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ABSTRACT

We present results related to the numerical method based on Finite Domain Beam Propagation Method
(FD-BPM). It allows to characterize microstructured fibers Air / Silica (FMAS) with a good approximation.
We also show how optogeometrical parameters (d: diameter of the holes, Λ: spacing between the air holes)
can influence the propagation characteristics for applications in optical networks Telecommunications.

Keywords: Finite domain beam propagation method (FD-BPM), Modeling, Microstructured fibers
Air/Silica (FMAS), Diagrams of dispersion, Couplers, mode coupling.

1. INTRODUCTION

Microstructured fibers  Air/Silica (FMAS), also
referred to Photonic Crystal Fibers (PCF),
consisting of a central defect region (typically solid
silica) surrounded by multiple air holes running
parallel to the fiber length have been one of the
most significant achievements in optical technology
within the last years.

The microstructured fibers arrived today at
maturity, and allow to consider improving the
performance of fiber components for optical
telecommunications. The FMAS with two cores
have applications in several applications such as
filters, multiplexers and couplers [1].

The beam propagation method has been applied
to many wave guiding structures in guides wave
optics [2-3] and tool that allowed us to model the
FMAS, the standard form of implementation of the
FD-BPM is the Crank-Nicholson method.

2. FORMULATION

Many numerical tools exist to model the
behavior of a FMAS [4-5].
Our choice has been on the FD-BPM (Finite
Domain Beam Propagation Method) based on the
Crank-Nicholson algorithm. This method has the
advantage of being less intensive computing
ressources.

The problem of light propagation in waveguides
with arbitrary geometry is very complicated in

general, and it is necessary to make some
approximations.

We will assume an harmonic dependence of the
electric and magnetic fields [6], in the form of
monochromatic waves with an angular frequency

, in such a way that the temporal dependence will
be of the form . The equation which describes
such EM waves is the vectorial Helmholtz
equation:

∇ + ( , , ) = 0
Where = ( , , ) denotes each of the six

Cartesian components of the electric and magnetic
fields.

The refractive index in the domain of interest is
given by ( , , ), and will be determined by the
waveguide geometry (optical fiber, directional
coupler,...etc)

If the wave propagation is primarily along the
positive direction, and the refractive index
changes slowly along this direction, the field( , , ) can be presented as a complex field
amplitude ( , , ) of slow variation, multiplied
by a fast oscillating wave moving in the +
direction:( , , ) = ( , , )

Where = / is a constant which represents
the characteristic propagation wave vector, and
as the refractive index of the substrate.

(1)

(2)
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Substituting the optical field in the Helmholtz
equation [6], it follows that:

− + 2 = + + ( − )
Where = 2 / denotes the wavevector in the

vacuum and ( , , ) = ( , , ) has been
introduced to represent the spatial dependence of
the wavevector.

If we also assume that the optical variation is
slow in the propagation direction SVEA (Slowly
Varying Eenvelope Approximation) we will have:² ² ≪ 2

We can ignore the first term on the left-hand side
of equation (3) with respect to the second one, this
approximation is known as parabolic or Fresnel
approximation and equation (3) leads to:

2 = ²² + ²² + ( − )
Which is known as the Fresnel or paraxial

equation. It is the starting equation for the
description of optical propagation in
inhomogeneous media, and in particular, in wave-
guide structures. An example is TE propagation in
1D waveguides, where the Fresnel equation reduces
to:

2 = ² ² + [ ( , ) − ]
Where is the only non-vanishing component

of the electric field associated to TE modes of the
1D waveguide, and where the refractive index is
represented by n(x, z). The solution to the
Helmholtz equation or the Fresnel equation applied
to optical propagation in waveguides is known as
the beam propagation method (BPM) [6]. Two
numerical schemes have been proposed to solve the
Fresnel equation. In one of them, optical
propagation is modelled as a plane wave spectrum
in the spatial frequency domain, and the effect of
the medium inhomogeneity is interpreted as a
correction of the phase in the spatial domain at each
propagation step [7]. The use of the fast Fourier
techniques connects the spatial and spectral
domains, and this method is therefore called fast

Fourier transform BPM (FFT-BPM). The
propagation of EM waves in inhomogeneous media
can also be described directly in the spatial domain
by a finite difference scheme (FD) [8]. This
technique allows the simulation of strong guiding
structures, and also of structures that vary in the
propagation direction. The beam propagation
method which solves the paraxial form of the scalar
wave equation in an inhomogeneous medium using
the finite difference method is called FD-BPM.

The Helmholtz scalar wave equation in partial
derivatives is approximated by a finite difference
scheme [6], which can be expressed as:

2 ( + ∆ ) − ( )∆ = ( ) − 2 ( ) + ( )∆ ²+ ( − ) ( )
Where ( ) is the optical filed at the position

( ∆ , ). This scheme in finite differences, known
as “forward-difference”, allows us to calculate the
optical field ( + ∆ ) after a propagation step ∆
from a knowledge of the complete field ( ) at the
position [9].

The calculation of ( + ∆ ) from equation (7)
is simple, and indicates that the optical field( + ∆ ) can be computed from field values( ), ( ) and ( ) at a given position z.

Besides, from a numerical point of view it is a
conditionally stable method, where the stability
condition is given by:

∆ ≪ ∆2 = ∆ ²
An alternative way to overcome this problem

consists in using a finite difference scheme
somewhat similar to the former known as
“backward-difference” [9]. The Helmholtz scalar
takes the following form:

2 ( + ∆ ) − ( )∆= ( ) − 2 ( + Δ ) + ( + Δ )∆ ²+ ( − ) ( + Δ )

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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(15)

(17)

(15)

This method has the advantage of
unconditionally stable, while the approximated
solution obtained in the simulation is similar to the
“forward-difference” method, consequently no
more accuracy is gained.

There is a method, also based on finite difference
schemes, that is not only unconditionally stable but
also provides more accurate solutions than the two
previous methods, this method called Crank-
Nicholson scheme [9-6], is a linear combination of
the “forward difference” method and the
“backward-difference” method.

The finite difference method following a Crank-
Nicholson scheme for solving the paraxial
propagation equation can be represented as:[2 + Δ ] ( + Δ )= [2 − Δ (1 − ) ] ( )
The operator is defined as:

≡ − 2 +∆ + ( − )
Expanding this scheme in terms of finite
differences, the following equation is obtained:2 ( + ∆ ) − ( )= ( − ) ( + ∆ ) − (1 − ) ( ) ∆+ ( + ∆ ) − 2 ( + ∆ ) + ( + ∆ )∆− (1 − ) ( ) − 2 ( ) + ( )∆ ∆

This equation relates the optical field at ( + ∆ )
that is ( + ∆ ), with the field at , that is, ( ).

Readjusting terms in the previous equation, one
obtains:( + ∆ ) + ( + ∆ ) + ( + ∆ )= ( )
Where the coefficients , , and are defined
by:

= − ∆∆ ²= 2 ∆∆ ² − ∆ ( + ∆ ) − + 2= − ∆∆ ²

= (1 − ) ∆∆ ( ) + ( )+ (1 − )∆ ( ) −− 2(1 − ) ∆∆ + 2 ( )
It can be demonstrated that the solution to this
equation system shows an excellent numerical
stability, the algorithm used for solving this
tridiagonal system is the Thomas Method [9],
which requires a computational time that increases
with N, while the time required for obtaining a fast
Fourier transform using a grid of N points increased
as N log2 N.

The Crank-Nicholson scheme is unconditionally
stable for α > 0.5 if the refractive index is
independent of x and z. Nevertheless, if the
refractive index varies slowly or if it is      uniform
with small discontinuities, the Crank-Nicholson
method can be applied locally. Under these
circumstances, the analysis leads to valid solutions
even for the most adverse situations.

Apart from the numerical stability, the greatest
advantage of the Crank-Nihcolson method comes
from the fact that it provides a better approximation
to the exact solution of the problem.

The finite difference method is a powerful
numerical method which allows the use of large
propagation steps, with the consequent saving in
computational time.

3. DIAGRAMS OF DISPERSION

The FMAS is characterized by the following
parameters : Λ = 2.5 , = 1.6 .

To simulate the propagation of the field, we chose
the following space step of discretization:∆ = ∆ = 0.25 in the transverse plane andΔ = 0.5 along the axis of propagation.
The index profile in Figure 1 is calculated for the
plane z=0.

(10)

(11)

(12)

(13)

(14)

(14)
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(17)

3.1 Effective Index Versus the Wavelength

The Figure 2 shows the changes in the effective
index of the fundamental mode in the FMAS
calculated with the BPM method versus wavelength
for different values of /Λ.

The diameter of the holes varies from the= 1 to 3.5 and the spacing between the air
holes is fixed which is equal to Λ=4 .

In the last figure show that the effective index
decreases in a linear way when the ratio d/Λ
increases, for short wavelengths the intensity of the
mode is highly concentrated in the material
constituting the which is the silica, the effective
index tends towards the value of the refraction
index of silica. For  large wavelengths the intensity
of the mode spreads in the microstructured cladding
and the effective index tends towards

(Fundamental Space filling Mode).

Note that the effective index varies greatly from
1.434 to 1.444 depending of the wavelength, for
short wavelengths the light is confined in the core
increasing the effective index of the cladding. For
example d/Λ=0.4, the light penetrates more strongly
into the holes which will cause a drop in the
effective index of the microstructured cladding.

The Figure 3 shows the changes in the effective
index of the fundamental mode in the FMAS versus
the wavelength for different pitches Λ (Λ = 2.5µm
to Λ = 4.5µm) and with diameter of the holes
d=1.5 µm.

The decrease is stronger for lower values of Λ,
this characteristic of the FMAS rises from the
strong variation of the index of the microstructured
cladding.

We also note that the longer period Λ is large
between the holes the effective index tends to
converge to the index of silica is 1.45. For short
wavelengths the light is confined in the core of the
FMAS.

The Figure 4 shows the changes in the effective
index of the fundamental mode in the FMAS versus
the wavelength for different diameter of the holes d
(d = 1µm to d = 3.5µm) and with spacing
between the air holes Λ = 4µm.

(µ )

n e
ff

Figure 2: Evolution of the effective index of the
fundamental mode versus wave length for different

values of d/Λ

Figure 3: Evolution of the effective index of the
fundamental mode versus wavelength for different

values of

n e
ff

Figure 1: Index profile of FMAS type RTIM

(µ )

n e
ff

(16)
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Figure 5:Evolution of the effective index of the
fundamental mode versus the ratios d/Λ for

different pitches

We note the effective index decreases with the
growth of the wavelength and for small diameter of
the holes approximately 1 the effective index
tends to converge to the index of silica.
It is at the origin of the great diversity of the
characteristics of propagation of the FMAS.

3.2 Effective Index Versus the Ratios d/

From Figure 5 we note that the effective index
varies considerably from 1.375 to 1.443. It’s noted
that the effective index decreases linearly when the
ratio d/Λ increases.

A variation of the effective index of the high way
is the choice of pitch between the air holes. When
the value of Λ increases we notice that the effective
index will be close the index of silica is 1.45.

4. COUPLERS BASED FMAS WITH TWO
CORES

Introducing two adjacent defects (2 cores) in the
cladding of the FMAS, as shown in Figure 6 the
energy transfer between two cores [10]. This
component can be used as a power splitter or an
optical switch. The FMAS is characterized by the
following parameters:

Coupling energy results from the superposition of
the evanescent fields from each core.

4.1 Influence of the Diameter d of the Holes and
the Period of the Coupling Length

The abacque of dispersion in Figure7 shows the
change of the coupling length versus diameter of
the holes to different values of Λ. The parameters
of the FMAS with 2 cores are: diameter   of    the

(µ )
Figure 4:Evolution of the effective index of the

fundamental mode versus wavelength for different
values of

/Λ

n e
ff

Figure 6: Energy transfer between 2 cores

Diameter of holes d (µm)

Figure 7 : Coupling length versus the diameter of
the holes for different
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(18)

(19)

core dc=0.6µm, nsilica=1.45, the wavelength used is
=1.55µm. We note that low coupling lengths can

be obtained by reducing the period Λ, or the
diameter d of the holes.

4.2 Influence of Diameter dc on the Coupling
Length

The parameters of FMAS are Λ=2.4 µm,
nsilica=1.45 and d variable. Note that the diameter of
the central hole affects the coupling length. For a
minimum coupling length we must be choose a
diameter of core dc low as can be seen in Figure 8.

5. FIELD DISTRITION IN A FMAS WITH
TWO CORES

The Figure 9 and Figure 10 below represent the
profiles of the electric field, the electric field
carthographies and profile of the electric field (3D)
in the fundamental mode respectively for FMAS 2
cores.

The distance for which the amplitude of the
second core is maximum is defined as the coupling
length Lc, theoretically this distance is obtained
from the propagation constants of the even and odd
modes resulting from the coupling between the
evanescent field from each core.

The analytical expression [11] for this parameter
is given by:

= − = 2( − )

Where and are the propagation
constants of the even and odd modes of propagated
mode.

The coupling coefficient is deducted from the
coupling length Lc:

/ = 2 /
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Figure 8 : Coupling length versus the diameter
of the core for different air holes d

Λ=3µm, d=0.8µm Λ=3µm, d=1µm

Λ=3µm, d=1.2µm Λ=3µm, d=1.6µm

Figure 9:Profile Of The Electric Field
For Different Diameters Of The Holes

Λ=3µm, d=0.8µm Λ=3µm, d=1µm

Λ=3µm, d=1.2µm Λ=3µm, d=1.6µm

Figure 10:Cartographies electric field for
different diameters of the holes
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It is observed from these results that smaller the
diameter increases the better confinement of the
power in the two cores of the FMAS. We also note
the diameter d=0.8 µm (about /2), an appearance
of a secondary maximum of both sides of the
maximum is probably due to a diffraction
phenomenon.

Finally, for a hole diameter of the order of 1.6 µm
(approximately ), the quantity of air in the
cladding is larger, and there is less optical power
transported by the latter.

6. CONCLUSION

The simulation tool FD-BPM has enabled us to
model and estimate the properties of FMAS based
optogeometrical parameters. These new generation
fibers are the basis of new optical functions.
However BPM simulation method has limitations
due to the rectangular meshing and introduces it in
the choice of the steps of discretization.

A study of the coupling between modes of a dual-
core FMAS was discussed to highlight the power
exchange. This property has allowed us to present a
new component that is power diveder coupler based
FMAS with 2 cores.
We could identify the parameters which allow to
obtain the most significant propagation properties.
Abacques dispersion of the effective index were
calculated and presented.
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