FPGA IMPLEMENTATION OF A NEW BCH DECODER USED IN DIGITAL VIDEO BROADCASTING - SATELLITE - SECOND GENERATION (DVB-S2)

1*EL HABTI EL IDRISI ANAS, 1,2EL GOURI RACHID, 3AHMED LICHIOUI, 1HLOU LAAMARI

1 Laboratory of Electrical Engineering and Energy System. Faculty of Sciences, University Ibn Tofail Kenitra, Morocco
2 Laboratory of Electrical Engineering and Telecommunications Systems, National Schools of Applied Sciences, University Ibn Tofail Kenitra, Morocco
3 National Society of Radio and Television (SNRT), Rabat, Morocco

*E-mail: elhabtidrissi@gmail.com

ABSTRACT

The Bose, Chaudhuri, and Hocquenghem (BCH) codes are being widely used in variety communication and storage systems. In this paper, a simplified algorithm for BCH decoding is proposed in order to reduce the implementation complexity. Error locator polynomial with Peterson algorithm is proposed for both a quick result and very low components instead of the Berlekamp’s algorithm that uses the iterative method. In addition, a modified Chien search block is proposed to reduce the hardware complexity. This algorithm reduces the number of logic gates. Consequently, it reduces the power consumption with a percentage which can achieve 32% compared to the basic algorithm. We developed the design of the proposed algorithm, we generated and simulated the hardware description language source code using Quartus software tools and finally we implemented the new algorithm of BCH decoder on FPGA card.

Keywords: FPGA implementation, BCH decoder, add syndromes, iterations, Digital Video Broadcasting-Satellite-Second Generation

1. INTRODUCTION

Error correcting codes are used in satellite communication, cellular telephone networks, body area networks and in most of the digital applications. Few of them are BCH, Turbo, Reed Solomon, Hamming and LDPC. These codes differ from each other in their implementation and complexity [1]. The binary BCH codes were discovered in 1959 by Hocquenghem and independently in 1960 by Bose and Ray-Chaudhuri. Later, Gorenstein and Zierler generalized them to all finite fields [2]. The aim of this work is to optimize the BCH decoder compared to the basic one used nowadays in several fields like DVB-S2. Bearing in mind many works have been done in this field [3][4]. Finally, the proposed algorithm was implemented on a Xilinx Spartan 3E-500 FG 320 FPGA (xc3s500e-5fg320).

2. BACKGROUND AND RELATED WORK

Three main steps for BCH decoding are represented as follows:

- **Step 1**: Computation of syndromes.
- **Step 2**: Berlekamp-Massey algorithm.
- **Step 3**: detection of error position using Chien Search Block.

2.1 Syndrome Block

The BCH code is characterized as (n, k, t), where n is the code word length, k is the information length, and t is the error correction capability. The coefficients (r_0, r_1… r_{n-1}) can be represented as a received polynomial [5], \(R(x) = r_0 + r_1x + r_2x^2 + \ldots + r_{n-1}x^{n-1} \). To calculate all syndromes, we need 2t computation using the following equation:
\[S_i = R(\alpha) = \sum_{j=0}^{n-1} r_i \alpha^j \]

(1)

The hardware algorithm for BCH syndrome Block is defined in Figure 1, where \(R(x) \) represents the received code word, \(\alpha \) is the primitive element and \(S_j \) are the values of syndromes with \(1 \leq j \leq 2t \).

\[R(x) \]

\[\alpha_j \]

\[S_j \]

\[Figure 1: Basic syndrome block \]

For each Syndrome \(S_j \), where \(1 \leq j \leq 2t \), \(n \) iterations are needed to compute the coefficient of Syndrome Polynomial, knowing that all the syndrome coefficients will be equal to 0 if the received code word is correct with at least one coefficient different from 0 if the code word is not correct.

2.2 Berlekamp’s Algorithm

Berlekamp’s algorithm [6] is a more efficient iterative technique of solving equations that also overcomes the problem of not knowing \(v \). This done by forming an approximation to the error locator polynomial, starting with \(A(x) = 1 \). Then at each stage, an error value is formed by substituting the approximate coefficients into the equations corresponding to that value of \(v \). The error is then used to refine a correction polynomial, which is then added to improve the approximate \(A(x) \). The process ends when the approximate error locator polynomial checks consistently with the remaining equations.

2.3 Chien Search Algorithm

This algorithm can detect the error position by calculating \(\Lambda (\alpha^i) \), where: \(\Lambda (x) \) is the error locator polynomial. For the case of RS (\(n, k \)) we must calculate: \(\Lambda (\alpha^{(n-1)}) \), \(\Lambda (\alpha^{(n-2)}) \ldots \Lambda (\alpha^1) \), \(\Lambda (\alpha^0) \). If the expression reduces to 0 \(\Lambda (\alpha^i) = 0 \), then the position \(i \) contains an error else the position does not contain an error.

3. PROPOSED BCH DECODER

The proposed BCH decoder contains three main steps represented as follows:

- **Step 1**: proposed syndrome block.
- **Step 2**: Calculation of error locator polynomial through the Berlekamp-Massey algorithm.
- **Step 3**: proposed Chien Search Block.

3.1 Proposed Syndrome Block

The proposed syndrome block is based on a simple factorization [7] of the received code word so as to determinate the add syndromes. Consequently, we can design another circuit of the Syndrome Block i.e. we can reduce latency by decreasing the number of iterations compared to the basic circuit.

Generally for a code characterized as \((n, k, t) \), where \(n \) is the code word length, \(k \) is the information length and \(t \) is the error correction capability.

We have:

\[S_j = \sum_{i=0}^{n-j} \alpha^i A_i \]

\[\Lambda = \sum_{i=n}^{j} \alpha^i \]

Where:

- \(J \) is an odd number
- \(J \) divides \(n \)
- \(S_1 \) are the odd numbers

The logic circuit for Proposed Syndrome Block is represented in Figure 2.

3.2 Determination of Error Locator Polynomial Using Peterson Algorithm

This algorithm consists to solve the matrix equation \(\Lambda = S \) where:

\[\Lambda = \begin{pmatrix} 1 & 0 & 0 & 0 \\ S_{d} & S_{d-1} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ S_{d-t-4} & S_{d-t-3} & \cdots & S_{d-t-1} \end{pmatrix}, \Lambda = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_{t-1} \end{pmatrix} \]

and \(S = \begin{pmatrix} S_{d} \\ S_{d-1} \\ \vdots \\ S_{d-t-1} \end{pmatrix} \)

The advantage of this algorithm is to use a direct method instead of the iterative method like Berlekamp’s algorithm and hence it presents both a quick result and very low complexity compared to the Berlekamp’s algorithm. For the case of BCH (15, 7, 2) we have: \(N = 15, k = 7 \) and \(t = 2 \Rightarrow \Lambda (x) = A_2X^2 + A_1X + 1 \) as degree 2.

To calculate \(A_2 \) and \(A_1 \) we solve the matrix equation:

\[\begin{pmatrix} 1 & 0 \\ S_{d} & S_{d-1} \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} S_1 \end{pmatrix} \]

(4)

Where: \(A_1 = S_1 \) and \(A_2 = (S_1 + (S_1)^3) / S_1 \)
3.3 Hardware for Peterson Algorithm

The hardware algorithm for BCH (15, 7, 2) code is represented as follows:

![Figure 3: Peterson algorithm cell](image)

The hardware arrangement used for Peterson algorithm, shown in Figure 3, can be characterized by different blocks such as the block “Convert syndrome into A1”, which means that whatever the value of S1, A1 will be equal to “0001”. The block “Convert syndromes S2 and S4 provides “0001” whatever the values of S2 and S4 knowing that: for the case of BCH (15, 7, 2) A2 = “0001”.

3.4 Proposed Algorithm for Chien Search Block

The proposed chien search block is based on a simple factorization of the error locator polynomial. Besides, we can design another circuit of the Chien Search Block i.e. this algorithm presents both a large minimization of components [8], and a low power consumption compared to the basic algorithm. Generally for BCH (n, k, t):

\[\Lambda (X) = A_n X^n + A_{n-1} X^{n-1} + \ldots + A_1 X + A_0 \]

\[= X (A_n X^{n-1} + A_{n-1} X^{n-2} + \ldots + A_1) + A_0 \]

\[= X (X (\ldots (X (A_n X + A_{n-1}) + A_{n-2}) + \ldots) +A_2) + A_1) + A_0 \]

Where the coefficients A_1, A_2... A_{n-1}, A_n differ from 0. The corresponding logic circuit is represented in Figure 4.

3.5. Hardware and Simulation for Proposed BCH Decoder

The hardware algorithm and simulation for proposed BCH decoder are represented respectively in figures 5 and 6.
Figure 2: Modified syndrome calculator cell

Figure 4: Modified circuit of Chien Search Block for a polynomial of degree n
Where $\text{syt}_1, \text{syt}_2, \text{syt}_3, \text{syt}_4$ represent the four syndromes, $\text{EL}_1, \text{EL}_2, \text{EL}_2$ represent the coefficients of error locator polynomial and C represents the received code word.
b) FPGA device utilization summary for basic circuit.

<table>
<thead>
<tr>
<th>Logic Utilisation</th>
<th>Used</th>
<th>Available</th>
<th>Utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number Slice Registers</td>
<td>73</td>
<td>9312</td>
<td>1%</td>
</tr>
<tr>
<td>Number of 4 input LUTs</td>
<td>94</td>
<td>9312</td>
<td>1%</td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>68</td>
<td>4656</td>
<td>1%</td>
</tr>
<tr>
<td>Number of Slices containing only related logic</td>
<td>68</td>
<td>68</td>
<td>100%</td>
</tr>
<tr>
<td>Number of Slices containing unrelated logic</td>
<td>0</td>
<td>68</td>
<td>0%</td>
</tr>
<tr>
<td>Total Number of 4 input LUTs</td>
<td>94</td>
<td>9312</td>
<td>1%</td>
</tr>
<tr>
<td>Number used as logic</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bonded IOBs</td>
<td>35</td>
<td>232</td>
<td>15%</td>
</tr>
<tr>
<td>Number of BUFGMUXs</td>
<td>1</td>
<td>24</td>
<td>4%</td>
</tr>
</tbody>
</table>

Table 2: FPGA device utilization summary for BCH (3240, 3072, 12).

<table>
<thead>
<tr>
<th>Resources</th>
<th>proposed algorithm</th>
<th>basic algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Xilinx Spartan 3E (xc3s500e-5fg320)</td>
<td></td>
</tr>
<tr>
<td>BCH (n, k, t)</td>
<td>BCH (3240, 3072,12)</td>
<td></td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>280</td>
<td>408</td>
</tr>
<tr>
<td>Total Number Slice Registers</td>
<td>296</td>
<td>432</td>
</tr>
<tr>
<td>Number of 4 input LUTs</td>
<td>389</td>
<td>564</td>
</tr>
<tr>
<td>Number used as logic</td>
<td>372</td>
<td>540</td>
</tr>
</tbody>
</table>

5. CONCLUSION

In this paper, we have presented a simplified algorithm of different blocks for BCH decoder. We have optimized three blocks in the BCH decoder beginning with the syndrome block then the Peterson algorithm block and the Chien search block. The three Blocks were grouped into a single circuit using the BCH (3240, 3072, 12) code used in DVB-S2. This algorithm reduced both a large number of minimized logic gates and the power consumption with a percentage which can reach 32% compared to the basic algorithm. The proposed algorithm has been implemented on a Xilinx Spartan 3E-500 FG 320 FPGA (xc3s500e-5fg320). The results in Tables 1 and 2 show that the proposed algorithm requires reduced hardware resources compared to the basic algorithm.

REFERENCES:

