
122

MODEL DRIVEN ARCHITECTURE
A REVIEW OF CURRENT LITERATURE

1 AHMED MOHAMMED ELSAWI, 2SHAMSUL SAHIBUDDIN, 3ROSLINA IBRAHIM
1 Ph.D. Candidate, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

2 Professor, Dean, Advance Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
3Senior Lecturer, Advance Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

E-mail: 1elsawi@gmail.com, 2shamsul@utm.my, 3iroslina.kl@utm.my

ABSTRACT

Among different Model Driven Engineering (MDE) approaches, the Object Management Group (OMG)
adopted the Model Driven Architecture (MDA). The MDA approach is aiming to automate the software
develop process by using models instead of conventional coding and bases on the separation of concern
concept. In June 2014, the OMG released the second version of the MDA guide trying to realize the
fundamental principles and to support the first MDA guide issued in 2003 with more detailed
specifications. A gap of 11 years makes researchers from their own perspective and background come up
with different interpretations of the MDA terms. The thing that generates a confusion of what is beyond and
what is within the MDA scope.  By strictly referring to the MDA standard (not to model-driven engineering
in general), we provide in this work a review of the current MDA literature.  We also shed the light on the
MDA research directions, specifically on the automations of the MDA development process and its targeted
platforms.

Keywords: MDA, MDE, OMG, Model Driven Architecture, Literature Review

1. INTRODUCTION

After the success in providing a
technology independent infrastructure
standardization (CORBA) [1], the OMG rapidly
moved from its previous Object Management
Architecture (OMA) vision [2, 3] by officially
announced in 2001, the adoption of the Model-
driven Architecture (MDA) approach. In order to
motivate the MDA approach, the OMG supported
the MDA by a standardized specifications for the
Unified Modeling Language (UML) [4], the Meta-
Object Facility (MOF) [5], XML Metadata
Interchange (XMI) [6], and the Common
Warehouse Metamodels (CWM) [7]. These
specifications act as a core infrastructure of the
MDA [8]. It is also served in realizing the
separation of concern concept and increasing the
degree of integration and interoperability between
systems.

In 2003, the first guide to the MDA
principles has been released by the OMG [9]. The
guide provided a comprehensive definition for the
MDA terms and considered as the technical
reference for the MDA practitioners. A new version

released by OMG in June 2014 that found much
lighter in technical details comparing to the
previous one [10]. Its sole purpose seems to make
the business case for MDA. An eleven years of
OMG silence, dragged the researchers according to
their background to bring new terms and concepts
from other MDE approaches under the MDA
context. Consequently, new MDA adopters treat
these terms and concepts as genuine MDA
principles.

In this work, we are drawing boundaries
on the MDA original concepts. We also positioned
the MDA among other classical MDE and
conventional software development approaches.
This is beside a review of the current MDA
literature. The work does not include a literature for
other model driven approach.

The main objective of this work is that it
provide a significant review for the original MDA
principles specified by the OMG. Researches, or
software developers who want to go for the MDA,
this work will draw the track for their journey.

The next section of this work provides a
review of the current MDA literature and the
research directions with a focus on the MDA



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

development process and its targeted platforms.
The review process presented in Section 3 and the
discussion shown in section 4. Finally, we conclude
with the findings, recommendations and future
work in section 5

2. LITERATURE REVIEW

2.1 Model Driven Architecture
The vital objective of MDA is to derive

value from models that support us compact the
complexity and interdependence of complex
systems. The separation of concern concept
achieved by three architectural layers: At first layer,
the computational independent model (CIM)
captured the business and domain vocabulary that
typically provided by the subject matter experts.
This layer is bridging the existing gap between the
domain experts and the system implementers.  The
second layer is the Platform Independent Model
(PIM), which formalize the information in the CIM
model independently from any technology
platform.  The Platform Specific Model (PSM)
represent the third layer that focusing on the
technical and platform implementation details.
Despite its concern, the PSM is still considered too
abstract to be executed on a computer platform.
Consequently, the Platform Model (PM) emplaced
to support the PSM and to act as a technical manual
for the targeted platform. The PM implicitly exists
in model transformation rules. The implicit
employment of the PM during the transformation is
limited the model transformation scope to address a
single presumed platform [11]. The thing that
create an uncertainty about the possibility of using
this model mapping for other platforms different
than the one for which it was designed. However, in
[12] it has been realized explicitly to drive the
transformation to a run-time environment.

Model’s transformation or mapping is one
of the major activities in MDA. Given the Platform
Model (PM), it serves in transforming high-level
models (PIM) to low level (PSM) models or vice
versa. In addition, the transformation can be within
the same level of abstraction (PIM-to-PIM) or
(PSM-to-PSM). These scenarios of mapping
classified as Model-to-Model (M2M) mapping or
Model-to-Text (M2T). Both are under the MDA
umbrella and supported by a good number of tools
that  furnished to address each scenario and
mapping [13]. The transformation process
automation between the MDA models is
differentiated it from the other Model Driven
approaches. This due to the fact that the approaches

like Model Driven Engineering MDE, Model-
Based Engineering and Model-Driven
Development MDD, the models derived either as a
communication means between the system’s
analysts and programmers, or to directly generate
code out of models.  Skipping the architectural
layers of MDA and lacking the automation in the
development process. Figure 1 Positioning the
MDA among other model-driven based approach.

Figure 1: Positioning The MDA Among Other
Approaches

The automation as well gives the MDA an
upper hand in software productivity and cost
reduction. Figure 2 (a) represent the classical
software development process. Practically, any
possible automation is taking place at the coding
level downward. Consequently, changes in coding
don’t reflect the top levels, and updates on the top
levels above the coding on the other hand means a
considerable effort of recoding. This is because the
text and diagrams in the above layers are
commonly used for documentation and
communication purposes [14]. The MDA process is
shown in Figure 2 (b), present an automated closed
loop of between levels. Where, changes in the
abstract top levels propagated automatically to the
lower ones, with minimal effort, time, and cost. On
the other hand, changes in the lower abstract levels
can be reflected in the upper ones, by reversing the
transformation from lower level of abstractions
code/artifacts to the upper layers with higher level
of abstraction models [15].
2.2.2 Issues Facing MDA

In the above section, boundaries drawn
around what is MDA, and positioned the MDA
among the other model-driven approaches. We also
show its strength comparing to the classical
software development and other model-driven
approaches. Now we have a clear understanding of
what is within the MDA scope and what is not. . In
this part, we illustrate challenges and issues facing
the MDA addressed by researchers.

Before the official adoption of the MDA
by the OMG, the work in [16] present the dream
and the advantage of the MDA, but they also

Right Margin
1.25



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

marked the technology diversity and dynamicity as
the central issue that complicating system
integration and interoperability. Which facing all
the software development approaches and lifecycles
including the MDA. The thing that create an urge to
control the degree of abstraction of the MDA
models in order to make these models executable at
the targeted platform. Consequently, a chain of
model transformation employed to address the
platform environment. Meaning, a generation of
new PSM models. Managing of these new models
with its associated transformation rules and
technique is not an easy task. It is not guarantee that
enterprises stick on a single middleware like
CORBA because of merging and new acquisitions
of enterprises.

The model transformation is the key
activity in MDA. There are different methodologies
and tools addressing model transformation. A
survey work by [17] focused on the transformation
models and tools that support model to model
transformation. While [18] is motivating Model to
Text Transformations. As they provide an
assessment of the MOFScript language, which
submitted to the OMG as a proposed model to text
transformation language. The existence of different
transformation methodologies, which supported by
some of the transformation tools in the market,
make it a difficult for MDA practitioners to decide
which tools are supporting which transformation
methodology.

Figure 2: Classical Software Development Lifecycle Vs.

MDA Lifecycle

On the other hand, the different level of
abstraction in MDA lead to a chain of model
transformation to go from high level of abstraction
to lower one. The PM assumed implicitly in the
model transformation. There is no guarantee that
the model transformation can be used for other
platforms than the one for which it was written. The
PSM is targeting a particular platform. However, it
is still considered too abstract to be executed on the
platform. On the other hand, there is no platform
similar to other. Even Java dragged to a technology
diversity (J2SE, J2EE, J2ME, etc.). There is a need
for the proper framework that capable to driven the
transformation with minimum change and more
details about the execution environment. These
issues addressed by [19], as they used the ontology
to define the platforms elements. However, the
automation of handling significant ontology is
impossible due to the number of classes and
instances. This is beside the fact that the time
consumed in a manual construction of ontologies is
growing more complex upon the diversity and
platform’s data volume rapid increase.
Subsequently, this is reflected in the number of
ontologies required to cope with this technology
volatility.

Another issue that the MDA is all about, is
the automation of the development lifecycle and
software productivity. Developers need automated
techniques that are scalable, general, and
extensible. However, the MDA process is a lack
proper tools that can support the automation. The
work in [20] proposes a framework to supports the



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

MDA automation directions. Beside their
presentation to the platform component, they
provide a benchmark to the tools that support the
MDA automation vision.
2.2.3 MDA in Action

In view of the above issues, new directions
motivate for bypassing some of the MDA layers or
adding new ones. The work in [19] is motivating
for eliminating the PSM and address the targeted
platform directly from the PIM. It is similar to the
agile methodology adopted by[20]. Other agilest
like [21] are chasing the dream of having an
executable model without any consideration of the
MDA principles and by going directly for the UML
2.0 profiles, which provide a degree of flexibility in
expressing and address platform’s elements. The
Agile MDA is an existing concept that becomes
more attractive for software firms as model’s role
shifted from documentation to actual execution and
implementation. Despite its promises, the MDA
described as a heavyweight process that can lead to
delivering the wrong system late at great expense.
The agile methodology motivates for bringing the
concept of that the code and model are
operationally the same. Where an executable model
can iteratively be constructed, run, test and
modified in short cycles [21].

On the other hand, we found approaches
like ArchMDE [22] is trying to create a new
standard that allow a creation of software
architecture from the analysis model. As they are
proposing to add a new layer (AIM) in the MDA
concept. Other researchers are suggesting of
employing the CASE tools as a different path that
mixed between the MDD and MDA [23]. The
classic CASE Tools designed based on a traditional
database concept. Where models stored in a
retrievable repository. Our work in [23, 24] allow
us to have the flexibility of representing models in a
textual format that can be transformed into XML
format. However, we remained within the MDA
boundaries. The Textual format gives more control
in the model constraints and dependency
management, and it is supported by the MDA
specifications.

Similarly, the work in [25] provide an End
to end transformation framework from PIM to PSM
within the MDA scope to support the software
product line. Also, the work in [26-28]
demonstrated a high degree of commitment to the
MDA principles.

3. REVIEW PROCESS

The review process followed in this
literature based on scanning the OMG MDA
database1, and its specification’s section2. MDA,
and other model-driven approaches in other
scholarly databases like Google scholar, Springers,
IEEE Explorer and ACM were scanned as well. We
go through an operational definition process to
define what within the MDA scope by referring to
[9, 10] as a ground base to compare the MDA
approach with other model-driven approaches
based on the following 4 criteria:
 The adoption of the separation of concern

concept.
 The MDA architectural layers conformation.
 Transformation methodology.
 Handling Platform Diversity vs. the automation

of the development lifecycle.
Figure 3, representing the high level of the

MDA concept according to the OMG standards.
The concern divided to business domain that
include the CIM and PIM. While the PSM and PM
are, platform and technology focused. The
transformation area split to transformation rules and
transformation tools. Both should support the
control of model’s abstraction degree.

Figure 3 An MDA High Level Architecture

Researches in this review that formulate a
hypothesis of modifying the current MDA
architectural layes addressed by reviewing a
relevant type theme and researches in model based
software development process area. The evaluation
criteria for the reviewed literature based on the
high-level architecture in Figure 3. In addition to
the two MDA guides released by the OMG.

1 http://www.omg.org/mda/presentations.htm
2 http://www.omg.org/mda/specs.htm



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

4. DISCUSSION

While the MDA aiming to design and
build software product that can run in multiple
platforms with minor engineering by adopting
models, there is other model centric approaches like
MDE and MDD. On the highest possible level,
these approaches are aiming to enhancing the
software quality, productivity, interoperability, cost
and time to market. However, in practice, both
approaches operate on different levels to achieve
the same goals. The MDA adopting models in a
higher separately concerned abstraction levels to
produce software, avoiding hard coding in an end to
end automation. While the other model driven
approaches not strictly focused on the process
automation or the separation of concern. Thought,
the models at some point used for documentation or
communication purpose.

The absence of the OMG guidance in
realizing the MDA concepts dragged the
researchers to come up with their own initiatives
from other model driven approaches based on their
own prospective and background. Consequently, a
confusion state dominate the research outcome and
the MDA basic principles compromised.

The Agile MDA is a quite interesting area
that we discussed in this review. Especially in the
part of the model merging. The PSM can merged
with the PM as both are models and can represented
either textually or graphically. Elimination of the
PSM part or adding new layer to the MDA process
are lacking a tool to support. The MDA standard
tools are not equipped to handle such initiatives.
QVT focusing on model-to-model transformation.
To have executable code we need to adopt MOF
model to text. Which consequently, we will be
limited to a few number of language such as EMF
or ATL. or ATL.

5. OPEN RESEARCH ISSUES IDENTIFIED

Different current directions in research are
in this review, which divided to two: The first
direction focusing on the MDA infrastructure and
the tools that support its principles. Researchers
taking this direction have a limited space to work
in, if they want to strictly stick on the MDA
principles and get the OMG approval for their
approaches or tools. This is because the
productivity of the OMG in providing the MDA
adopters with enhanced or new specification is very
poor. Consequently, different tools appeared that
achieve many of the MDA basics. However, it is
not necessarily following the OMG specifications.

The Model-to-Text is a good example for this
situation. The standard is there but the tools and
researches that following these specifications is
very limited. Consequently, new MDA joiner are
desperate for tools that provide a decent level of
documentation and support.
The second research direction focusing on the
MDA applications. This direction grow very fast
and reach a good degree of maturity. Different
MDA applications and researches on the area of
cloud computing, software testing, and embedded
system outcome a very interesting results and
success stories.

6. CONCLUSION AND FUTURE WORK

Computer platforms are combining a set of
features and component that allow to formally
controlling different functions and contexts
(Hardware/software activities) that normally
limited to a particular stream of technology. Having
a capability of producing software out of models to
support multiple platforms for different
technologies in different levels of abstraction is
dramatically increasing the quality and the
productivity of the software development process.
The MDA principles can contribute positively in
software quality and productivity in general, and in
particular, how it is different from other model
centric approaches. The importance of this work
that it can be used to understand the current
position of the MDA and how to follow its
principles. In addition, for those researchers who
want to take the other approaches directions can use
this review to maintain and position their work.

The issues that facing the MDA progress
has been reviewed and presented in this work.
Interestingly these issues is facing all the other
model driven approaches in away or other.

In the near future, we will provide more
work on the MDA automation area specifically, on
the transformation from platform specific model to
computer-targeted platform adopting model to text
OMG standard.

REFRENCES:
[1] Corba, O., IIOP 2.3 specification, 1998, 1998.
[2] Siegel, J., OMG Overview: CORBA and the

OMA in Enterprise Computing.
Communications of the ACM, 1998. 41(10): p.
37-43.

[3] Soley, R.M. and W. Andreas, Object
Management Architecture Guide: Revision 2.0.
1995: Wiley.



Journal of Theoretical and Applied Information Technology
10th September 2015. Vol.79. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

[4] formal/01-09-67, O.D., OMG: Unified
Modeling Language v1.4. OMG Document:
formal/01-09-67, Sept.2001., 2001.

[5] OMG Document: formal/01-11-02, OMG:
Meta Object Facility (MOF) v1.3.1, in OMG
Document: formal2001.

[6] OMG, X., Metadata Interchange (XMI)
Specification. URL: http://www. omg.
org/docs/formal/05-05-01. pdf (accessed
October 10, 2005), 2000.

[7] Chang, D.T. Common Warehouse Metamodel
(CWM), UML and XML. in Meta Data
Conference (March 19-23, 2000). 2000.

[8] Poole, J.D. Model-driven architecture: Vision,
standards and emerging technologies. in
Workshop on Metamodeling and Adaptive
Object Models, ECOOP. 2001.

[9] OMG, OMG: MDA Guide Version1.0.1. 2003.
Version 1.0.1.

[10] OMG, MDA Guide revision 2.0. 2014.
[11] Soares, I.W., et al., Modeling of embedded

software on MDA platform models. Journal of
Computer Science & Technology, 2012. 12.

[12] Almeida, J.P., et al. On the notion of abstract
platform in MDA development. in Enterprise
Distributed Object Computing Conference,
2004. EDOC 2004. Proceedings. Eighth IEEE
International. 2004. IEEE.

[13] Mellor, S.J., MDA distilled: principles of
model-driven architecture. 2004: Addison-
Wesley Professional.

[14] Dobing, B. and J. Parsons, Dimensions of UML
diagram use: a survey of practitioners. Journal
of Database Management (JDM), 2008. 19(1):
p. 1-18.

[15] Czarnecki, K. and S. Helsen. Classification of
model transformation approaches. in
Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the
Model Driven Architecture. 2003.

[16] Soley, R., Model driven architecture. OMG
white paper, 2000. 308: p. 308.

[17] Gerber, A., et al., Transformation: The missing
link of MDA, in Graph Transformation. 2002,
Springer. p. 90-105.

[18] Oldevik, J., et al. Toward standardised model
to text transformations. in Model Driven
Architecture–Foundations and Applications.
2005. Springer.

[19] Wagelaar, D. and R. Van Der Straeten,
Platform ontologies for the model-driven
architecture. European Journal of Information
Systems, 2007. 16(4): p. 362-373.

[20] Jackson, E.K., et al. Components, platforms
and possibilities: towards generic automation

for MDA. in Proceedings of the tenth ACM
international conference on Embedded
software. 2010. ACM.

[21] Mellor, S.J., Agile mda. MDA Journal, 2004.
[22] Elleuch, N., A. Khalfallah, and S. Ben Ahmed.

Software Architecture in Model Driven
Architecture. in Computational Intelligence
and Intelligent Informatics, 2007. ISCIII'07.
International Symposium on. 2007. IEEE.

[23] ELSAWI, A.M., S. SAHIBUDDIN, and A.
ABDELHADI, PROPOSE AN INTEGRATION
BETWEEN UML STATIC AND DYNAMIC
MODELS USING ENTITY-
ATTRIBUTEVALUE UNDER THE MDA
CONTEXT. Journal of Theoretical & Applied
Information Technology, 2014. 68(1).

[24] ELSAWI, A.M., S. SAHIBULDIN, and A.
ABDELHADI, INTRODUCING THE OPEN
SOURCE METAMODEL CONCEPT. Journal
of Theoretical & Applied Information
Technology, 2013. 57(3).

[25] Hamed, A. and R.M. Colomb, End to End
Development Engineering. JSEA, 2011. 4(4):
p. 195-216.

[26] Mukhtar, M.A.O., M.F.B. Hassan, and J. Bin
Jaafar. Optimizing method to provide model
transformation of model-driven architecture as
web-based services. in Computer &
Information Science (ICCIS), 2012
International Conference on. 2012. IEEE.

[27] Mukhtar, M.A.O., A. Azween, and A.G.
Downe, A Proposed Compiler to Integrate
Model Driven Architecture with Web Services–
Road Map. International Journal of Computer
Applications, 2011. 15(7): p. 1-7.

[28] Mukhtar, M.A.O. and A.B. Abdullah, Mapping
of Behavior Model using Model-Driven
Architecture. International Journal of
Computer Applications, 2011. 13(8).


