
Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

336

TEST CASE GENERATION AND PRIORITIZATION BASED
ON UML BEHAVIORAL MODELS

1AJAY KUMAR JENA, 2SANTOSH KUMAR SWAIN, 3DURGA PRASAD MOHAPATRA
1School of Computer Engineering, KIIT University, Bhubaneswar, India
2School of Computer Engineering, KIIT University, Bhubaneswar, India

3Department of Computer Engineering, National Institute of Technology, Rourkela, India

E-mail: 1ajay.bbs.in@gmail.com, 2sswainfcs@kiit.ac.in, 3durga@nitrkl.ac.in

ABSTRACT

Test case prioritization (TCP) techniques have been proven to be beneficial for improving testing activities.
Prioritized test suites are found using different techniques of prioritization. While code coverage based
prioritization techniques are found to be used by most scholars, test case prioritization based on UML
behavioral models has not been given much attention so far. We propose a novel approach for generating
and prioritizing test cases using UML sequence and interaction overview diagrams. First, we convert the
interaction overview diagram to interaction Graph (IG) and sequence diagram to Message Sequence
Dependency Graph (MSDG). An intermediate graph known as Sequence Interaction Graph (SIG) is
generated by combining MSDG and IG. From SIG, we generate the test scenarios and subsequently the test
cases. For test case prioritization, the first task is to convert the SIG into another graph known as
Dependency Graph (DG). Then, we assign weights to each node of the DG according to its impact using
backward slices and based on condition criticality. Further, we calculate the weights of each basic path.
According to these weights, finally, we prioritize the test cases. We have used the impact, complexity and
criticality of the elements present in the model for the prioritization of test cases. The results obtained by
our approach indicates that the proposed technique is efficient and effective in prioritizing (ordering) the
test cases using UML models. Our proposed approach achieves higher Average Percentage of Fault
Detection (APFD) compared to other related approaches.

Keywords: Test case, Backward Slicing, Dependency Graph, Code Coverage, Prioritization, Interaction
Graph.

1. INTRODUCTION

Testing of software is the most practical means of
ensuring quality of the software in real life
applications [21]. It accounts a lion’s share in the
effort of software development for the current need
sophisticated software [1]. Software quality is
primarily carried out by means of testing which
faces major constraints of effort, time and
resources. There is a pressing need for scheduling
of test cases effectively within the constraints in
order to maximize the throughput i.e. rate of fault
detection and coverage of testing. It accounts
almost 50% share in the development cycle and has
a great impact on the reliability and quality [1]. But,
in practical it is very difficult to have exhaustive
testing for large software product. So, there is
always a challenge to device a new methodology
for testing the increased size and complexity of

software in the software development lifecycle.
Further, as per the need of the society, sophisticated
systems are developed every now and then which
encourage the software industries to design better
quality and reliable software in a fixed duration. So,
developers have minimum time to ensure the proper
quality of the developed software. A number of
challenges have occurred unexpectedly, to meet the
need of faster development. Out of these, first
important challenge is test case generation at the
beginning stage of the development process, so that
coding and testing can run parallel. Secondly,
focusing on those parts of the coding, which are of
higher impact or criticality in view of its priority so
that quality software product can be developed with
a relatively small testing effort and comparatively
in less time. Using the design models of UML,
several research attempts have been reported for the
generation of test cases [2, 3, 16] for addressing the

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

337

present challenges. On the contrary, to meet the
second challenge it is necessary to organise the test
cases in a specific fashion or prioritize.
Prioritization of test cases schedules the test cases
in such a way that achieve some goals at faster rate.

The increasing size and complexity of recent
software products make extensive testing very
difficult. Looking to the requirements, the cost and
time of testing the software must be planned in an
optimized manner and also well in advance.
Therefore, it is a challenge to generate test cases
from this bulky and complex software and employ
them to achieve maximum throughput by
uncovering the flaws. For ensuring the quality of
the software, test case prioritization is a well known
and efficient technique. Among the objectives, the
rate of fault detection is the primary one in test case
prioritization. By prioritizing the test cases an early
detection of flaws is possible in the testing process.
Other objectives of test case prioritization include
increasing the test coverage in the system under test
(SUT) at a faster rate and to increase the confidence
in the reliability of the system at a faster rate.

Different methods of test case prioritization are
available in literature, e.g. code-based test
prioritization and model-based test prioritization
reported in literature [11–15]. These techniques
consider the knowledge of previous usage of the
system such as fault proneness of the different
pieces of program code, fault detection
capability/fault exposing potential of each test case
and certain coverage criteria such as statement,
function, relevant slice, paths, data flow and control
flow information etc. Most of the test case
prioritization methods [9, 14, 19, 20, 23] are code-
based and are mainly used for regression testing.
These methods are suitable only at the post
implementation phase of the software development
process. In the code-based test prioritization
techniques, the source code of the system is used to
prioritize the tests. In model-based test
prioritization techniques [17, 18], the system’s
model is used to prioritize the tests. System models
are not only used to design the system under
development but also to test and prioritize the tests
[17, 18]. In fact, test case prioritization using design
models is scarcely reported in the literature [18,
19]. Model-Based Testing (MBT) is more
appropriate for object-oriented software than
conventional testing because of its high potential
for automation, ease of accommodating changes
and maintenance [26, 27]. Models are the visual
artifacts to analyze complex systems, mainly used
for capturing the information about the software

system, and the advantage of being reused in the
development progresses.

The process of model based test case generation
is basically a traversal of the models. The following
benefits are obtained by generating test cases and
doing prioritization of those test cases from design
model:

I. Prior generation of test scenarios leads to
clear understanding of the requirements of the
user.

II. Prior prioritization of scenarios leads to
more concentration on planning, designing,
coding, testing and maintaining the product
more efficiently.

UML has now become the de facto standard for
object-oriented modeling and design [19]. UML
models are the important source of information for
test case design, which if satisfactorily exploited,
can go a long way in reducing testing cost and
effort and also at the same in time improving the
software quality [9]. UML-based automatic test
generation and prioritization are practically
important and theoretically challenging topic and
are receiving increasing attention from researchers.
Traditionally, a large amount of effort was spent to
generate test cases from UML diagrams using
heuristic based techniques [21]. Very less attempts
are taken to prioritize the test cases based on UML
diagrams [18, 19].

The behavior of an use case can be represented
by using the UML interaction, activity and state
chart diagrams. The UML diagrams like sequence
shows the sequence of message interactions among
different objects as well as interaction among users
and objects involved in the software under test
(SUT). Sequence diagrams capture the exchange of
messages between objects during its execution. It
focuses on the order in which the messages are
sent. The response of the system is shown through
messages between the objects within the system. A
path sequence in a sequence diagram represents the
set of messages from the start message to end
message related to a scenario of an use case.
Sequence diagrams can be used to explore the logic
of a complex operation, function or procedure. One
way to think of sequence diagrams is particularly
highly detailed diagrams, is as visual object code.
Sequence diagrams describe interactions among
software components, and thus are considered to be
a good source for cluster level testing. In the rest of
the paper, we use the terms message and method
interchangeably. We assume that each sequence

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

338

diagram represents a complete trace of messages
during the execution of a user-level operation,
which invoke the methods associated with the class
of any object within the scenario of the use case.
On the other hand, interaction overview diagrams
focus on the flow of control among objects. These
are very helpful for visualizing the manner how
several objects collaborate and control flow of the
activities to perform a job. These are also helpful
for describing the procedural flow of control and
parameter through several activities. The purpose of
prioritizing the scenarios observed from sequence
and interaction overview diagram is to identify the
relative importance of message-method-interaction
scenarios. While message is related to the method
of any object within the scenario, method is
represented by group of activities arranged in a
control flow structure to perform the action of the
message. The sequence diagram represents high
level design to integrate the object code, while the
activity diagram is closely related to the inside
structure of code. So detail and comparatively
accurate weight can be calculated by adding the
path of the graph representing sequence diagram
with interaction overview diagrams. For test case
generation and prioritization, we have gone down
to one level for uncovering more faults and
efficient prioritization by merging activities in
interaction overview diagram with sequence of
messages of sequence diagram.

Prioritization of the test cases means ordering or
scheduling of test cases based on certain coverage
criteria [4, 6, 9, 15]. We have used UML sequence
and interaction overview diagrams for the above
purposes. First, we convert interaction overview
diagram to interaction Graph (IG) and sequence
diagram to Message Sequence Dependency
Graph(MSDG). An intermediate graph is generated
known as Sequence Interaction Graph (SIG) by
combining MSDG and IG. From SIG different
scenarios are generated and it follows the test cases.
Once again, we transform the SIG into an
intermediate graph, called Dependency Graph
(DG). We use the DG to prioritize testing paths.
For prioritization, we calculated the weights of
different test cases based on a fitness function
which calculates the nodes and paths covered by
the test cases. We have used the impact, complexity
and criticality of the elements present in the model
for the prioritization of test cases. The results
obtained by our approach indicated that the
technique is effective and efficient in ordering of
test cases using combined models of UML. We
have used backward slice of each method or

activity to calculate the impact (influence) of a
method or activity in a use case scenario. A method
may influence one or more methods and other
statements of the program. If the impact (influence)
of the method is more, then method is more critical.
If more number of elements uses the output of a
method or activity, then an error in the output will
affect more. Therefore, special care should be taken
for those elements during testing for early detection
of error and reliability of the software. These
elements should not only be tested more thoroughly
composed to other elements at the time of unit
level but also at integration (cluster) level because
the interface faults can not be detected during unit
testing. We have designed a prioritization metric
using impact (influence) of a method and criticality
of conditions for executing a method/activity within
a scenario of object-oriented software. The
determination of criticality and complexity of
conditions (edges) also helps in reliability measure
of the software. The proposed metric is also a
measure of criticality and severity of the test cases.

Program slicing helps in understanding
programs by dividing it into slices, so the task of
testing can be allocated to various testers. Each
tester can test the slice in the program domain.
After introduction of slicing concept by Wiser [33],
researchers have shown special interest in this
promising research area for its wide application.
Slicing has been found to be useful in several
important application areas such as software
testing, maintenance, reengineering, decomposition
and integration, and debugging. Program slicing is
essentially a decomposition technique that extracts
only those program statements that are relevant to a
particular computation [33, 34]. A program slice is
constructed with respect to a slicing criterion. A
slicing criterion (l, V) specifies a location (l) of a
statement and a set of variables (V) in that
statement. A slice of a program P with respect to a
slicing criterion (l, V) is the set of all statements of
the program P that might affect the slicing criterion
for every possible input to the program. There are
two types of slicing techniques, static slicing,
dynamic slicing depending upon the run time
environment where as depending upon the
graphical traversal environment it is divided as
forward slicing and backward slicing. Here we used
backward slicing for test case prioritization.

The rest of the paper is organized as follows.
Some basic concepts are presented in Section 2.
The review of some existing work in test case
prioritization is presented in Section 3. We

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

339

presented our approach to generate the test cases in
Section 4, subsequently prioritization of test cases.
An analysis of the approach with experimental
results are presented in Section 5 with a case study
to illustrate the approach. Experimental results are
also presented using Average Percentage of Fault
Detected (APFD) in this section. Section 6
describes the comparison of our proposed approach
with other existing related work. Section 7 presents
the future work and conclusion.

2. BASIC CONCEPTS

In this Section, we discuss some useful
definitions which are used in our approach. We also
discuss the basic concepts and technique of slicing
used in our approach.

Rothermel et al. [4, 6, 8] had given a formal
definition for test case prioritization:
Given: TS, is a test suite; PR, the set of
permutations of the test suite TS; f is a function
from the permutations PR to the real numbers R.

f : PR → R
Problem: Find TS PR such that (TS) (TS
PR) (TS TS) [f(TS) f(TS)].

where, PR is the set of all possible orders of TSs,
and f is an objective function that is applied to any
such order.

Test Flow Graph: A Test Flow Graph (TFG) G of a
diagram D is a flow graph denoted as a quadruple
(N, E, S, F) where each node v N represents
either a message or activity and an edge e E
represents a transition between the corresponding
nodes. An edge (m, n) E indicates the possible
flow of control from node m to the node n. Node S
represents the entry node and F is the set of exit
nodes of the diagram D. A Test Flow Graph (TFG)
generated from sequence diagram represents the
possible message/method sequences in an
interaction.
Path: A path P from the start node to an end node
in TFG is a sequence of nodes and edges in the
TFG.

Message Path Coverage Criterion: A message path
in a sequence diagram (SD) is a set of sequence
messages that begins with an outwardly generated
event and terminates with the production of a reply
that satisfies this event. A requirement of adequate
testing based on sequence diagrams is that all the
start to end message paths in the diagram are

covered by test executions.

Interaction Path Coverage: Given a test set T and
Interaction overview Diagram IOD, T must cause
each possible interaction path in IOD to be taken at
least once. An interaction Path is any sequence of
activities from the initial interaction to the terminal
interaction in the interaction overview diagram.

Message-activity path coverage: Let P be a set of
paths obtained from TFG of sequence and
interaction overview diagram. Let TC be a set of
test cases. TC must cause each possible message
path in sequence diagram SD with corresponding
interaction path in interaction overview diagram
IOD to be taken at least once. For each P there
must be one test case tc TC such that when the
use case is executed using tc, path P of TFG is
exercised.

Dependency Graph (DG): It is a directed graph.
DG= {N, D} where N is the set of nodes and D is
the set of directed edges. Here N= {M, A}, where
M is the set of message-method nodes and I is the
set of interactions of the corresponding interaction
overview diagram. D denotes the edge with guard
condition. Edges of DG called as dependency edges
represent dependencies among nodes. Two types of
edges are present in DG: control dependence and
parameter dependence edges. In parameter
dependence, the edge between two nodes implies
that the computation performed at the node pointed
by the edge which is directly depend on the value
computed at the other node. A control dependence
edge between two nodes implies that the result of
the predicate expression at the node pointed by the
edge decides whether to execute the other node or
not.
Dependency Edge: If a node i N is either data or
control dependent on node j N, then there is an
edge in DG from node j to node i called a
dependency edge.
Slicing: It is essential to find the statements that
might be affected by a variable at some point in the
program [35]. This can be obtained by proceeding
forward over the Program Dependency Graph
(PDG) to find all the nodes that have directly or
indirectly affected the value of the variable.
Backward Slicing: It is essential to find the
statements that might be affected by a value of a
variable at some point in the program [35]. This can
be obtained by proceeding backward in the
Program Dependency Graph (PDG) to find all
nodes that have directly or indirectly affected by
the value of the variable at some point of interest

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

340

[35]. The backward slice contains the statements of
the program, which can have some effect on the
slicing criterion, where as a forward slice contains
those statements of a program, which are affected
by the slicing criterion. Backward slices can assist a
developer by helping to locate the parts of a
program that will be affected by a modification.

Ex.
Let us consider a small fragment for forward and
backward slicing :
S1 : VAR
S2 : a,b,c: INTEGER;
S3 : BEGIN
S4 : a := 1;
S5 : b := a + 2;
S6 : c := b + 3;
S7 : END
Output of Forward slice w.r.t. (4, a) is
b : = a + 2;
c : = b + 3;
Output of Backward slice w.r.t. (6, c) is
a : = 1;
b : = a + 2;

3. RELATED WORK

In this section we, present different test case
generation and prioritization techniques using the
models of UML. Then, a discussion of the existing
test case prioritization techniques is described.

To accomplish specific goals, prioritization is
the arrangement of the test cases according to some
coverage criteria is reported in some literatures [4,
6, 7, 9, 10-14]. Test case prioritization mainly done
in two ways i.e. based on the source code or from
requirement specifications. The work reported in
[11, 12] use requirements as basis for test case
prioritization. The authors assigned weights to the
factors such as Customer-assigned Priority on
Requirements to prioritize the test cases.

Some other methods for test case prioritization
[4, 7] are based on the source code, which look at
structural and data coverage. They compare
prioritization techniques, based on granularity,
namely, fine-grained and coarse-grained. They
used the weighted Average Percentage of Faults
Detected (APFD) metric for measuring
effectiveness. Elbaum et al. [6] tried to improve the
rate of fault detection for their prioritization
technique. By using the statement and function
level coverage they prioritize the test cases. In
statement coverage technique, they considered

prioritization of test cases based on the coverage of
maximum statements, coverage of statements not
yet covered, probability of exposing faults, etc.
Functional coverage-based criterion is analogous to
statement based coverage criterion, except that it
operates at the level of functions. Elbaum et al. also
consider a metric called average of the percentage
of faults detected (APFD) to measure the
effectiveness of these prioritization techniques.
Their experimental result showed that the
statement-based prioritization techniques were
more effective than the function-based
prioritization techniques. APFD metric gives better
result under two assumptions: all faults were of
equal severity and all test cases have equal costs.
To cope with this limitation, Elbaum et al. [10]
proposed a new cost-cognizant metric APFDC.
This new metric considered both the percentage of
total test case cost generated out of the process and
detection of the percentage of total fault severity.

A new approach for prioritization of the test
cases in regression testing was reported by Jeffrey
and Gupta [9]. They considered the statements that
were affected or had possibility to affect the output
of the program by using the relevant slice of the
output. Further they proposed that if any
modification performed in the program has an
outcome on the output of a test case in the
regression test suite i.e it must affect some
computations in the relevant slice of the output.
Subsequently they proposed a heuristic, that
assigned weight to a test case with larger number of
statements (branches) in its relevant slice of the
output.

By using the state-based approach, Korel et al.
[17] proposed a test case prioritization technique
for regression testing. They proposed two
prioritization techniques i.e selective test
prioritization and model dependence-based test
prioritization to find the known faults of a modified
system. For achieving higher rate of fault detection,
Korel et al. [17] used both the models and found a
difference between them. After executing the
whole test suite against the modified model they
collected information related to the difference.
From their observations, they noticed that model
dependence-based test case prioritization
significantly performs the selective test
prioritization so far as the early fault detection rate
is concerned. But in comparison to selective test
case prioritization, model dependence-based test
case prioritization is very complex and requires
huge amount of storage space and also difficult to

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

341

implement in critical systems. In their next work,
Korel et al. [17] extended the earlier work by
introducing five new heuristics to reduce the high
storage requirement.

Kundu et al. [23] proposed three prioritization
metrics by using the model information in the
sequence diagram. Their approach satisfied the
scenario coverage criterion and were suitable for
system-level testing. The values of these
prioritization metrics can be analytically computed
from the model information only. In their work,
they presented an approach to generate test data
using rule-based matrix. The prioritization metrics
are used to control the number of test data without
compromising the test adequacy.

Panigrahi et al. [31] proposed an intermediate
graph of the source code of the program for the
prioritization of test cases. After a partial change in
a program the model is updated. Accordingly the
nodes in the graph are affected. They used slicing
for the affected nodes for test case prioritization

Sapna et al. [32] proposed a technique to
prioritize the test cases using the activity diagram.
They converted the activity diagram to form a tree
structure. By using depth first search traversal, they
found the scenarios. After that the authors assigned
higher weights to the fork-join nodes, then lesser
weights were assigned to branch-merge nodes and
lowest weights were assigned to action/activity
nodes. By arranging the path weights in decreasing
manner, they prioritized the test cases. By using a
case study, they demonstrated the working of their
technique.

The test case prioritization technique suggested
by P.R. Srivastava [36] helps in finding out the
average faults found out per minute. He proposed
an algorithm to determine the effectiveness of the
prioritized and non-prioritized test cases by
calculating the Average Percentage of Faults
Detected (APFD) in regression testing. Mahali et
al. [29] proposed a genetic algorithmic approach to
prioritize the test cases. They used a case study of a
Shopping mall and drawn the activity diagram and
subsequently found the critical path from the graph
constructed form the activity diagram. They found
the optimized critical path having maximum value
which leads to prioritize the test cases.

4. PROPOSED APPROACH

Each use case of a system can be represented
with one or more sequence and interaction
overview diagrams. In our proposed approach, we
employ sequence and interaction overview
diagrams to represent the requirements of a system
to develop the scenarios. Each scenario is a
complete path through the Sequence Interaction
Graph (SIG), which is generated from interaction
overview and sequence diagrams of the system
under consideration. Users of the system can
traverse many paths for generating test cases. The
main scenario begins from the start node; by
traversing through all intermediate nodes without
any fault, up to the end node. Alternate scenarios
from alternate paths are the cases when there is
wrong entry of input or a condition is not satisfied.
This research work proposes an approach for
prioritizing test cases meant for testing of software
using object-oriented approach.

Figure 1: Proposed methodology for test case
prioritization (TCPN)

We propose a framework named as Test Case
Prioritization (TCPN) which is shown in Figure 1.
The input to TCPN is an interaction overview
diagram and a sequence diagram depicting one
scenario of a use case. As given in Figure 1, TCPN

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

342

consists of three tasks. For test case generation, we
first convert interaction overview and sequence
diagram into Interaction Graph (IG) and Message
Sequence Dependency Graph (MSDG). Then, by
combining IG and MSDG we prepared an
intermediate graph called Sequence Interaction
Graph (SIG). We traverse the SIG using depth first
search (DFS) algorithm for basic path generation.
Next, the test cases are generated corresponding to
each basic path. For test case prioritization, the first
task converts the SIG into Dependency Graph
(DG). Then we assign weights to each node of DG
according to its impact using backward slices and a
fitness function. Then, we calculate the weights of
each paths. Finally, we prioritize the generated test
cases according to weights of the paths. If multiple
test cases are having the same weights, we can
order them according to the severity/risk of
requirement of test cases [33].

4.1 Case Study

We have considered Library Book Issue as a
case study to explain the working of our proposed
approach. The Sequence Diagram and Interaction
Overview Diagram of Library Book Issue System
are created using StarUML and presented in Figure
2 and Figure 4 respectively. The users coming to
the library for issuing books are considered in our
use case. The user may or may not be a valid user
of the library. The books in the library may or not
be available. The books can be issued to the user if
he/she is a valid member, books are available and
he/she has not issued the number of books he/she is
entitled for. Accordingly the error messages will be
displayed. If the books will be issued to the user,
the book status and member records will be
updated. The transaction will also be recorded.

Figure 2: Sequence Diagram of Library book issue
use case of LIS

Figure 3: Snapshot of XMI code of SD
By using Table 1 and the XMI code in Figure 3,

we generate MSDG of the sequence diagram as
presented in Figure 5. Then, we try to get the ID of
the objects from the XMI code and the sequence of
the objects. Similarly, by using Table 2 and the
XMI code of IOD, the control flow graph is
prepared as given in Figure 6.

Figure 4: Interaction Overview Diagram (IOD) of
Library Book Issue System

Table 1: Message dependency from Sequence Diagram

Symbols Messages Passed between Objects

S1 Check book availability()

S2 Book available()

S3 Validate member()

S4 Check no of books issued()

S5 Book issued()

S6 Create Transactions()

S7 Add member and Book details()

S8 Update Book Status()

S9 Update User Record()

S10
Disp_Err_Mess1(“Book not

available”)

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

343

S11
Disp_Err_Mess2(“Not a valid

member”)

S12
Disp_Err_Mess3(“Books entitled

completed”)
S13 End

Figure 5: Message Sequence Dependency Graph
(MSDG) of sequence diagram

Table 2: Nodes of the IOD with Id_Number

Identification
Number

Interaction nodes

I1 Check Book

I2 Book not available

I3 Insert user No

I4 Invalid user

I5 Check no of Books

I6 Display error message

I7 Update book status

I8 Update user record

I9 Issue Book

I10 Stop

Figure 6: CFG of the IOD given in Figure 2

4.2 Intermediate Representation

For generating the test scenarios, it is necessary
to transform the diagrams into suitable intermediate
representations. The intermediate Sequence
Interaction Graph (SIG) generated by using the
message dependency graph given in Figure 6 and
the control flow graph given in Figure 7, is
presented in Figure 8(a). SIG is generated from the
sequence diagram and represents the possible
message/methods between sequences in an
interaction. A SIG is a graph G = (V,E), where V is
the set of nodes, and E is the set of edges. Nodes of
SIG represent the messages and edges represent the
transitions.

Figure 7: SIG of Library book issue use case

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

344

Figure 8: SIG of Library book issue use case

Figure 9 Dependency Graph (DG) of Fig 8

Figure 9: Dependency Graph (DG) of Figure 8

The message that initiates the interaction is
considered as the root of the graph. In an IOD, each
transition is labelled with a guard condition. The
conditional predicate corresponding to the guard
condition might trivially be an empty predicate
which is always true. The initial nodes in the
sequence and IOD diagrams are same. For the
intermediate representation, all the interactions

from the IOD are considered first from Figure 7 and
all sequences of interaction are considered from
MSDG of Figure 6. Figure 9 shows the DG of the
Sequence Interaction Graph. The solid directed
edges represent the control dependency and the
doted edges represent the parameter dependency
edge.

4.3 Test Case Generation

For the generation of test cases, we have merged
activities in the interaction overview diagram with
sequence of messages in the sequence diagram. For
this, we merged IG of interaction overview diagram
with MSDG of sequence diagram into a single SIG.
The first node of IG of corresponding activity
diagram is merged with the called message node.
Then last node of IG of activity diagram is merged
with the arrow-head pointed node of the
corresponding called node in the MSDG of
sequence diagram. The numbers associated with
each IG and MSDG node are called node
identifiers. The node identifier indicates the
message number or interaction code of the
sequence or interaction overview diagram
respectively. Figure 8 shows the merged diagram or
SIG generated from sequence and interaction
overview diagrams. From SIG by adding
parameter dependency edges, we constructed
dependency graph (DG) which is shown in Figure
9.

To generate test cases that satisfy the message-
interaction path criteria, we consider all the
possible paths from the start node to a final node of
the SIG. Then, each path is visited to generate test
cases. During the visit, we look for conditional
predicates on each of the transitions. For each
conditional predicate, we generate test cases using
category-partitioning method [28].

With the testing scenario, all possible sequences
of object message interactions and activity paths
(one possible sequence of message, activity and
edge corresponds to one path) are covered to verify
whether sequence of message-interaction paths is
correct or not. By covering all possible sequences
of message interactions with the activity path
coverage criterion, it is ensured that all user inputs,
all object responses and all possible activity path
sequences (that can be covered solely by the
branch, condition and statement coverage criterion)
are covered. Therefore, the generated test cases
confirm the adequacy of message-interaction path

Control dependency edge

Parameter dependency edge

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

345

coverage.

From the SIG of Library book issue use case, we
generate five paths as given in Figure 8. The
independent paths are
Path1 – 1→2→3→11
Path2 – 1→2→4→5→11
Path3 – 1→2→3→4→6→7→11
Path4 – 1→2→3→4→6→8→10→11
Path5 – 1→2→3→4→6→8→9→11
The generated test cases using these independent
paths are shown in Table 3.

4.4 Test Case Prioritization

The In this section we, discuss our proposed
approach to prioritize the test cases generated from
UML sequence and interaction overview diagrams.

Test case prioritization achieves many possible
goals. Out of these goals, we restrict our attention
to devise techniques that will improve the
efficiency by early detection of faults and provide
confidence in reliability with good testing coverage.
To formally illustrate how rapidly a prioritized test
suite detects faults, Rothermel et al. [24] introduced
a metric called Average Percentage of Faults
Detected (APFD) to measure the weighted average
of the percentage of faults detected during the
execution of the test suite [4]. Let T be a test suite
which contains n test cases, and let F be a set of m
faults revealed by T. Let TFi be the first test case in
ordering T′ of T which reveals fault i.

According to [24], the APFD for test suite T′ is
as follows :

nnm

TFTFTF
APFD

m

2

1...
1

21

 (1)

where m is the number of faults contained in the
program under test P and n is the total number of
test cases.

Always the value of APFD will range from 0-
100. The higher is the APFD value, the faster
(better) will be the fault detection capability in the
test suite.

Let us consider a path Pi in a SIG. Let the test
case Ti corresponds to path Pi. The prioritization
technique assigns weights to each of the path based
on the backward slice and criticality of nodes. We
propose a metric to guide the test case prioritization
using message/interaction of nodes. Backward slice
of a path is used to calculate the impact of

interaction upon other message/interactions.
Accordingly the weight of the path Pi computed.
After knowing the values for all paths in SIG, then
these values will be assigned to the associated test
cases. The prioritized test cases will be obtained by
arranging the test cases in the decreasing order of
weight.

The impact of a path of SIG will be calculated
from the number of nodes affected by the current
node. The number of nodes affected by a node is
calculated using backward slice of a node. The
algorithm for computing backward static slices of
all method and interaction nodes is given in Figure
6. We have named this as Calc_Backward_Affect
algorithm. An empty set is assigned to each node of
SIG before the algorithm is applied. After that, the
set associated with the node Ni will contain all
method/interaction nodes, which are affected by
node Ni. Since the function Slice_Back() is invoked
recursively the algorithm builds the set of nodes
associated with each node in SIG incrementally.
The function Slice_Back() is executed with the
node value Ni which is passed as an argument. If
any unvisited node is found then it is marked as
visited, the node identifier is added to the set
associated with node Ni ,and all outgoing edges
form node Ni are traversed forward. If an outgoing
edge is attached to a visited node Ni, the node
identifiers included in the set associated with node
Ni are added to the set associated with node Ni.
Otherwise, if the outgoing edge is attached to a
node Nj not yet visited, node Nj is passed as an
argument to the Slice_Back(). The function
Slice_Back () finds the set of nodes included in the
backward slice computed at node Ni. Then, the
node identifiers included in the set associated with
node Nj are added to the set associated with node
Ni.

The algorithm Calc_Backward_Affetc ensures
that every edge is traversed once and then it is
marked visited. Before visiting each node is marked
not visited. At the time when a node Ni is passed to
the Slice_Back(), it checks whether the node is
marked visited or not then it proceeds. If the
marked node is not visited, Slice_Back function
makes a mark on the node as visited. Then it
traverses all the outgoing edges from the node and
if the node visited earlier, the Slice_Back() will be
terminated. So, the outgoing edges of a node are
traversed only once. As a result we have seen no
edges are visited more than once, when the

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

Calc_Backward_Affect algorithm is applied. The
number of nodes included in the backward slice of
a node Ni will be considered as impact of that node
Ni.

Algorithm Calc_Backward_Affect
Input: A SIG with start node P, a slicing criterion
(s)
Output: Backward slice for every node

1. Si[..] = Φ // iS is the set associated with iN

2. MVi = 0 .i // Vi is status of visiting

node iN

3. Slice_Back (Ni)
4. {
5. if MVi =1 then
6. {
7. exit (0) // to come out after nodes visited
8. }
9. else
10. {
11. MVi =1 // Ni visited
12. Yi ={Ni| Nj depends on Ni }
13. Si =Si∪Yi

14. for (each node Nj ϵ Yi)
15. Slice_Back(Nj) // recursively called the fun
16. }
17. endif
18. }

4.4.1 Proposed test case prioritization
technique

In this Section, we describe the steps of the
proposed prioritization technique.

i. Traversing the paths in the graph SIG using
depth first search principle.

ii. Assigning the costs to the nodes using
backward slice of the affected nodes.

iii. Assigning the costs to the edges based on 80-
20 rule.

iv. Calculating the costs of the paths as per nodes
and edges.

v. Arranging the paths to get the prioritize order.

Assigning the costs to the nodes of SIG:

Each node of the graph is assigned with a cost as
per the number of nodes affected by the current
node using backward slicing given in the algorithm
Calc_Backward_Affect. By using this algorithm,
we have calculated the backward slice of each node
of the SIG in Figure 8 and shown in Table 4.

Table 4: Cost of each node using back slices

Node Backward Slice Cost

1 1,2,3,4,5,6,7,8,9,10,11 11

2 2,3,4,5,6,7,8,9,10,11 10

3 3,11 2

4 4,5,6,7,8,9,10,11 8

5 5,11 2

6 6,7,8,9,10,11 6

7 7,11 2

8 8,9,10,11 4

9 9,11 2

10 10,11 2

11 11 1

Assigning the costs to the edges of SIG

For assigning the cost of each edge in the graph,
we apply 80-20 rule, where 80% of the actions are
passed to the truth value part when it comes across
a decision node and 20% of the actions are passed
to the false value part. Here we considered the total
cost as 5 while passing near a decision node. So,
cost 4 is assigned to the truth value part (80%) and
1 is passed to the false part (20%). Cost 2 is
assigned to the normal edges. After assigning the
costs to edges of the SIG, the weighted SIG is given
in Figure 10.

edgesnormalotherwise

nodedecisiontheofvaluefalsethefor ,

nodedecisiontheofvaluetruththefor

edgeCost

,,2

1

,4

)(

Figure 10: SIG after assigning the cost

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

The cost of each path can be calculated by the
following equation

To calculate the cost of each path, we use
Equation 2. The cost of each path is assigned with
the values of all nodes in the path and the edges
along the path. The cost of the edges along the path,
cost of the nodes in the path and the total cost of the
path in the SIG given in Figure 10 are shown in
Table 5. In Table 6 we describe the prioritized order
of the test cases.

 2
1 1

n

i

n

j
ji edgeCostnodeCostpathCost

Considering the weights calculated in Table 5,
we prioritize the test cases of corresponding basic
paths in decreasing order of their calculated costs.
Hence, the order of execution of the test cases is
T4, T5, T3, T2, T1.

By arranging the costs of each path in
descending order, the test cases can be prioritized in
the order T6, T3, T5, T2, T4, T1. Now by applying
Equation 1 for the prioritized test cases we compute
the value of APFD. Table 7 shows the faults
detected by the test cases. In Table 6 we observe
that, the number of test cases n is 5 and the number
of faults (m) is 8. Now, by applying these values in
Equation 1, we get

825.0
5*2

1

8*5

11212111
1

APFD

Now, APFD value for the non-prioritized test
case (i.e. T1, T2, T3, T4, T5, T6) can be calculated
as follows:

675.0
5*2

1

8*5

11242421
1

APFD

By comparing the APFD values of the
prioritized and non-prioritized test cases, it is
observed that, the APFD value obtained for
prioritized cases is greater than that of the non-
prioritized ones. So, by using our approach, it
generates about 15% more effective prioritized test
cases than the randomized approaches. This is also
illustrated in Figure 12 (a) and Figure 12 (b) for
prioritized and non-prioritized test suites.

5. EXPERIMENTAL RESULTS

The In this section we, analyze the performance
of our proposed approach for test case
prioritization. For establishing the efficiency of the
approach, a case study of Library Book Issue

System is discussed in Section 4. Then we have
shown the efficiency of the proposed method by
calculating APFD measures [33].

Test case prioritization techniques organize the
test cases in an order to achieve better performance
like increased rate of fault detection and higher
code coverage, to increase their effectiveness. The
faults are equally likely to exist at any statement of
the code, which constitutes methods, or primitives
of associated messages and activities of the
methods in object-oriented software. A message is
a request that an object makes to another object to
perform an operation. The operation executed as a
result of receiving a message is called a method.
So, methods of associated messages and activities
cover the code. If methods/activities with high
dependency are exercised first, they would be
expected to uncover more faults. Therefore, the test
priority would provide an order to run test suites
based on backward slicing information of method
or interaction. So the test cases covering
methods/interactions at a faster rate are likely to
identify the faults in the code at the same speed.

We also implement this approach in other four
different case studies from the real-life situations.
Table 7 shows the percentage of increase in APFD
for prioritized and non-prioritized test cases using
our approach over the APFD for the non-prioritized
test cases using randomized approach. Figure 11
represents the bar graph showing the average
percentage of fault detection of different cases
studies by using prioritized test cases and non-
prioritized test cases. The x-axis of the graph
represents the five different case studies executed
using our approach and the y-axis is the values of
the APFD.

Figure 11: APFD percentage using Prioritized vs
non-prioritized test cases

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

6. COMPARISON WITH RELATED WORK

Most of the test case prioritization techniques
[11-15, 31] used for regression testing are based on
code. The methods used by the authors [11-15]
consider the knowledge of previous usage of the
system, such as fault proneness of the different
pieces of program code, fault detection capability,
fault-exposing potentiality of each test case etc. In
this work we proposed an approach by using UML
design specification. In code based system the
prioritization metric is calculated by using the
information of statements, group of statements
(branches), slices, functions, data flow and control
flow etc. The primary difference in the code based
and the proposed model-based approach is that one
can apply this technique in early stage of software
development prior to its coding and
implementation. But, the previous techniques
reported in [11-15, 31] can only be applied after
implementation. As this approach is applicable
before coding, i.e. at design level, so early detection
of flaws is possible and better test planning can be
done which saves time and cost of the developer.

Our work is also comparable with the approach
of Korel et al. [18]. In their work [18] the authors
tried to capture the model information from a single
state-based design specification for the purpose of
prioritization. But our work uses multiple designs
of sequence and interaction overview diagrams for
prioritizing the test cases. Prioritization technique
used by the authors [18] is used for regression
testing and considers higher rate of detecting the
flaws. But our TCP technique, on the contrast is
meant for integration testing and achieves the goals
like faster rate of code coverage, higher rate of
detecting the faults, faster rate of increasing the
confidence in the reliability of the system and
likelihood of revealing regression errors related to
specific code changes earlier in the regression
testing process.

In comparison with the approach of Panigrahi et
al. [31], our proposed methodology gives more
significant result. Panigrahi et al.[31] used a single
design model for prioritizing the regression test
cases. In case of our approach, we used a combined
design model which provides early detection of
faults.

We have compared our approach by calculating
APFD measure in comparison to the technique
proposed by Kundu et al. [19, 23]. Their approach

uses one design model where in our approach we
use combination of two design models.

(a) Prioritized test cases

(b) Non-prioritize test cases

Figure 12: Example illustrating the APFD measure of
prioritized and non-prioritized test cases

7. CONCLUSION

In this paper, we presented a model called TCPN
for generating and prioritizing test cases from UML
sequence and interaction overview diagrams. We
have converted these diagrams into a graph called
Sequence Interaction Graph. In literature we found
most of the test case prioritization approaches are
based on code and are mainly used for regression
testing. We proposed a completely model-based
approach which is suitable for cluster/integration
level testing. The test case generation approach in
our work from a sequence and interaction overview
diagram is simple and completely systematic and
logical. We have proposed the prioritization metric
considering the impact or influence of methods and

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

activity and criticality of guard conditions to
perform those methods and activities. This
prioritization metric is easy to compute. With the
proposed approach, some performance goals are
achieved which includes faster rate of coverage of
code, higher rate of detecting faults, and faster rate
in increasing the confidence in reliability of the
system. The results obtained from our approach are
compared with the approaches of some other
researches and observed that by using combined
models of UML is more efficient and schedules the
test cases in such a order that it detects the faults
prior to execution. In future work we would like to
optimize the test cases using some soft computing
techniques like genetic algorithm, ant colony
optimization, particle swarm optimization etc.

REFRENCES:

[1] R. Mall, “Fundamentals of Software Engineering”,
Prentice-Hall, Springer-Verlag GmbH, 3rd Edition
2009.

[2] A. Bertolino, and F. Basanieri, “A practical approach
to UML-based derivation of integration tests”,
Proceedings of the 4th International Software
Quality Week Europe and International Internet
Quality Week Europe (QWE), Brussels, Belgium,
2000.

[3] J. Hartmann, C. Imoberdorf, and M. Meisinger,
“UML-based integration testing”, In ACM SIGSOFT
Software Engineering Notes, Proceedings of
International Symposium on Software testing and
analysis, 2000.

[4] S. Elbaum, A.G. Malishevsky, G. Rothermel, “Test
case prioritization: A family of empirical studies”,
IEEE Transactions on Software Engineering, Vol.
28, No. 2, February, 2002, pp. 159-182.

[5] C. R. Panigrahi, and R. Mall, “Model-based
regression test case prioritization”, ACM SIGSOFT
Software Engineering Notes, Vol. 35, No. 6,
November 2010, pp. 1-7.

[6] S. Elbaum, A.G. Malishevsky, and G. Rothermel,
“Prioritizing test cases for regression testing”, ACM
SIGSOFT Software Engineering Notes, Vol. 25, No.
5, 2000, pp. 102–112.

[7] P. Tonella, P. Avesani, and A. Susi, “Using the Case
based ranking methodology for test case
prioritization”, Proceedings of the International
Conference on Software Maintenance (ICSM), IEEE
Computer Society, September 2006, pp. 123-133.

[8] G. Rothermel, R. H. Untch, C. Chu, and M.J.
Harrold, “Prioritizing test cases for regression
testing”, Software Engineering, Vol. 27, No. 10,
2001, pp. 929-948.

[9] D. Jeffrey, and N. Gupta, “Test case prioritization
using relevant slices”, International Computer
Software and Applications Conference (COMPSAC),
IEEE Computer Society, Washington, DC, 2006, pp.
411–420.

[10] J.A. Jones, and M. J. Harrold, “Test-suite reduction
and prioritization for modified condition/decision
coverage”, IEEE International Conference on
Software Maintenance (ICSM), IEEE Computer
Society, Washington, DC, 2001, pp. 92–101.

[11] S. Elbaum, A.G. Malishevsky, and G. Rothermel,
“Incorporating varying test costs and fault severities
into test case prioritization”, Proceedings of
International Conference on Software Engineering
(ICSE), IEEE Computer Society, Washington, DC,
pp. 329–338, 2001.

[12] H. Srikanth, “Requirements-based test case
prioritization”, 12th ACM SIGSOFT International
Symposium on the Foundations of Software
Engineering, 2004.

[13] H. Srikanth,and L. Williams, “On the economics of
requirements-based test case prioritization”,
Proceedings of the 7th International Workshop on
Economics-Driven Software Engineering Research,
2005.

[14] J. Kim, and A. Porter, “A history-based test
prioritization technique for regression testing in
resource constrained environments”, Proceedings of.
International Conference on Software Engineering
(ICSE), ACM, New York, pp. 119-129, 2002.

[15] J.J. Li, D. Weiss, and H. Yee, “Code-coverage guided
prioritized test generation”, Information and Software
Technology, Vol. 48, No. 12, 2006, pp. 1187-1198.

[16] J. Offutt, and A. Abdurazik, “Generating tests from
UML specifications”, Proceedings of 2nd

International Conference on the UML , 1999, pp.
416-429.

[17] B. Korel, L.H. Tahat, and M. Harman, “Test
prioritization using system models”, IEEE
International Conference on Software Maintenance
(ICSM,. IEEE Computer Society, Washington, DC,
2005, pp. 559-568.

[18] Korel B., Koutsogiannakis G., Tahat L.H., “Model-
based test prioritization heuristic methods and their
evaluation”, International Workshop on Advances in
Model-based Testing, ACM, New York, 2007.

[19] D. Kundu, and D. Samanta, “A novel approach of
prioritizing use case scenarios”, Asia–Pacific
Software Engineering Conference (APSEC), IEEE
Computer Society, Washington, DC, 2007, pp. 542-
549.

[20] R. V. Binder, “Testing Object-oriented Systems
Models, Patterns, and Tools”, Addison-Wesley:
Reading, MA, 1999, pp. 34-43.

[21] S. K. Swain, and R. Mall, “Test Case Generation
using UML Sequence and Activity Diagrams”,
International Journal of Computing Science and

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

350

Communication Technologies(IJCSCT), Vol. 1, No.
2, January 2009, pp. 91-100.

[22] J.J. Li, “Prioritize code for testing to improve code
coverage of complex software”, IEEE International
Symposium on Software Reliability Engineering
(ISSRE), IEEE Computer Society, Washington, DC,
2005, pp. 75-84.

[23] D. Kundu, M. Sarma, D. Samanta, and R. Mall,
“System testing for object-oriented systems with test
case prioritization”, Software Testing, Verification
and Reliability, Published online in Wiley Inter
Science (www.interscience.wiley.com). DOI:
10.1002/STVR, 2009.

[24]S. Elbaum, G. Rothermel, S. Kanduri, A.G.
Malishevsky, “Selecting a cost-effective test case
prioritization technique”, Software Quality Journal,
Vol. 12, No. 3, September 2004, pp.185-210.

[25] A. Pretschner, “Model-Based Testing in Practice”, In
Formal Methods (FM'05), Springer-Verlag, Vol.
3582, 2005, pp. 537-541.

[26] I.K. El-Far, J.A. Whittaker, “Model-Based Software
Testing”, In Encyclopaedia of Software Engineering,
2nd ed, J. J. Marciniak, Ed.: John Wiley & Sons,
Inc., 2002.

[27] D.P. Mohapatra, R. Mall, and R. Kumar, “An
Overview of Slicing Techniques for Object-Oriented
Programs”, Informatic , Vol. 30, 2006, pp 253–277.

[28] G. Canfora, A. Cimitile, and A. De Lucia,
“Conditioned Program Slicing”, Information and
Software Technology, Vol. 40, No. 11-12, 1998, pp.
595-607.

[29] Mahali, P., Acharya, A.A., “Model based test case
prioritization using UML activity diagram and
evolutionary algorithm”, International Journal of
Computer Science and Informatics, Vol. 3, No. 2,
2013, pp. 42-47.

[30]K. Ramasamy, and S.A. Sahaaya AruI Mary,
“Incorporating varying Requirement Priorities and
Costs in Test Case Prioritization for New and
Regression testing”, Proceedings of International
Conference on Computing, Communication and
Networking (ICCCN 2008), 2008.

[31] C.R. Panigrahi, and R. Mall, “An approach to
prioritize the regression test cases of object-oriented
programs”, CSI Transaction on ICT Journal,
Springer, Vol. 1, No. 2, 2013, pp. 159-173.

[32] P.G. Sapna, and H. Mohanty, “Prioritization of
scenarios based on UML activity diagrams”,
Proceedings of International Conference on
Computational Intelligence, Communication Systems
and Networks, 2009, pp. 271-276.

[33] M. Weiser, “Program Slices: Formal, Psychological
and Practical Investigations of an Automatic Program
Abstraction Method”, Ph. D. Thesis, University of
Michigan, Ann Arbor, MI, 1979.

[34] M. Weiser, “Programmers use slices when
debugging”, Communications of the ACM 25, Vol. 7,
1982, pp. 446–452.

[35] M. Weiser, “Program slicing”, IEEE Transactions on
Software Engineering, Vol. 10, No. 4, 1984, pp.
352–357.

[36] P. Sirivastava, “Test case prioritization”, Journal of
Theoretical and Applied Information Technology
(JATIT), 2009, pp. 178-181.

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

351

Table 3: Generated Test Cases From SIG

Test
Case
No

User
No

Books
Issued

Book Name Books after
Transaction

Expected
Result

Actual
Result

Paths
Associated

1 16104 - Operating
System

- Invalid User Invalid User Path2

2 13104 5 Computer
Graphics

5 Entitled
Completed

Entitled
Completed

Path3

3 12107 3 Software
Testing

3 Error
Message

Book Not
Available

Path3

4 12406 4 Software
Engineering

5 Book Issued
Successfully

Book Issued
Successfully

Path4

5 11609 2 Data
Structure

3 Book Issued
Successfully
Update

Book Issued
Successfully
Update

Path5

6 11777 2 Systems
Design

NA Book Not
Available

Book Not
Available

Path1

Table 5: Cost Of Different Paths

Paths Path nodes with
edges

Edge
costs

Node
costs

Total
path cost

Priority

P1 1→2→3→11 5 24 29 V

P2 1→2→4→5→11 9 32 41 IV

P3 1→2→4→6→7→11 13 38 51 III

P4 1→2→4→6→8→10→11 20 42 62 I

P5 1→2→4→6→8→9→11 17 42 59 II

Table 6: Prioritized Order Of The Test Cases

Test
Cases

Paths
Associated

Path Sequence Priority

T4 Path4 1→2→4→6→8→10→11 I

T5 Path5 1→2→4→6→8→9→11 II

T3 Path3 1→2→4→6→7→11 III

T2 Path2 1→2→4→5→11 IV

T1 Path1 1→2→3→11 V

Journal of Theoretical and Applied Information Technology
31st August 2015. Vol.78. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

352

Table 7: Faults Detected By The Test Cases

Test
Cases

Faults

FT1 FT2 FT3 FT4 FT5 FT6 FT7 FT8 Total

T1 3

T2 4

T3 5

T4 3

T5 5

Table 8: Increase In APFD % For The Prioritized And Non-Prioritized Test Cases

Sl.
No.

Name of the case
study

Lines of
Code in test

cases of
original test

suite

Number of
test cases in
the original

test suite

Number
of faults
detected

% of increase in
APFD

1

ATM
Withdrawal

System
(ATMWS)

677 26 42 14.27

2

Book Issue of
Library

Information
System (BILIS)

1106 63 61 12

3
User Login

System (ULS)
478 24 25 11.36

4
Online Shopping

System (OSS)
1426 86 69 12.54

5
Online Ticket
Reservation

System (OTRS)
903 47 52 13.56

