
Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

135

MAPPING OF A PLATFORM SPECIFIC MODEL TO A
PARTICULAR PLATFORM USING AN EAV DESIGNED

PLATFORM MODEL

1AHMED MOHAMMED ELSAWI, 2SHAMSUL SAHIBUDDIN
1PhD Student, Department of Computing, Universiti Teknologi Malaysia (UTM), Malaysia

2Prof., Advanced Informatics School (AIS), Universiti Teknologi Malaysia (UTM), Malaysia

E-mail: 1elsawi@gmail.com, 2shamsul@utm.my

ABSTRACT

The Model Driven Architecture (MDA) aimed to produce applications that support multiple platforms
using models instead of the conventional coding with less cost and time. The MDA development process
separated to Platform Independent Model (PIM) and Platform Specific Model (PSM). Both, PIM and PSM
are standing in different level of abstraction. The PIM focused on the business rules definition with no
concern about the platform environment. It is the PSM role to emphasis on the implementation environment
of the targeted platform. Although, the PSM models holding some technical implementation details about
the targeted platform, but it’s still considered too abstract to be executed in a run-time platform
environment. The degree of abstraction can be controlled by the model mapping, given the MDA standard
Platform Model (PM). The PM can be described as a platform’s system manual that provides model
mapping with a specific technical details required by the targeted run-time environment. In this work we
explicitly employed a Platform Model (PM) designed by the Entity-Attribute-Value (EAV) concept to
support the model mapping from PSM to Java platform. A case study provided as proof of concept to
generate executable Java code that supports desktop and mobile platform.

Keywords: MDA, PSM, Platform Model, Mapping to Java Platform, EAV

1. INTRODUCTION

Applications The Model Driven Architecture
(MDA) is focusing on Architectural Modeling
where the concern of the business requirement is
separated from the implementation details and
platform requirements. The development approach
divided into platform independent model (PIM) and
platform specific models (PSM). Both models are
working in different level of abstractions [1].
UML/MOF are a common OMG standard tools that
used in model driven development to design the
PIM and PSM models and metamodels [2, 3].
Model mapping or mapping is one of the major
activities in model driven software. Given the
Platform Model (PM), it serve in transforming high
level models (PIM) to low level (PSM) models or
vice versa. Also, the mapping can be within the
same level of abstraction (PIM-to-PIM) or (PSM-
to-PSM). These scenarios of mapping can be
classified as Model-to-Model (M2M) mapping or
Model-to-Text (M2T). Both are under the MDA
umbrella and supported by a good number of tools

that furnished to address each scenario and type of
mapping [4].

Model mapping faced by several challenges.
Specifically, when it comes to generating concrete
platform’s code out of Models.

The abstraction of the data structures specified in
the MOF models is one of the model mapping
challenges. Where, concrete syntax derived from
MOF/UML instances model is a common syntax.
There is no reason to expect that the concrete
syntax of the method calls for a particular platform
conform to any of the MOF related concrete
syntaxes. Platforms runtime environment require a
very specific concrete syntax to execute [5, 6].

On the other hand, The UML does have a wide-
ranging of behavioral models [7]. These behavioral
models permit the specification of a complete range
of behaviors. These specifications are normally
static. The class diagram can be one of these
models that commonly used to describe the model
specifications. But on the other hand, the semantics
of the behaviors are not included in the models as it
is not included in the static model specifications

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

136

[8]. For example, one of the actions included in a
behavioral model might be print(). The behavioral
model can include pre and post conditions for the
validity and outcome of the print() action, but what
the action actually does is not specified in the
model. What print() actually does depends on the
hardware and software platforms which implement
the operation represented by the action. In MDA
terms, the print() action is specified in the PIM,
while its semantics are specified by the platforms
generalized in a PSM which represent the dynamic
part. Both of the models are independent from the
platform but collaboratively upon mapping should
map to a single executable object in the targeted
platform.

From other prospective, the adoption of
separation of concern and models along with model
mapping, gives the MDA a great advantage on the
automation of software development and
hypothetically supports the deployment of software
on different platforms [9]. Yet, the implicit
employment of the PM during the mapping limited
the model mapping scope to address a single
presumed platform [10]. The thing that create an
uncertainty of the possibility of using this model
mapping for other platforms different than the one
for which it was designed. Considering the
diversity and volatility of the computer platforms,
the possibility of having a model mapping that can
be used by different platforms will be
compromised. Even if we consider a portable
platform like Java, it is not guaranteed that a model
mapping designed for J2SE can be reused to
address J2ME mobile platform.

This work is addressing the above challenges by
focusing on the mapping from PSM models to Java
platforms. We propose an explicit use of a PM
designed by the Entity-Attribute-Value (EAV)
concept to complement the model mapping and
generate a concrete Java code out of a given PSM
metamodel. We also illustrated how to address the
platform diversity and volatility by an explicit
employment of EAV-PM.

The next part is section 2 where we introduce the
related works, and initiatives that focused on code
generation out of PSM models and the explicit use
of the PM by model mapping. This is beside the
work that address the issues of platform diversity in
the MDA context. Section 3 shows the capability of
EAV in modelling a computer platform and how
we utilize it to design an explicit PM to support the
model mapping from PSM models to Java platform.
A case study presented in Section 4 to practically
demonstrate the possibility of generating an

executable java code out of PSM model supported
by our novel explicit EAV-PM. The discussion and
results shown in Section 5. While the conclusion
and future work provided in Section 6.

2. RELATED WORK

The work in [11], is closely related to ours.
Where the authors suggested an explicit use of an
ontology based platform model to address the
platform dependencies of the model mappings and
their validity to specific platforms. Using the
ontology to represent the platform model comes
with limitations. In general, the automation of
handling big ontology is impossible due to the
number of classes an instances. This is beside the
fact that the time consumed in a manual
construction of ontologies is growing more
complex upon the diversity and platform’s data
volume rapid increase. Consequently, this is
reflected in the number of ontologies required to
cope with this technology volatility. Although some
ambitious ontology automation [12, 13] works on
reducing the time and complexity, however, it is
not yet mature enough to be adopted. Putting into
account that the current ontology automation
methods are failing to merge different ontologies to
produce new mature one [14, 15]. Another ontology
platform representation limitation, is the lack of
flexible validators that capable to validate all
different types of platform ontologies. Especially
when it comes to complex inheritance relationship.
On the other hand the OWL language that adopted
to create the platform ontologies is also drawing
some limitation on ontology creation. Since, the
OWL doesn’t stand on a backend database during
the ontology creation. This is beside the fact that
their explicit ontology base PM model serve the
model mapping from PIM to PSM. Meaning, more
effort required to tackle the mapping from PSM
model to platform concrete code.

Nevertheless, we are following some of their
steps as we also explicitly employed the platform
model. However, our EAV-PM serve the mapping
from PSM to concrete executable code. Instead of
using the ontology we used the EAV to reasoning
for platforms and to design the PM to support the
model mapping with the necessary technical details
required by the targeted platforms.

In SPL terminology the platform model here can
be described as a core assets that can be utilized by
model mappings to address different platforms.

In the next section we highlight EAV capabilities
in knowledge representation and specifically in

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

137

representing computer platforms models and
metamodels along with the design of the explicit
Platform Model.

3. COMPUTER PLATFORM
REPRESENTATION USING EAV

Our work in [16] illustrated EAV capabilities in
representation of models and metamodels. Its
knowledge representation capability and open
structure makes it suitable for modeling and
representing computer platform. The open structure
gives EAV a flexibility to cope with the platform
diversity and volatility. Our work in [17]
demonstrated the possibility of merging models
with different level of abstraction in a single EAV
repository. This capability opens the door for more
technology merger and integration flexibility. On
the other hand it gives valuable support to MDA
objective of speed up and cost cuts the software
development process. With consideration to satisfy
the technology diversity factor. In this section we
adopted the technique provided by [18, 19] to
describe a computer platform. They provide an
ontology based platform vocabulary that utilized by
[11] and so we do. However we presented in EAV
model. Figure 7 shows a partial view of their
platform description.

Figure 7, A Partial View Of A Computer Platform

Description Presented By[11]

Each platform component in the above figure,
can be represented as an Entity with its associated
attributes and values. Attributes can be described as
a separate Entity with its own attributes and values.
For example the virtual machine component
presented as Platform.software.virtualmachine. The
“isa” is a subsumption relationship that indicate that
the group of Virtual Machines subsumes the group
of software. The Entity associated attributes and
values, list out the information and futures provided
by this Entity. This is along with its correspondent
dependencies and constrains that govern its
interactivities with other platform components. The

table in appendix A table A.1 illustrate a partial
EAV representation for figure 7. As we described
in [16] a database view can be used to distinct a
certain area of interest in the targeted platform or to
set a particular contains or dependency. For sake of
space saving and simplicity we narrow down the
amount of attributes, so we can present the whole
concept above.

The Virtual Machine in appendix A table A.1
is prefixed by Software to indicate it refers to the
Software, where the ‘.’ employed as a namespace
delimiter for easy navigation and information
retrieval. Similar to our EAV representation in
section 3.1, the platform formation rules and
Constrains, will be checked by structural queries as
well. For example, to satisfy the fact that each
software platform is in a cyclical relationship with
software and hardware platform.

SELECT * FROM EAV_PM AS B

WHERE

B.ENTITY IN (SELECT SUBSTR(A.VALUE_ , -8,

8) FROM EAV_PM AS A

WHERE

B.ENTITY = SUBSTR(

A.VALUE_ , -8, 8)

)

It is important to mentioned that the the
database is not intruded here as a technology since
the attribute value pairs concept can be handled and
formulated by other methods like XML/XMI. So
the SQL is here to help in formalization of the EAV
concept. Beside the fact that the database structures
can easily be transformed to XML format.

From the above we can see that the highlighted
output results in the below XML format illustrated
that for each software platform, there are multiple
hardware and software platform involved. Having
the constrains among other EAV PM results in
XML format, is opening the door for more
integration and automation possibilities with
different tools in different branch streams
concerned with model and software development as
well as code generation.

<database name="test">

<!-- Table eav_pm -->

<table name="eav_pm">

<column name="ENTITY">Platform</column>

<column

name="ATTRIBUTE">Relationship.type</column>

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

<column

name="VALUE_">Multiplicity.provideHardware.

Platform.hardware</column>

</table>

<table name="eav_pm">

<column name="ENTITY">Platform</column>

<column

name="ATTRIBUTE">Relationship.type</column>

<column

name="VALUE_">Multiplicity.provideSoftware.

Platform.software</column>

</table>

</database>

The high abstract level platform representation
in figure 7, can be extended to detailed lower levels
of abstraction. For example the Java Runtime
Environment (JRE) in figure 8 come with Java
Virtual Machine.

Figure 8 An Ontology Fragment Describe A Java
Runtime[11]

Each version of the Java virtual machine has its
own byte code format. In general Java has different
releases, each of which addressing specific
technology. The major difference between these
releases is mainly in the build in libraries. J2me
libraries addressing mobile platform technologies,
while the J2EE releases addressing different
technologies through its build in APIs. In appendix
A table A.2 is apart from table A.1. The
“Platform.software.virtualmachine.JRE” is a new
entity associated with its attributes values pair. For
each JRE there is a dedicated virtual machine
associated with build in libraries. These libraries
depending on the Java specifications for the
particular JRE. For example the libraries of the
J2me PP 1.1 are different than the one work for
J2EE. Accordingly, appendix A table A.2 shows a
partial description of the EAV representation of
Figure 8. It is important to mention that this
representation is stored in the same EAV platform

repository in appendix A table A.1 that we
separated for the sake of space saving.

The below structural queries can be saved in a
database view to group the specifications of the
JRE along with its constrains and API and/or other
technical details of the targeted platform.

SELECT value_ FROM EAV_PM WHERE
ENTITY = 'Platform.software.JRE'

The above code is a straight “SELECT”
statement to retrieve the pair value associated to
“Platform.software.JRE” Entity. By enquiring each
of the highlighted entities we will get all the APIs
beside the constrain we presented in the above
EAV_PM example. Where the
“Multiplicity.provideSoftware.Platform.software”
and
“Multiplicity.provideSoftware.Platform.hardware”
entities are retrieved as a dependency constrain
required by “Platform.software.JRE”. Similarly,
the ”Platform.software.Library.JavaLibrary” and
“Platform.software.VirtualMachine.JavaVM” can
be enquired to drill down more information
and/API associated to them.

In the next part we provide a briefing about an
Eclipse Modeling Framework.

4. ECLIPSE MODELING FRAMEWORK
(EMF)

The Eclipse Modeling Framework (EMF) is
conforming to the OMG Meta Object Facility
(MOF) standard for metamodel definition. The
EMF metamodelling language called Ecore. Figure
9 presents a fragment of the Ecore Metamodel.

Figure 9: A Fragment From Ecore Metamodel

The capital E in the Ecore used to mark the
Ecore classes from UML classes. Similarly, the
Ereference and Eattribute. While the Eclass
represent the classes the Ereference represent the
association between classes. The Eattribute name

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

the properties of each class and the attribute type
address by the Etype.

Beside the Ecore, the EMF has another
metamodel called Genmodel. While the Ecore
handle the information about the defined classes.
The Genmodel, provide the necessary information
required for code generation.

Beside its support to the M2T mapping
standards [2], the EMF have been chosen for its
modelling capabilities where a domain model is
visibly established. This is addition to the
notification feature that the EMF provided upon
model modification. Also, the EMF managing
changes in models upon object creation through its
notification feature. Consequently, applications will
be immune from discrete classes’ employment. On
the other hand, the targeted code (Java code) can be
generated when desired from the source model.

In the next part a case study introduced to
demonstrate the mapping from PSM model to
concrete Java code utilizing the explicit EAV-PM.
The EMF version adopted to implement this case
study is Eclipse JUNO Service Release 21.

5. THE WEBSITE FACTORY CASE STUDY

The MDA principles has been adopted in this
case study to build a website factory by mapping a
PSM model for a website to Java. In other word we
are building a product line to produce Java based
websites. The eclipse JUNO is equipped with a
visual editor that allow us to create Ecore diagrams.
Our Ecore model in this case study called
“webpage.ecore”. The full project of this case study
can be downloaded from
(https://www.dropbox.com/l/RtjY1X7AwYbc6FjL
hAs24a?). The UML class diagram shown in Figure
10, define 4 classes (Web, Webpage, Category and
Article).

1http://www.eclipse.org/downloads/packages/release/juno/sr2

Figure 10 A fragment from a website class diagram

Unlike the other attributes, we assigned the
attribute “created” in the “Article” class to a user
defined “calendar” type defined in an Edatatype
named “calendar” with type "java.util.Calendar".
The saved diagram stored in “webpage.ecore” in
the format shown in Figure 11. This feature enable
for including a precompiled core asset as user
defined data type.

As we mentioned in the previous section the
EMF supported beside the Ecore metamodel, the
“genemodel” metamodel. The genmodel should
contain all the information concerned with the code
generation.

Figure 11 Part Of The “Webpage.Ecore” Model’s File
Format

Through the EMF Generator Model, we
generate a new version based on the
“webpage.ecore” model called
“webpage.genmodel”. This step is done by the
EMF generator Model. Figure 12 shows the
“webage.genmodel” file format.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

Figure 12 Sample from the “webpage.genmodel” file
format

Both model files, the “.ecore” and “.genmodel”
are required to generate the java code. By write
click on the webpage node in the
webpage.genmodel file (see figure 13) we get the
following three files:The
“spl.mda.emf.webpage.model.webpage” which
representing the interfaced and the factory to great
the Java classes. While the second is the
“spl.mda.emf.webpage.model.webpage.impl”
which holding the concrete code of the webpage
model. The last is file is the
“spl.mda.emf.webpage.model.webpage.util” which
act as the adaptor factory.

Figure 13 Show How To Generate The Website Concrete

Java Code.

In the next step we are creating an editor to our
generated website model. Similar to the step shown
in figure 13, but this time will choose “Generate
edit code” and then “Generate editor code”
respectively. This is resulting to a “.editor” plug-in
that can be run in a new eclipse instance as eclipse
application. In the new runtime eclipse instance, we
have the leverage of using the “Example EMF
Model Creation Wizards” where we choose our
“Webpage Model”. Then we can create an object
for each of our model classes as shown in figure 14.

Figure 14 Example Of Creating An Object From The
Webpage And Category Classes.

In the above example, we straight forward
generated an executable website Java code form a
website UML class diagram model. There is no
employment the platform model here since our
targeted platform in a normal personal computer.
But if we want to extend this website to be browsed
in a mobile platform. The code need to be adjusted
to suite for mobile browsing.

To handle this issue we utilize our EAV
platform model to update the model mapping with
the necessary information to adjust our website to
be brows in a mobile environment. Since the EAV
platform is already updated with different
platform’s information up to the concrete library
code and instead of start the mapping from scratch,
we retrieve the required information from the EAV
platform model as described in section 3.2. The
required code lies under the library part. So we
need to retrieve the mobile browsing requirement as
per below code, by retrieving the content of the
mobile library API from EAV PM.

SELECT VALUE_ FROM (
SELECT * FROM EAV_PM A

WHERE A.Entity =
‘Platform.software.Library.JavaLib.Mobile.M
obileBrowes’

AND
A.ATTRIBUTE =

‘LIB.Type.Smartphone.General’
AND

A.VALUE_ =
‘API.Platform.software.Library.JavaLib.Mobi
le.MobileBrowes’) AS B
WHERE
B.ATTRIBUTE = ‘LIB.API.Content’

The below code is a partial API content for
mobile browsing, resulting of the above query.
public class SmartPhoneBrowsingInfo
{

//Stores some info about the browser and
device.

private String BrowerAgentInfo;

//Stores info about what content formats

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

the browser can display.
private String httpAccept;

// strings that list out smart phone
device’s capabilities.

public static final String deviceType =
"SmartphoneBrand";

//The constructor. Initializes several
default variables.

public SmartPhoneBrowsingInfo(String
BrowerAgentInfo, String httpAccept) {

if (BrowerAgentInfo != null) {
this.BrowerAgentInfo =

BrowerAgentInfo.toLowerCase();
}
if (httpAccept != null) {

this.httpAccept =
httpAccept.toLowerCase();

}
}

//**************************
//Returns the contents of the broweser

Agent value, in lower case.
public String getBrowerAgentInfo()
{

return BrowerAgentInfo;
}

//**************************
// Detects if the current device is a

SmartphoneBrand.
public boolean detectSmartphoneBrand ()
{

if (BrowerAgentInfo.indexOf(device
SmartphoneBrand) != -1 &&
!detectsmartphone()) {

return true;
}
return false;

}}

The “.Impl” files need to be updated by the
above code. This code will be imported as an API
retrieved from our “EAV_PM” platform model.
The following code illustrate how this update will
take place in the “.Impl” files starting with the
“spl.mda.emf.webpage.model.webpage.impl”.
Below is a sample code of the “.Impl” file, after
updating the mobile browsing information (see the
highlighted code).

package
spl.mda.emf.webpage.model.webpage.impl;

import
eav_pm.lib.javalib.mobile.mobilebrowse.Smar
tPhoneBrowsingInfo

import java.util.Calender;
import org.eclipse.emf.ecore.EAttribute;
import org.eclipse.emf.ecore.EClass;
import org.eclipse.emf.ecore.EDataType;

import org.eclipse.emf.ecore.EPackage;
import org.eclipse.emf.ecore.EReference;

import
org.eclipse.emf.ecore.impl.EPackageImpl;

import
spl.mda.emf.webpage.model.webpage.Article;
import
spl.mda.emf.webpage.model.webpage.Category;
import
spl.mda.emf.webpage.model.webpage.Web;
import
spl.mda.emf.webpage.model.webpage.Webpage;
import
spl.mda.emf.webpage.model.webpage.WebpageFa
ctory;
import
spl.mda.emf.webpage.model.webpage.WebpagePa
ckage;

/**
* <!-- begin-user-doc -->
* An implementation of the model
Package.
* <!-- end-user-doc -->
* @generated
*/
public class WebpagePackageImpl extends
EPackageImpl implements WebpagePackage {

private EClass webpageEClass =
null;

private EClass webEClass = null;

private EClass categoryEClass =
null;

private EClass articleEClass =
null;

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
private EDataType

calenderEDataType = null;

/**
* Creates an instance of the

model Package, registered with
* {@link

org.eclipse.emf.ecore.EPackage.Registry
EPackage.Registry} by the package

* package URI value.
* <p>Note: the correct way to

create the package is via the static
* factory method {@link #init

init()}
, which also performs

* initialization of the package,
or returns the registered package,

* if one already exists.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

* @see
org.eclipse.emf.ecore.EPackage.Registry

* @see
spl.mda.emf.webpage.model.webpage.WebpagePa
ckage#eNS_URI

* @see #init()
* @generated
*/
private WebpagePackageImpl() {

super(eNS_URI,
WebpageFactory.eINSTANCE);

}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated */

// Initialize classes and features; add
operations and parameters

initEClass(webpageEClass,
Webpage.class, "Webpage", !IS_ABSTRACT,
!IS_INTERFACE,
IS_GENERATED_INSTANCE_CLASS);

initEAttribute(getWebpage_Name(),
ecorePackage.getEString(), "name", null, 0,
1, Webpage.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getWebpage_Title()
, ecorePackage.getEString(), "title", null,
0, 1, Webpage.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getWebpage_Descrip
tion(), ecorePackage.getEString(),
"description", null, 0, 1, Webpage.class,
!IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getWebpage_Keyword
s(), ecorePackage.getEString(), "keywords",
null, 0, 1, Webpage.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEReference(getWebpage_Categor
ies(), this.getCategory(), null,
"categories", null, 0, -1, Webpage.class,
!IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE,
IS_COMPOSITE, !IS_RESOLVE_PROXIES,
!IS_UNSETTABLE, IS_UNIQUE, !IS_DERIVED,
IS_ORDERED);

initEClass(webEClass,
Web.class, "Web", !IS_ABSTRACT,
!IS_INTERFACE,
IS_GENERATED_INSTANCE_CLASS);

initEAttribute(getWeb_Name(),
ecorePackage.getEString(), "name", null, 0,
1, Web.class, !IS_TRANSIENT, !IS_VOLATILE,
IS_CHANGEABLE, !IS_UNSETTABLE, !IS_ID,

IS_UNIQUE, !IS_DERIVED, IS_ORDERED);

initEAttribute(getWeb_Title(),
ecorePackage.getEString(), "title", null,
0, 1, Web.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getWeb_Description
(), ecorePackage.getEString(),
"description", null, 0, 1, Web.class,
!IS_TRANSIENT, !IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getWeb_Keywords(),
ecorePackage.getEString(), "keywords",
null, 0, 1, Web.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEReference(getWeb_Pages(),
this.getWebpage(), null, "pages", null, 0,
-1, Web.class, !IS_TRANSIENT, !IS_VOLATILE,
IS_CHANGEABLE, IS_COMPOSITE,
!IS_RESOLVE_PROXIES, !IS_UNSETTABLE,
IS_UNIQUE, !IS_DERIVED, IS_ORDERED);

initEClass(categoryEClass,
Category.class, "Category", !IS_ABSTRACT,
!IS_INTERFACE,
IS_GENERATED_INSTANCE_CLASS);

initEAttribute(getCategory_Name()
, ecorePackage.getEString(), "name", null,
0, 1, Category.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEReference(getCategory_Articl
es(), this.getArticle(), null, "articles",
null, 0, -1, Category.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE, IS_COMPOSITE,
!IS_RESOLVE_PROXIES, !IS_UNSETTABLE,
IS_UNIQUE, !IS_DERIVED, IS_ORDERED);

initEClass(articleEClass,
Article.class, "Article", !IS_ABSTRACT,
!IS_INTERFACE,
IS_GENERATED_INSTANCE_CLASS);

initEAttribute(getArticle_Name(),
ecorePackage.getEString(), "name", null, 0,
1, Article.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

initEAttribute(getArticle_Created
(), this.getcalender(), "created", null, 0,
1, Article.class, !IS_TRANSIENT,
!IS_VOLATILE, IS_CHANGEABLE,
!IS_UNSETTABLE, !IS_ID, IS_UNIQUE,
!IS_DERIVED, IS_ORDERED);

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

// Initialize data types

initEDataType(calenderEDataType,
Calender.class, "calender",
IS_SERIALIZABLE,
!IS_GENERATED_INSTANCE_CLASS);

// Create resource
createResource(eNS_URI);

}

} //WebpagePackageImpl

Now the “.genmodel” need to be reload after
the above updates (see figure 15). After we reload
the new updated model, the webpage can be
regenerated. But this time the website is suite to be
browse in a mobile environment.

Figure 15 shows how to reload the
“.genmodel”

It worth to mention that the changes was only
limited to the “.genmodel”, while the “.ecore”
model remain with no changes. This operation can
be fully automated process with minimal manual
interference.

6. DISCUSSION AND RESULTS

In this work we explicitly used a platform
model designed by EAV concept to support the
mapping from PSM model to Java.

EAV act as a means of knowledge
representation that we utilizes to design an EAV
platform model. The advantage of EAV
representation over the ontology platform
representation is that the open structure of EAV
allows for representing multiple platforms, with
different level of details up to the code level. This is
beside the flexibility and the dynamicity of EAV
structure in defining and representing any
upcoming new platforms or modifying the current
one.

On the other hand, the possibility of presenting
an EAV platform model in XML format is giving
an integration room with different systems, tools
and software engineering approaches. For example
EAV platform can be used as a core asset
repository in any software product line. The
platform information and APIs can be stored and
retrieved from it. Consequently, Both MDA and
software product line approaches can share this
platform model as a centric area of collaboration,
integration and information exchange. In reverse
the core assets in the software product line can be
stored in the EAV Platform model, adopting the
same semantic presented in this work. This will

positively reflect on the number of platforms that
the model mapping can support.

From other prospective the possibility of
having the EAV-PM in XML can allow for an
automating update to its repository by the platform
vendor’s website feeds (RSS). This way the
platform model will be up to date with new
platform releases or versions. Consequently, the
software productivity will rapidly increase the
support to a great number of platforms with
minimal changes and cost. While the coding effort
can be shifted in more architectural and design
work to improve the software quality.

On top of the above, the explicit employment
of EAV-PM provide a great support to the model
evolution: with proper mechanisms and tools like
the EMF in place, there is a flexibility to ensure that
models will work, open in editors, produce the code
etc. with the newer metamodel too (e.g. updates
automatically the models to the new metamodel).

There are also other advantages like faster
metamodel/language development, easier
management, possibility to couple various
generators based on the metamodel together, etc.

The limitation of the EAV-PM is inherited
from EAV representation drawbacks. Where a
considerable up-front programming is needed to do
many tasks that a conventional architecture would
do automatically. Moreover, such programming
needs to be done only once, and availability of
generic EAV tools could remove this limitation.
Also, for bulk retrieval EAV design is considered
less efficient than a conventional structure.
Consequently, performing complex attribute-centric
queries, which are based on the values of attributes,
and returning a set of objects is both significantly
less efficient as well as technically more difficult.

7. CONCLUSION AND FUTURE WORK

Computer, platforms are combining a set of
features and component that allow to formally
control different functions and contexts
(Hardware/software activities) that normally
limited to a particular stream of technology. Having
a capability of representing multiple platforms for
different technologies in different levels of
abstraction, in a single EAV-PM repository, is
dramatically increasing the quality and the
productivity of the software development process.

The EAV-PM introduced in this work as a
novel approach that explicitly employed to support
the mapping from PSM models to two different
Java environment. The EMF used for modeling,
mapping and code generation. The Website factory

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

case study presented to show the MDA capability
in producing end to end software product. The
website designed for desktop browsing. However,
we put the EAV-PM in action to update the model
mapping by retrieving the mobile browsing
information from EAV platform model. The model
reloaded and regenerated in a mobile browse
friendly version with minimal interference and
modification.

In the near future the focus will be on the
automatic update of the EAV-PM. Where the
Domain Specific Language will be explored as a
solution to produce a user friendly interface that
allow easy update to EAV-PM model. Also, we
intend to create a plug-in to automatically populate
EAV-PM repository from the vendor’s website
feeds.

More case studies will be implemented to
target different platforms other than java for more
testing and to generalization.

REFRENCES:

[1] Frankel, D.S., MODEL DRIVEN
ARCHITECTURE APPLYING MDA. 2003:
Wiley. com.

[2] OMG Document: formal/01-11-02, OMG: Meta
Object Facility (MOF) v1.3.1, in OMG
Document: formal2001.

[3] 3. formal/01-09-67, O.D., OMG: Unified
Modeling Language v1.4. OMG Document:
formal/01-09-67, Sept. 2001., 2001.

[4] Mellor, S.J., MDA distilled: principles of
model-driven architecture. 2004: Addison-
Wesley Professional.

[5] Henderson-Sellers, B. and C. Gonzalez-Perez,
Multi-Level Meta-Modelling to Underpin the
Abstract and Concrete Syntax for Domain-
Specific Modelling Languages, in Domain
Engineering. 2013, Springer. p. 291-316.

[6] Ráth, I., A. Ökrös, and D. Varró,
Synchronization of abstract and concrete syntax
in domain-specific modeling languages.
Software & Systems Modeling, 2010. 9(4): p.
453-471.

[7] Son, H.S., W.Y. Kim, and R.Y.C. Kim,
Concretization of the Structural and Behavioral
Models based on model Transformation
Paradigm for Heterogeneous Mobile Software.
development, 2013. 10: p. 15.

[8] Hoisl, B., et al., A Catalog of Reusable Design
Decisions for Developing UML-and MOF-

based Domain-Specific Modeling Languages.
2012.

[9] Völter, M., et al., Model-driven software
development: technology, engineering,
management. 2013: John Wiley & Sons.

[10] Soares, I.W., et al., Modeling of embedded
software on MDA platform models. Journal of
Computer Science & Technology, 2012. 12.

[11] Wagelaar, D. and R. Van Der Straeten, Platform
ontologies for the model-driven architecture.
European Journal of Information Systems,
2007. 16(4): p. 362-373.

[12] Noy, N.F. and M.A. Musen. Algorithm and tool
for automated ontology merging and alignment.
in Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI-00). Available
as SMI technical report SMI-2000-0831. 2000.

[13] Raunich, S. and E. Rahm. ATOM: Automatic
target-driven ontology merging. in Data
Engineering (ICDE), 2011 IEEE 27th
International Conference on. 2011. IEEE.

[14] Antonkulaga, Limitations of Semantic Web;
Ontology. [Online]
http://denigma.de/data/entry/limitations-of-
semantic-web-ontology, 2013.

[15] Flahive, A., D. Taniar, and W. Rahayu,
Ontology as a service (OaaS): a case for sub-
ontology merging on the cloud. The Journal of
Supercomputing, 2013. 65(1): p. 185-216.

[16] ELSAWI, A.M., S. SAHIBULDIN, and A.
ABDELHADI, INTRODUCING THE OPEN
SOURCE METAMODEL CONCEPT. Journal of
Theoretical & Applied Information Technology,
2013. 57(3).

[17] ELSAWI, A.M., S. SAHIBUDDIN, and A.
ABDELHADI, PROPOSE AN INTEGRATION
BETWEEN UML STATIC AND DYNAMIC
MODELS USING ENTITY-ATTRIBUTEVALUE
UNDER THE MDA CONTEXT. Journal of
Theoretical & Applied Information Technology,
2014. 68(1).

[18] Lédeczi, Á., et al., Composing domain-specific
design environments. Computer, 2001. 34(11):
p. 44-51.

[19] Tolvanen, J.-P. and M. Rossi. MetaEdit+:
defining and using domain-specific modeling
languages and code generators. in Companion
of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems,
languages, and applications. 2003. ACM.

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

.

APPENDICES

APPENDIX A:

State Event
Transition

Name Name Source Target Triggeredby

WishTravel reservation WishTravel HoldRes reservation

Completed reschedual HoldRes ReadyTravel reqCheckIn

HoldRes reqCheckIn ReadyTravel HoldRes reschedual

ReadyTravel checkIn ReadyTravel WBoardCard checkIn

WBoardCard complete WBoardCard Completed complete

urgeFly Completed WishTravel urgeFly

WishTravel HoldRes reservation

Appendix A: Airline Passenger State Model Of Figure 1 Represented As A Conventional Database Population

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

APPENDIX B:

ENTITY ATTRIBUTE VALUE_

EVENT NAME checkIn

EVENT NAME Complete

EVENT NAME reqCheckIn

EVENT NAME Reschedule

EVENT NAME Reservation

EVENT NAME urgeFly

STATE NAME Completed

STATE NAME HoldRes

STATE NAME ReadyTravel

STATE NAME WBoardCard

STATE NAME WishTravel

TRANSITION SOURCE Completed

TRANSITION SOURCE HoldRes

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE WBoardCard

TRANSITION SOURCE WishTravel

TRANSITION TARGET Completed

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

TRANSITION TARGET HoldRes

TRANSITION TARGET HoldRes

TRANSITION TARGET ReadyTravel

TRANSITION TARGET WBoardCard

TRANSITION TARGET WishTravel

TRANSITION TRIGGEREDBY checkIn

TRANSITION TRIGGEREDBY complete

TRANSITION TRIGGEREDBY reqCheckIn

TRANSITION TRIGGEREDBY reschedule

TRANSITION TRIGGEREDBY reservation

TRANSITION TRIGGEREDBY urgeFly

Appendix B: Airline Passenger State Model Of Figure 1 Represented In EAV Database Population

APPENDIX C:

ENTITY ATTRIBUTE VALUE_

Metamodel ID 1

Metamodel Name State Machine

Metamodel.Element ID 1.1.1.1

Metamodel.Element Name NamedElement

Metamodel.Element.NamedElement DataType String

Metamodel.Element.NamedElement Attribute Name

Metamodel.Element.NamedElement.EVENT NAME checkIn

Metamodel.Element.NamedElement.EVENT NAME complete

Metamodel.Element.NamedElement.EVENT NAME reqCheckIn

Metamodel.Element.NamedElement.EVENT NAME reservation

Metamodel.Element.NamedElement.EVENT NAME urgeFly

Metamodel.Element.NamedElement.EVENT NAME Completed

Metamodel.Element.NamedElement.EVENT NAME HoldRes

Metamodel.Element.NamedElement.EVENT NAME ReadyTravel

Metamodel.Element.NamedElement.EVENT NAME WBoardCard

Metamodel.Element.NamedElement.EVENT NAME WishTravel

Metamodel.Element.NamedElement.NAME NAME Completed

Metamodel.Element.NamedElement.NAME NAME HoldRes

Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

Metamodel.Element.NamedElement.NAME NAME ReadyTravel

Metamodel.Element.NamedElement.NAME NAME WBoardCard

Metamodel.Element.TRANSITION SOURCE Completed

Metamodel.Element.TRANSITION SOURCE HoldRes

Metamodel.Element.TRANSITION SOURCE ReadyTravel

Metamodel.Element.TRANSITION SOURCE WBoardCard

Metamodel.Element.TRANSITION SOURCE WishTravel

Metamodel.Element.TRANSITION TARGET Completed

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET ReadyTravel

Metamodel.Element.TRANSITION TARGET WBoardCard

Metamodel.Element.TRANSITION TARGET WishTravel

Metamodel.Element.TRANSITION TRIGGEREDBY checkIn

Metamodel.Element.TRANSITION TRIGGEREDBY complete

Metamodel.Element.TRANSITION TRIGGEREDBY reqCheckIn

Metamodel.Element.TRANSITION TRIGGEREDBY reschedule

Metamodel.Element.TRANSITION TRIGGEREDBY reservation

Metamodel.Element.TRANSITION TRIGGEREDBY urgeFly

Appendix C: Fragment Of EAV Representation To Models In Figure 1 And Figure 2

