction is
explained and summarized as follows in Figure 1
[6].

Figure 1: The standard procedures of MFCC feature
extraction [6]

Pre-emphasis: In this step, the signal spectrums
are pre-emphasized, and the DC offset is removed,
a low order digital system (generally a first order
FIR filter) is applied to the digitized speech signal
x(n) to spectrally flatten the signal in order to make
it less susceptible to find precision effects later in
the signal processing [7, 8].( ) = 1 − 0.9 < < 1 (1)

The most typical value of a is about 0.95 [7].
However, the signal spectrum is boosted
approximately 20 dB/decade by pre-emphasis filter
[6-8].

Framing The speech signal is normally divided
into small duration blocks, called frames, and the
spectral analysis is carried out on these frames. This
is due to the fact that the human speech signal is
slowly time varying and can be treated as a quasi-
stationary process. The very popular frame length
and frame shift for the speech recognition task are
20-30 ms and 10 ms respectively [8].

Windowing After framing, each frame is
multiplied by a window function prior to reduce the
effect of discontinuity introduced by the framing
process by attenuating the values of the samples at
the beginning and end of each frame. The
Hamming window is commonly used, it decreases
the frequency resolution of the spectral analysis
while reducing the sidelobe level of the window
transfer function [6, 9]( ) = ( ) ( ) (2)

Hamming window is used for speech recognition
task as:( ) = 0.54 − 0.46cos( ) (3)

Spectral estimation spectral estimation is
computed for each frame by applying Discrete
Fourier Transform (DFT) to produce spectral
coefficients. These coefficients are complex
numbers comprising the two magnitude and phase
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information. Phase information is usually removed
and only the magnitude of the spectral coefficients
are extracted. Additionally, it is common to utilize
the power of the spectral coefficients [6, 8]. DFT
can be defined as:

( ) = ∑ ( ) 0≤ , ≥ − 1 (4)

Where ( ) are the spectral coefficients, and( ) the framed speech signal

Mel filtering A group of triangle band pass filters
that simulate the characteristics of the human's ear
are applied to the spectrum of the speech signal.
This process is called Mel filtering [10]. The human
ears analyze the sound spectrum in groups based on
a number of overlapped critical bands. These bands
are distributed in a manner that the frequency
resolution is high in the low frequency region and
low in the high frequency region as illustrated in
Figure 2 [6].

Figure 2: The Mel-scale filter bank [6]

The Mel frequency is computed from the linear
frequency as:= 2525 × log(1 + ) (5)

Where is the Mel frequency for the linear
frequency f. The filter bank energy is obtained after
Mel filtering.= ∑ | ( )| . ( ) (6)

Where | ( )| is the amplitude spectrum, is the
frequency index, are the ith Mel band pass filter,1 ≤ ≤ , and is number of Mel-scaled
triangular band-pass filters. is the filter bank
energy.

Natural logarithm The natural logarithm
approximates the relationship between the human's
perception of the loudness and the sound intensity
[11]. Furthermore, the natural logarithm converts

the multiplication relationship between parameters
into addition relationship [12]. The convolutional
distortions, like the filtering effect of microphone
and channel, plus the multiplication in the
frequency domain, like the amplification of soft
sound, become simple addition after the logarithm
[6].

Discrete cosine transform The cepstral
coefficients are obtained after applying the DCT on
the log Mel filterbank coefficients [13]. The higher
order coefficients represent the excitation
information, or the periodicity in the waveform,
while the lower order cepstral coefficients represent
the vocal tract shape or smooth spectral shape [14,
15]. DCT can be defined as:= ∑ log( ) . ( )

(7)

In speech recognition systems, only the lower
order coefficients (order<20) are being used, thus a
dimension reduction is achieved. Another
advantage of DCT is that the created cepstral
coefficients are less correlated compared to log Mel
filterbank coefficients [6].

Log energy calculation The energy of the speech
frame is additionally computed from the time-
domain signal of a frame as a feature along with the
normal MFCC features. In some cases, it is
replaced by C0, the 0th component of the MFCC
feature, which is the sum of the log Mel filterbank
coefficients [6].

Derivatives and accelerations calculation The
time derivatives (the first delta) and accelerations
(second delta) are used to restore the trend
information of the speech signals that have been
lost in the frame-by-frame analysis. The derivative
of coefficient x(n) can be calculated as [14]̇ ( ) ≡ ( ) ≈ ∑ ( + ) (8)

Where 2M + 1 is the number of frames regarded
in the evaluation. To produce the second order
derivative, the same formula can be applied to the
first order derivative. The final feature vectors are
formed simply by adding the derived features to the
original cepstral features.

3. MFCC ENHANCEMENT APPROACHES

Robustness is a major concern for speech
recognition systems, especially when they are

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (kHz)

Mel Filter Bank



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

41

deployed or embedded in real world applications
that are surrounded by ambient noises or
degradation factors. The authors explore several
approaches that have been proposed to ameliorate
the performance of speech recognizers in noisy
environments.

3.1 Spectral Estimation Enhancement
As mentioned earlier in section 2, MFCC used

DFT as a spectral estimation method. In this
section, we will reviewed the most powerful
approaches used to enhance the spectral estimation.

3.1.1 group delay function (GDF)
This method based on the Fourier transform phase
of a signal, instead of the conventional Fourier
transform magnitude for speech recognition [16].
Where, it has been shown recently how the phase
spectrum is informative [17, 18], leading to derive
significant features from the phase spectrum of the
signal. The group delay function is generally
processed to obtain significant information like
peaks in the spectral envelope. Given a discrete-
time real signal x(n), Fourier transform is given by( ) = | ( )| ( ) (9)

The Group delay function is then defined as( ) = − ( )
(10)

Where ( ) is the GDF and can be computed
from the speech signal directly:( ) = ( ) ( ) ( ) ( )| ( )| (11)

Where R, and I denoted the real and imaginary
part, ( ), and ( ) are the Fourier transform of
noisy ( ) and clean ( ) speech respectively.

Murthy and Gadde [16] have modified the group
delay function (MGDF) to reduce the effect of
zeros by replacing the power spectrum |X(w)| in
the denominator with the cepstrally smoothed
power spectrum (S(w)) using lower order cepstral
window that capture the dynamic range of |X(w)|.
This gives the MGDF as:̃ ( ) = ( ) ( ) ( ) ( )( ( )) (12)

However, there are limitations on representation
of the speech signal, when the features derived

from either the power spectrum or the phase
spectrum.

In 2004, [18] extracted the MFCC coefficients
from the product spectrum which merge the power
spectrum and the phase spectrum. These
coefficients are called Mel-frequency product
spectrum cepstral coefficients (MFPSCCs). In their
work a comparison has also carried out with the
conventional MFCC and MFMGDCCs which based
on Mel-frequency modified group delay cepstral
coefficients. Results indicated that the MFPSCCs
offered the best performance. The product spectrumQ(w) is the product of the power spectrum and the
GDF as follows:( ) = | ( )| ( ) = ( ) ( ) +( ) ( ) (13)

3.1.2 autocorrelation processing
The first use of the autocorrelation domain with
MFCC was in [18], while the extracted features
called autocorrelation Mel frequency cepstral
coefficient (AMFCC). Furthermore, autocorrelation
domain has two important properties: Pole
preserving property, the poles of the autocorrelation
sequence is going to be just like the poles of the
original signal [19]. This implies the features
extracted from the autocorrelation sequence could
substitute the features extracted from the original
speech signal. The second property is noise
separation, the speech signal information is
distributed over all the lags in the autocorrelation
function, while the noise signal is limited to lower
lags in the autocorrelation function. Consequently,
providing an effective way to eliminate the noise by
removing lower-lag autocorrelation coefficients.
Figure 3 illustrated the method of the AMFCC,
while the autocorrelation for each frame is
calculated using equation (14) [20, 21].

Figure 3: AMFCC block diagram( ) = ∑ ( ) ( + 1),
i = 0,1,...., N-1 (14)

Where i is the lag index in the Autocorrelation
sequence

According to [21], all the lower lag up to 3 ms
together with the zero-lag autocorrelation
coefficient are removed from the analyzed
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sequence. Then a Kaiser window which has a 80
dB side lobe attenuation is applied on the one-sided
higher-lag autocorrelation sequence. Next the
windowed autocorrelation sequence is processed by
Fourier transform to get the power spectral
estimation of the signal. This spectrum will be used
to get the 13 AMFCCs. The dynamic range of the
resulting spectrum estimate is the same order as the
power spectrum of the original speech signal.

The final AMFCC features set (39 features) are
obtained by concatenating the delta and double
delta to the base features set, Experiment results by
Shannon and Paliwal showed that these features
were more robust to background noise than
conventional MFCC [20].

The disadvantage of this method is using the
Kaiser window which is computationally more
costly compared to the Hamming window. Shannon
and Paliwal [20], proposed a design method for
computing a window function that contains twice
the dynamic range of the Hamming window
function used on the time domain signal, they
called this window function double dynamic range
(DDR) Hamming window and its dynamic range
was about 86 dB. Their experiments proved that
(DDR) Hamming window works just like the
Kaiser window function in terms of its spectral
estimation performance. Furthermore, the
performance of AMFCC features was much better
than MFCC features for noisy environment [20].

The AMFCC was one of the methods that work
in the magnitude domain. On the other hand, the
phase domain (angle) has received more attention
by the researchers [22, 23]. Mainly because phase
(angle) is less sensitive to the external noise than
the magnitude. However, phase autocorrelation
(PAC) is an example of the phase domain.

The measure of correlation in phase
autocorrelation used the angle between the signal
vectors rather than the dot product. Therefore the
features expectation will be more robust to noise
when compared with the conventional features,
which are based on the normal autocorrelation [22].

The phase differences between various sinusoidal
components in the speech signal were removed in
Equation (14) which is computed as a dot product.
However, if two vectors defined as:= { ̃ [0], ̃ [1], … , ̃ [ − 1]}= { ̃ [ ], … , ̃ [ − 1], ̃ [0], … , ̃ [ − 1]} (15)

[ ] = (16)

The magnitude of the two vectors and is
the same, since the set of individual vector
components of these two vectors is the same. If ‖ ‖
represents the magnitude of the vectors and the
angle between them in the N dimensional space,
then Eq. (16) can be rewritten as:[ ] = ‖ ‖ cos( ) (17)

The new set of correlation coefficients [ ] are
created by using the angle θ as the measure of
correlation, instead of the dot product. These
coefficients [ ] are computed as:[ ] = = cos [ ]‖ ‖ (18)

From the above mentioned equations, PAC
coefficients [ ] depend only on which is
expected to be less susceptible to the external noise,
as compared to [ ].

This method was applied to MFCC in [22], the
proposed features are known as PAC MFCC which
showed superior to conventional MFCC in noisy
speech, while in the clean speech the conventional
MFCC showed superiority.

The two main reasons of this issue are firstly the
frame energy information has been discarded,
which supposedly was to be crucial for the clean
speech. Secondly, the inverse cosine operation was
further degraded the clean speech due to the
smoothing of the spectral valley.

3.1.3 minimum variance distortionless response
(MVDR)

The Minimum Variance Distortionless Response
(MVDR) spectrum is also referred to as minimum
variance (MV) spectrum, the Capon method, and
the maximum likelihood method (MLM). This
method provides all-pole spectra that are robust for
modeling both voiced and unvoiced speech.
However, the high order MVDR spectrum models
voiced speech spectra effectively, especially at the
perceptually important harmonics, and features a
smooth contoured envelope [24]. The power
spectrum that has been obtained by DFT relies on
the bandpass filter, which its nature is frequency
and data independent, and determined only by the
nature and length of the window used. The window
length is usually equal to the data segment length.
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In contrast, in the MVDR method the power
measuring filters determined by the distortionless
filters are data dependent and frequency dependent.
Consequently, the MVDR spectrum has been found
to have higher frequency resolution than the DFT
based methods [25, 26].

Utilization of MVDR in MFCC is reported in
[25] where it has used as spectrum estimation
techniques. Figure 4 shows a schematic diagram of
the MVDR-based MFCC. Regardless, the problem
with this method was the high computation of high-

order MVDR as well as cepstral averaging.

Figure 4: Schematic diagram of the MVDR-based MFCC

Another study [26] has utilized the regularized
minimum variance distortionless response
(RMVDR). This method penalizes the rapid
changes in all-pole spectral envelope and
consequently, produces a smooth spectral estimate
keeping the formant positions unaffected.
Experimental results showed that the RMVDR gave
significant improvement in word accuracy over the
MVDR-based MFCC and conventional MFCC
methods.

3.2 Enhancement of Mel Filter Banks
The functions of filter banks had been mentioned

in section 2, However, many methods have been
proposed at this stage to improve the robustness of
the features in MFCC. Some researchers tried to
optimize the shape of each filter in the filter-bank,
while the others tried to manipulate with the
number of filters. The most important and powerful
techniques have been highlighted and discussed.

3.2.1 shape of the filter
In order to achieve more discriminative
representation of speech features, a series of work
of filter-bank design has been introduced in [27]. In
this study, positions, bandwidths, and shapes of the
filters in the filter-bank can all be adjusted and
optimized based on the criterion of Minimum
Classification Error (MCE). Although this may be
true, the MCE training needs high computation
complexity with many different parameters to be
determined altogether for a certain task. As an
example, the overall filter-bank is required to be re-
trained when the back-end classifier structure is

relatively adjusted for an alternative task with
different speech corpus.

However, [28] applied the principal component
analysis (PCA) on the Mel filter-bank to drive the
shape of each filter. Based on PCA, the shapes of
filters are totally different from one another as well
as not necessarily triangular. Let the kth filter
coefficients are the components of the column
vector w , where= [ (1) (2) … ( )] (19)

Then, the PCA optimized kth filter coefficients
represented by the column vector , which is
defined as:

, = max Σ (20)

The largest variance of the kth filter output= , can be obtained when = , .
Furthermore, , is generally proved to be the
eigenvector of the covariance matrix Σ , of ,
corresponding to the largest eigenvalue. This
method is easy to achieve for a given task and
corpus. However, experiments indicated that the
extracted features with PCA-optimized filter-bank
are better performance in noisy environment and
comparable performance for clean speech in
comparison with the conventional MFCC features
[28]. It's because the PCA-optimized filter-bank
maximizes both the signal to noise variance as well
as the variation of the features.

Nonetheless, this method has a major drawback
as several filter coefficients might be negative
because those coefficients are the components of an
eigenvector of a covariance matrix, which means
this may result in the filter output , =, be negative, thus fails to be converted into
the log-spectral domain. This issue was solved by
[29], who has modified the PCA under constraints
for optimizing the filter. The PCA was modified as
follows:

, = max ( ), ( ) =( ) = Σ (21)

under two constraints,( ) ≥ 0, 1 ≤ ≤ and ∑ ( ) = 1
In the first constraint, , which refer to

the modified PCA is not necessarily the eigenvector
of the covariance matrix Σ that corresponds to the
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largest eigenvalue. While constraint two is similar
to the condition of an eigenvector.

3.2.2 number of filters
Only a few works are examined and compared the
effect of the number of filters and enumerated
parameters to the speech recognition accuracy. [30]
examined a lot of experiments to verify the
optimum number of coefficients enumerated in the
MFCC that provide the best accuracy. Literally,
these experiments were conducted either by an
increasing of filters' number for a fixed number of
coefficients or opposite, by increasing the number
of coefficients for a fixed number of filters (bands).
The bank of filters was increased from 4 to 26
filters while the number of coefficients was
enumerated from 4×3=12 to 26×3=78, including
the static MFCC, delta, and double delta. Their
results showed that the best accuracy oscillates
between 82 and 83.5%. However, with 9 filters and
7×3=21 coefficients, a very high accuracy and
stable was obtained. This work considered evidence
that the optimal setting of the MFCC can be
achieved with a significantly less number of filters
as compared to what was recommended by the
critical bandwidths theory.

Recently, A novel approach that utilizes the
Artificial Intelligence techniques like genetic
algorithm (GA) and particle swarm optimization
(PSO) to optimize the number and spacing of Mel
filter bank in MFCC features has been used in [31].
The triangular Mel filterbank was optimized
according to three parameters which match the
frequency values: when the triangle for the filter
begins with α (Left), reaches up to its maximum β
(center), lastly ends in γ (Right). Each chromosome
in GA represents a different filterbank, which is
defined as a series of triangular filters represented
by three frequencies α, β, and γ. Filterbank can be
defined as:= [ | = 1,… , ] (22)

Where is a 3-tuple (α , β , γ ), and number
of filters. The filter edge frequencies needs to be
improved within a limit, where (left edge < center
edge < right edge) is required to be retained. MFCC
filterbank optimization by genetic algorithm had
better performance at lower SNRs like 6 dB, 12 dB
and 18 dB as compared to conventional MFCC.

On the other hand, the particle swarm
optimization (PSO) is a type of optimization tool
depends on iteration, particle swarm optimization

(PSO) has memory ability besides his global
searching ability. In the multi-dimensional space,
each particle in the swarm is migrated towards the
optimal point of having a velocity with its position.
Three elements which control the velocity of a
particle are inertial momentum, cognitive, and
social. At a specific time, the best position (best
fitness) found by each particle known as pbest,
while gbest refers to the overall best out of all the
particles in the population. The position of each
particle moves toward pbest and gbest depending
on the particle velocity, which is defined over the
following iteration as [31, 32]:= + − +− (23)

Where w is the inertia weight, which is used to
manage the impact of the previous history of
velocities on the current velocity. Appropriate
selection of the inertia weight gives a balance
between global and local exploration abilities,
thereby requires less iteration on average to obtain
the optimum; and are acceleration constants
which guiding the particles into the improved
positions, they deal with the relative influence
toward pbest and gbest by scaling each resulting
distance vector; and are uniformly distributed
random variables between 0 and 1, and refers to
the evolution iteration. Selecting these parameters
play a crucial role in the optimization process [33].

The individual initial population particles are set
up randomly as X_i=(X_i1,X_i2,…,X_id), using
the same width as the width of MFCC filterbanks.
In addition a size of 100 particles of the swarm has
been selected as the ideal compromise between the
performance and the computational time.

Experiments in [31], proved that the optimized
filterbank by PSO has less numbers of filters
performed either lower or equal in performance
when compared to conventional MFCC. Moreover,
PSO is superior to GA due to its high accuracy and
fast convergence (around 15 generations) in
comparison to that for GA (around 35 generations).

3.2.3 vocal tract length normalization (VTLN)
A substantial portion of the variability in the speech
signal is because of speaker dependent variations in
vocal tract length. In Vocal Tract Length
Normalization (VTLN), the frequency axis of the
power spectrum are wrapped for attempting to
consider this effect, while the Mel filter-bank
remains unchanged [34]. In a basic model, human
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vocal tract was considered as a straight uniform
tube of length L based on this Model, changing in L
by a specific factor α leads to a scaling of the
frequency axis by α . Hence, the frequency axis
needs to be scaled to compensate for the variability
caused by various vocal tracts of individual
speakers [35]. A mathematical relation of this
scaling can be defined:= ( ) (24)

Where is warped-frequency, and ( ) is the
frequency-warping function.

There are a lot of interesting to obtain a direct
linear transformation between static conventional
(MFCC) features C and the static VTLN-warped
MFCC ( ), since = .Where A represents
a matrix transformation, which from it the VTLN-
warped cepstra can be obtained directly from
static conventional MFCC features .

[36] suggested to integrate the VTLN-warping
into the Mel filter-bank in which the Mel filter-
bank is inverse-scaled for each α. This is basically
the most widely used procedure for VTLN-warping
as it is shown in Figure (5), refers to the
(inverse) VTLN-warped Mel filter-bank.
Traditionally the warp-factor (α) used for warping
the spectra is in the range of 0.80 to 1.20 according
to physiological justifications.

Figure 5: Warp VTLN Method [36]

The warped cepstral features can be computed
by:= [log( . )] (25)

Where is the warped cepstral features, P is
the power spectrum of a frame of speech signal,
is the DCT transformation, and is the Mel-
VTLN Filter bank.

However, the features extracted from different
speakers with similar utterance should be matched
as much as possible after using the VTLN [37, 38].

3.2.4 minimum mean square error (MMSE)
noise suppressor

The concept of this algorithm or what is known as
MFCC-MMSE is to estimate the clean speech
MFCC from the noisy speech for each cepstrum
dimension by minimizing the mean square error
between the estimated MFCC and the true MFCC
uses the assumption that noises are additive [38].
This algorithm is applied on the Mel filter bank’s
outputs which can be better smoothed (lower
variance) compared to Fourier Transform spectral
amplitude.

MFCC-MMSE algorithm which has been
motivated by the MMSE criterion is proposed by
[39]. In this work MFCC-MMSE algorithm has
been compared with the traditional MMSE. The
results showed its superiority. Another advantage is
its economical computation in comparison with the
traditional MMSE considering that the number of
the frequency channels in the Mel-frequency filter
bank is significantly smaller than the number of
bins in the DFT domain [39, 40].

3.2.5 teager energy operator (TEO)
Teager Energy Operator (TEO) has the capability to
capture the energy fluctuation within a glottal cycle
[41] also it reflects the nonlinear airflow structure
of speech production. The earlier using of TEO in
feature extraction was in [42-44]. Classic energy
measure shows only the amplitude of the signal,
while Teager Energy (TE) shows the variations in
both amplitude and frequency of the speech signal.
This extra information in the energy estimation
enhances the performance of speech recognition.

This concept was presented systematically on
speech production modeling in [45]. Teager Energy
operator in time domain was given by:Ψ[ ( )] = ( ) − ( + 1) ( − 1) (26)

Where Ψ is the TEO for the speech signal ( ).
The energy estimation by TEO is robust if the

TEO is applied to the band-pass signals. TEO
provides a more suitable representation of nonlinear
variations of energy distribution in frequency
domain [43, 46]. So the TEO in frequency domain
can be written as

Ψ[ ( )] = ( ) − ( + 1) ( − 1) (27)

Where ( ) is sampled outputs of ith triangular
filter of mth frame in frequency domain. Then
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Average energy E of ith sequence Y (k) of mth

frame is:E = ∑ |[ ( )]| (28)

i = 1,2,...., L m = 1,2,..,M

Where L is the total number of filters in a Mel
filter bank and Ni is the number of frequency
samples in the spectrum. So average frame energyE of mth frame isE = ∑ E (29)

Correspondingly, average Teager energy of
ith sequence Ψ[ ( )] of mth frame is= ∑ |Ψ[ ( )]| (30)

While the average frame Teager energy of
mth frame is= ∑ (31)

MFCC algorithm has been modified depending
on TEO in [47], where each Mel filter output is
enhanced using TEO. The estimated features
referred to as Mel Frequency Teager Energy
Cepstral Coefficients (MFTECC). Figure (6) below
shows the MFTECC feature extraction method.

Figure 6: MFTECC feature extraction method

Teager Energy was calculated for each triangular
Mel filter bank output  by equation (27), then the 39
cepstrum coefficients are estimated by applying
DCT on log of , the delta, and double delta
coefficients. The results indicated that the proposed
MFTECC worked better than conventional MFCC
when the speech signal corrupted by various
additive noises [47].

3.2.6 minimum variance distortionless response
(MVDR)

As mentioned earlier, the Minimum Variance
Distortionless Response (MVDR) has been used for
power spectrum estimation [24-26]. However,
another use of MVDR was for spectral envelope
extraction instead of the spectrum estimation. These
features are known as Perceptual MVDR-based

cepstral coefficients (PMCCs), and it substantially
outperformed the MVDR-based MFCC method
[48, 49].

It is well known that the main function of the
filterbank is to smooth the harmonic information
like pitch which it is existed in the FFT spectrum as
well as to track the spectral envelope. The
performance of filterbank in smoothing the pitch
information is noticeably decreased for high-pitch
speakers, simply because filters are spaced closely
at low frequencies. As a result, the filterbank makes
a gross spectrum that carries significant pitch
information which is not desirable for speech
recognition applications [50]. On the other hand, It
was proved in [24] that MVDR is a suitable spectral
envelope modeling method for a broad number of
speech phoneme classes, particularly for high-
pitched speech. Accordingly, [51] have deduced
that it is safe and useful to discard the filterbank
and integrate the perceptual considerations into the
FFT spectrum. Thus, Perceptual MVDR (PMVDR)
has proposed by them, which is directly performed
warping on the DFT power spectrum, while the
filterbank processing step was entirely removed
[51]. This can be accomplished by implementing
the perceptual scale through 1st order all-pass
system, in which the Mel scales were based on
adjusting the single parameter α of the system, in
the first order system the ( ) , and the warped
frequency described as:( ) = , | | < 1 (32)

= tan ( )( ) ( ) (33)

Where ω represents the linear frequency, while
the value of α manages the level of warping. In this
work the comparison in performance of PMVDR,
PMCC, and MFCC was performed, the final results
showed that the PMVDR works more effectively
than MFCC and PMCC in terms of accuracy and
computational complexity [51].

3.3 Psychoacoustic Modeling
Psychoacoustics is the science of studying the

human perception of sounds, which usually
involves the relationship between sound pressure
level and loudness, response of human to various
frequencies, with a range of masking effects [52].
Hence, masking effect is a very common
phenomenon when a clearly audible sound can be
masked by a different sound, called the masker.
Masking effects can be categorized as temporal or
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simultaneous based on the time of occurrence of the
signals. Nevertheless, In temporal masking, if the
masker appears earlier in time leading the signal,
the masking effect is named forward masking.
While it is known as backward masking if the
masker occurs after the signal [53]. Forward
masking is more effective than backward masking,
for that reason, many modeling and applications
have been focused on forward masking [54, 55].

In simultaneous masking, if the two sounds occur
simultaneously, then the masking effect between
them is known as simultaneous masking. One of the
most effective process of simultaneous masking is
lateral inhibition (LI). LI is a kind of phenomenon
associated with sensory reception of biological
systems, the basic function of lateral inhibition is to
sharpen input changes. The characteristic curve of
lateral inhibition is shown in Figure 7a, the easiest
method to model the lateral inhibition is 1D
Mexican-hat filter as shown in Figure 7b [56, 57].

Figure 7: Characteristic curve of Lateral Inhibition[57]

LI simply looks to the masking effects for each
frame in the frequency domain. While forward
masking becomes effective in time domain.
Forward masking affects the signals with similar
frequency as the masker, which usually takes place
after the masker in time domain. Based on the
neuron response studies, a strong masker can mask
a weaker signal of a close frequency occurring later
in time [58]. Thus the idea of a pioneering 2D
psychoacoustic modeling, which takes care of the
masking effect over a 2D surface based on time and
frequency. Using this algorithm, the masker will
provide masking effect both in the time domain and
frequency domain [57].

[57] have integrated the MFCC algorithm with
2D Psychoacoustic filter and Forward masking. The
2D Psychoacoustic filter is developed depending on
the assumption that the simultaneous masking or
(LI) and temporal masking share similar set of
parameters because both have the same shape of the
characteristic curve which is similar to 1D Mexican
hat. Nevertheless the validity of this assumption

relies on lots of things, including frame rate, and
sampling rate. Figure 8 shows the flowchart of
MFCC with 2D Psychoacoustic Modeling.

Figure 8: Flowchart of MFCC with 2D Psychoacoustic
Modeling

The results were compared with conventional
MFCC under different SNR, The recognition rate
increases by nearly 5% on average, which can be
considered an excellent enhancement [55, 57].
However, there are various mathematical models
for explaining a temporal masking effect [59-61].
They all concluded that the parameters of temporal
masking cannot be symmetric. It must be warped to
obtain a new set of temporal masking parameters,
which should emulate the characteristic curve in
Figure 9.

Figure 9: Temporal Masking [55]

Therefore, both sides of the mask should linearly
warped. Beginning from the 1D Mexican hat in
Figure 7(b), each side was modified proportionally,
making the right side become 7/4 times of the
original length while the left side become 1/4 the
length of the original. The warped parameter and
the original parameter shown in Figure 10.

Figure 10: 2D Psychoacoustic Filter With Temporal
Warping [55]
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This 2D psychoacoustic filter uses to improve the
high frequencies and sharpen the spectral peaks. In
2011, [55] have proposed and applied the warped
2D Psychoacoustic filter with MFCC, a comparison
has done against conventional MFCCs, forward
masking (FM), lateral inhibition (LI), and the
original 2D filter. All of them are integrated with
MFCC algorithm. The final results confirm that 2D
Psychoacoustic filter successfully increases the
recognition rate under noisy environments. Table 1
shows the experimental results. Avg 0-20 refers to
the average over SNR 0-20 dB.

Table 1: Recognition Rate (%) of Warped 2D Filter
Vs. Other Techniques [55]

SNR (dB) Clean 10 Avg 0-20
MFCC (39) 99.3617 81.16 71.29
FM 99.0283 85.89 77.34
LI 99.4217 83.29 73.97
FM+LI 99.0617 86.26 77.47
Original 2D 99.3150 87.41 77.64
Warped 2D 99.3267 90.21 80.36

Further study done by [62] has indicated that the
duration of speech signal can has an effect on the
entire masking, which is known as temporal
integration (TI). A temporal integration describes
how portions of information are linked together by
the listener which are coming to the ears at different
times in mapping speech sounds onto meaning [63].
It is well known that speech has active/non-active
durations its power is more focused in some areas,
both longer in duration and larger in energy.
Consequently, temporal integration apt to impose
more impact on speech. [62] were successfully
implemented forward masking (FM), lateral
inhibition (LI) and temporal integration (TI) using a
2D psychoacoustic filter in a MFCC based speech
recognition system. They are proving that temporal
integration can help to improve the SNR of the
noisy speech. The proposed 2D psychoacoustic
filter was successfully removed noise. Furthermore,
significant improvements were achieved based on
experimental results.

3.4 Utilization of Wavelet Transform
The wavelet transform utilizes short windows to

determine the high frequency information in the
signal, while the low frequency content of the
signal measured by long windows. In theory any
function with zero mean and finite energy can be a
wavelet.

The first utilization of the wavelet transform in
speech recognition has been done in [64] who have
implemented the Discrete Wavelet Transform
(DWT) to the Mel-scaled log filterbank energies of

a speech frame to obtain the new features known as
Mel-Frequency Discrete Wavelet Coefficients
(MFDWC). MFDWC tried to achieve good time
and frequency localization similar to subband-based
(SUB) features and multi-resolution (MULT)
features. Regardless, MFDWC has superior
time/frequency localization in comparison to SUB
and MULT features. The MFDWC features yielded
better recognition rates than SUB, MULT and the
conventional MFCC [64].

Sub-Band Wavelet Packets (WPs) decomposition
strategy has been another approach used in [65]. In
this work, the frequency band has been divided into
three bigger bands. The first band from 0-1 kHz
and the third band from 3-5.5 kHz are the wide
dividing frequency bands. The second band from 1-
3 kHz was divided into detailed frequency bands
spacing the same as the Mel scale due to the well-
known fact that the most sensitive frequency range
of the human ear is from 1 kHz to 3 kHz. The
experiment results demonstrated that the
recognition rate of Sub-Band WPs approach
successfully outperformed that of the conventional
MFCC. Their proposed Sub-Band WPs approach
was improved the recognition rate while the
dimension of feature did not increase [65].

However, [66] proposed new MFCC
enhancement technique based on the bark wavelet
[66]. The Bark wavelet is designed in particular for
speech signal. It is depending on the
psychoacoustic Bark scale. Furthermore, Gaussian
function selected as mother function of Bark
wavelet, mother wavelet needs to have the equal
bandwidth in the Bark domain. The wavelet
function in the Bark domain written as:( ) = (34)

The constant is selected as 4ln2, when the
bandwidth is 3dB. b is the bark frequency which
can be obtained from the linear frequency by:= 13. arctan(0.76 ) + 3.5. arctan( . ) (35)

Bark wavelet technique combined with a MFCC
algorithm to produce new feature vectors called
(BWMFCC), Figure 11 shows the block diagram of
BWMFCC.
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Figure 11: The block diagram of BWMFCC features
coefficients

The wavelet transform portioned signal
frequency into 25 sub-bands. Then DFT has applied
to each of those bands. Subsequently Mel filter
bank and logarithmic energy are carried out on the
synthesized spectra. Then applying the bark
wavelet transform to the logarithmic energy to get
the final speech features. The result indicated that
BWMFCC features can keep on high recognition
rate under low SNRs [66].

The weakness of the BWMFCC is the weak
understandability of the speech signals which are
analyzed by the fixed wavelet threshold. [67] have
applied adaptive wavelet thresholding to enhance
the noisy speech corrupted by white and colored
noises. Based on the types of noise, Several types
of the adaptive threshold function of the wavelet
transform are utilized to improve the noisy speech
signals.

ℎ ( , ) = ( )(| | − ) | | ≥0 | | < (36)

Where is the wavelet coefficient before de-
noising on scale i, ℎ ( , ) is the wavelet
coefficient after thresholding, is the soft threshold
function defined as (37):= 2 (37)

Where N is the sequence length of the input
signal, δ is the noise standard deviation. The soft
threshold function of equation (37) may vary based
on the variety of the noise standard deviation. This
approach is known as Enhanced Bark wavelet
MFCC (EBWMFCC), which has more effective
features than BWMFCC in low SNR [67].

3.5 Log Function Enhancement
The main objective of Logarithm function is to

compress the Mel filter bank energies as well as to
lower their dynamic range. The problems of
Logarithm function are inability to identify the
energies which are less affected by noise. Also, the

negligible distortions in the power spectrum
domain become significant after the logarithmic
compression of Mel filter bank energies [68]. In
order to find solutions to this problem. [69] have
observed that the low energy banks are often more
damaged by the noise due to the steep's slope of the
log transformation in the lower energy. Therefore
they proposed to replace the lower segment of the
Log function by a power function as:

( ) = ≤log + − log > (38)

This function ( ( ) ) incorporates a power
function and the log function, where C is the noise
masking level chosen based on the noise level, and

is the compression coefficient specified to
minimize the effects of noise while reserving as
much speech information as possible to produce
high clean speech. According to their experimental
results the optimal values of C and λ were C = 107

and λ = 2. With this method the performance was
improved effectively.

Another solution was introduced by [68], they
proposed a compression function that is computed
based on SNR- dependent root function in Mel sub-
bands instead of log function in conventional
MFCC.

The idea of this method was to compensate
additive noise effects on MFCC features, the
general form of proposed method can be shown by= ( , , ) = ( − ) (39)

Where is compensated Mel filter bank output,
is the compression factor and the bias relies

on noise spectral characteristics. Equation (39)
comprises two steps: subtraction and energy
compression. In subtraction step, the reduction is
performed because of the additive noise. While in
compression step, the less affected filter bank
energies by noise are emphasized. After that, the
compensated MFCC can be calculated by the
following equation (DCT equation):= ∑ . ( ) = ∑ ( −) . ( )

(40)

Where is the compensated MFCC. It is
obvious from equation (40) that the log function in
the conventional MFCC was replaced by this
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function. The proposed method is illustrated in
Figure 12.

Figure 12: Block diagram of the compensated MFCC
[68]

The compression root function is formulated as:= . 1 − − = . ( , ) (41)

Where is known as a constant root between 0
and 1, is a parameter that manages the steepness
of the compression function, G denotes to SNR-
dependent function with values between 0 and 1,
and is the signal to noise ratio in ith Mel
frequency sub-band. In equation (41), the low
must be more compressed at sub-bands, while the
high needs less compression at sub-bands.
For this reason, the needs to be close to zero for
high values, whilst for low values the
should be close to one. formulated based on

can be computed as:= 1 − ( ) = 1 − ( ) (42)

Where µSNR and σSNR are mean and standard
deviation of SNR calculated from all Mel sub-
bands of a speech frame.

However, based on the equation (41) and
equation (42), the sub-band SNR controls the
change in compression root . This proposed
method is known as CMSBS which refers to
Compression and Mel Sub- Band Spectral
subtraction. CMSBS has been shown significantly
increasing in the accuracy of speech recognition in
the presence of various additive noises with various
SNR values [68].

Furthermore, Table 2. summarized the most
powerful enhancement techniques in MFCC
algorithm with a comparison in accuracy of noisy
and clean speech.

4. DISCUSSION

Although the conventional MFCC algorithm is
better in clean speech, but it is highly sensitive in
noisy speech. The drawbacks of MFCC features in
noisy environments rely on many factors. These
factors include spectrum estimation methods,
design of effective filter banks, and the number of
chosen features, which are also affecting the
complexity of the speech recognition systems.

In conventional MFCC, only the magnitude of
DFT is used as spectrum estimation, while the
phase is discarded. Researchers have identified the
importance of the phase spectra in performance of
speech recognition systems due to their less
sensitivity to additive noise compared to the
magnitude spectra.

Spectrum estimation enhancement methods are
varied from adding the phase spectra to the
computation of spectrum estimation to using the
phase spectra alone as the spectrum estimation. A
good example is a group delay function (GDF).
However, the authors believed that both magnitude
and phase spectra are complementary to each other
and should not neglect any of them.

Other factors which have a significant impact on
the robustness of MFCC features is designing the
Filterbank. From previous studies, It was clear that
is possible to obtain robust features when a certain
shape of Filter banks is selected for a certain
environment. However, this method is impractical
because it needs re-tuning and selecting the filter
shape at every use as well as when changing the
environment. In addition, it has been shown that the
higher accuracy can be obtained with less number
of filters compare to those used in MFCC.
Therefore, the computational complexity of the
subsequent stages will be reduced.

The authors believe that it is possible to obtain
high recognition accuracy with less computational
complexity by combining the methods presented in
this review. As an example combines Mel
Frequency product spectrum Cepstral coefficients
(MFPSCC) with the Teager Energy Operator
(TEO).
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5. CONCLUSION

Speech recognition systems have been recently
used in wide varieties of real applications especially
after the enormous technological revolution where
smart phone and other gadgets within the reach of
everyone. On the other hand, It is well known that
MFCC features affect the accuracy of the speech
recognition systems. In this review, the
fundamentals of the MFCC have been discussed
and a wide variety of MFCC enhancement methods
have been reviewed and investigated. Most of these
methods were classified in a way that became easier
for the researchers to identify the improving's
location and techniques used in the original MFCC
algorithm. These methods vary in simplicity, and
environment conditions. Usually, simplification can
lead to reduce the recognition accuracy. However,
the main challenges in conventional MFCC are the
complexity, robustness of the features, and the
weak performance in the presence of noise.
However, most of the scientific studies have
indicated that a large number of features can be
significantly useful when it comes to noisy speech.
But the processing of these features is considered
computationally complex. So, there must be
compatibility between the number of features on
the one hand and the required accuracy of the other
hand. In addition to the knowing the type of the
environment and the existing noise. All these
factors have a great effect on the performance and
robustness of the speech recognition systems. The
attention in this paper focused on the MFCC
algorithm enhancement techniques in speech
recognition. This research will lead to the
increasing need to develop a robust and improved
MFCC features in speech recognition system.
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Table 2. Summary Of Enhanced Mfcc Algorithm Techniques

Technique Name Environments
Nature of the

Data
Data
Set

Accuracy %
No. of
Featur

es
Year [Ref]

Mel Frequency Modified Group
Delay cepstral coefficients
(MFMGDCC)

Additive
background

noise

Connected
digits

Aurora
2

81.06@ ∞ db
54.98 @ ave.

39
2003 [16]
2004 [18]

Mel Frequency product spectrum
cepstral coefficients (MFPSCC)

99.31@ ∞ db
72.48@ ave.

Autocorrelation MFCC (AMFCC)
Additive

background
noise

Connected
digits

Aurora
2

99.08@ ∞ db
81.2 @10db

39
2004 [21]
2006 [20]
2007 [23]991 words

vocabulary

Resourc
e

Manage
ment
(RM)

93.44@ ∞ db
51.29@10db

Phase AutoCorrelation
(PAC-MFCC)

Additive
background

noise

connected
telephone
Numbers

OGI
Number

s 95

87.8@ ∞ db
84@10db

39
2003 [70]
2012 [22]

Connected
digits

Aurora
2

97.55∞ db
76.30@10db

MVDR based MFCC Car noise 178 words
Custom

Data
88.2@ 60

mph
39 2001 [71]

Regularized MVDR (RMVDR)
Additive

background
noise

large
vocabulary
continuous

speech

Aurora
4

65.79 @ avg 39 2013 [26]

Mel filter bank
shape
modification

Via PCA

Additive
background

noise

Mandarin
Digit String

NUM-
100A

96.43∞ db
46.23@10db

39
2001 [28]
2004 [29]

Via PCA in
linear

spectral
domain

97.47∞ db
54.37@10db

Via PCA in
Log spectral

domain

97.41∞ db
55.29@10db

Optimize the No.
and spacing of
Mel filter bank

GA Additive
background

noise

Hindi
Vowels

Custom
Data

92.87@∞ db
73.32@ 12db

Variou
s No.

of
filters

2012 [31]
PSO

93.01∞ db
78.06@ 12db

VTLN- MFCC

noise-free
Isolated

word
TIDIGI

TS
97.5 39

2012 [37]Additive
background

noise

large
vocabulary
continuous

speech

Aurora
4

78.8 45

MFCC-MMSE realistic
automobile

environments

Noisy
Isolated

Digit

Aurora
3

87.87@avg
39

2008 [40]
2008 [39]Improved MFCC-MMSE 88.64@avg

Improved MFCC-MMSE+CMVN 89.77@avg

Mel Frequency Teager cepstral
Coefficients (MFTECC)

Additive
background

noise

Isolated
word

TI-20
98.04 @ ∞ db
43.09 @ 10db

39 2009 [47]

Perceptual Minimum Variance
Distortionless Response
(PMVDR)

Real car
environments

noisy words
Cu-

Move
92.26@ avg

39
2003 [48]
2003 [49]
2008 [51]

Actual Stress noisy speech SUSAS 85.07 @ avg

noise-free

large
vocabulary
continuous

speech

WSJ
Wall
street

Journal

95.18 @ avg
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Perceptual MVDR-Based Cepstral
Coefficients (PMCC)

Real car
environments

noisy words
Cu-

Move
90.13@ avg

Actual Stress noisy speech SUSAS 81.38@ avg

noise-free

large
vocabulary
continuous

speech

WSJ
Wall
street

Journal

95.07@ avg

2D Psychoacoustic Filter + MFCC
Additive

background
noise

Isolated
digits

Aurora
2

99.31@ ∞ db
87.41@ 10db

39
2009 [57]
2011 [55]
2012 [62]

Temporal Warped 2D
Psychoacoustic Filter + MFCC Additive

background
noise

Additive
background

noise

Isolated
digits

continuous
speech

Aurora
2

TIMIT

99.33@ ∞ db
90.21@ 10db

39
15

2009 [57]
2011 [55]
2012 [62]
2000 [64]

(Temporal Integration + FM + LI
+ 2D Psychoacoustic Filter) +
MFCC

99.02@ ∞ db
91.65@10 db

Mel-Frequency Discrete Wavelet
Coefficients (MFDWC)

59.71@ ∞ db

Sub-band feature (SUB) Additive
background

noise
Additive

background
noise

continuous
speech
Isolated

Digit

TIMIT
T146

58.11@ ∞ db 16

2000 [64]
2003 [65]

Multi-resolution feature (MULT) 56.2@ ∞ db
16
16Sub-Band Wavelet Packets (WPs) 87.3 @ 20db

Mel filter-like WPs Additive
background

noise
noise-free

Isolated
Digit

30 words

T146
Custom

Data

84.3@ 20db
16
16

2003 [65]
2006 [66]
2009 [67]Bark Wavelet MFCC 95.69@ ∞ db

Enhancement Bark Wavelet
MFCC

noise-free
Additive

background
noise

30 words
continuous

speech

Custom
Data

TIMIT

96.35@ ∞ db
16
26

2006 [66]
2009 [67]
2005 [69]Modified the Log transformation

97.2@ ∞ db
53@10 db

Compression and Mel Sub-band
Spectral Subtraction (CMSBS)

Additive
background

noise

Isolated
word

TIMIT 97 24 2007 [68]

Root MFCC (RMFCC) Additive
background

noise

Isolated
word

TIMIT
90

24 2007 [68]


