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BOUNDARY VALUE PROBLEM FOR A B-HYPERBOLIC
EQUATION WITH AN INTEGRAL CONDITION OF THE

SECOND KIND
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Kazan (Volga region) Federal University, Kazan, Russian Federation

ABSTRACT

In the paper we consider the boundary value problem with an integral condition of the second kind for a
hyperbolic partial differential equation of the second order with the Bessel operator. We prove the
uniqueness of the solution of the problem. In the paper we use the apparatus of the theory of partial
differential equations and ordinary differential equations, methods of functional analysis, the apparatus of
special functions. While solving the problem, we obtain some restrictive conditions on the functions that
define the initial data of the problem. The solution of the problem is obtained explicitly, as a series, using
the variable separation method. The substantiation of the solution is carried out by the method of spectral
expansions. The work is theoretical.
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1. INTRODUCTION

The modern problems of natural science have led
to the necessity to generalize the classical problems
of mathematical physics and to formulate
qualitatively new problems, as well as to develop
the methods for their studying. One class of
qualitatively new problems consists of the problems
with nonlocal conditions. The conditions are
usually called nonlocal if they relate the values of
the solution, to be found in a domain D, on some
interior manifold in D to the values on the boundary
of D. It has been found in the study that the greatest
difficulty is connected with the case when nonlocal
conditions do not involve the values of the function
at the boundary points. This case includes nonlocal
conditions given in the form of integrals. The
problems with integral conditions arose in the study
of certain physical processes, for which the
boundaries of the occurrence regions may not be
available for direct measurements, but the average
values of the unknown quantities are known. The
conditions of this kind may appear in the
mathematical simulation of the phenomena related
to plasma physics, heat distribution and
demography. Nonlocal integral conditions can be
regarded as a generalization of discrete nonlocal
conditions.

Thus, a number of processes studied in physics,
chemistry and biology often lead to the formulation
of the so-called nonlocal problems for differential
equations. Nonlocal problems are such problems, in

which, together with the classical initial and
boundary conditions or instead of them, the
conditions are set which relate the values of the
solution (and, possibly, its derivatives) at the points
of interior and boundary manifolds. For example,
nonlocal problems with integral conditions appear
in the mathematical simulation of some processes
of thermal conductivity, moisture transfer in
capillary-porous media, the processes occurring in
the turbulent plasma, in the study of the problems
of mathematical biology, and also in studying some
inverse problems of mathematical physics.

The problems with integral conditions for
parabolic and elliptic equations have been
considered by many authors, and for quite some
time. The question of formulation and solvability of
the problems for hyperbolic equations is studied
much less. Systematic study of the problems with
integral conditions for hyperbolic equations began
in the 90s of the XX-th century. The study results
showed that the choice of the method of proving the
solvability of nonlocal problems with integral
conditions is conditioned by the form of these
conditions themselves. Over the last couple of
decades, a large number of publications have
appeared in the mathematical literature dedicated to
studying nonlocal problems for partial differential
equations of hyperbolic type. Two classes of
problems are distinguished: the problems in which
the integral condition is set along the
characteristics, and the mixed problems with the
classical initial conditions and the nonlocal
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boundary conditions. Nonlocal problems of the
second type are considered in the works by A.
Bouziani [1], [2], Gordeziani and G.A. Avalishvili
[3], L.S. Pulkina [4], [5], S.A. Beilin [8], [9], V.B.
Dmitriev [6], O.M. Kechina [11], and other
authors.

In the works [6], [7] the terms "conditions of the
first and second kind" were introduced and the
lemmas on the equivalence of the conditions of the
first and second kinds was proved. If a nonlocal
condition contains only an integral operator, then
this condition is called an integral condition of the
first kind. If a nonlocal condition, besides an
integral operator, contains the values of the sought-
for solution or its derivatives on the boundary of the
domain under consideration, then such condition is
called an integral condition of the second kind. This
work is devoted to the study of a mixed problem for
a hyperbolic equation with the Bessel operator with
nonlocal integral condition of the second kind. In
the paper by A.I. Kozhanov and L.S. Pulkina [12],
there was proved the unique solvability of the
boundary value problems with a nonlocal boundary
condition of integral type for multidimensional
hyperbolic equations, which was an important step
forward in the study of such problems.

Our work is devoted to studying a problem with a
nonlocal integral condition for a hyperbolic
equation with the Bessel operator. The topicality of
the work is connected with the need of studying
certain problems of hydrodynamics and gas
dynamics. Consider the following physical
problem. As is known, the state of a gas is
determined by three quantities: velocity, pressure
and density. The equations describing small
oscillations of the gas are derived from the general
equations of hydrodynamics, namely, the continuity
equation, Euler’s equation and the equation of the
relationship between pressure and density in the
form of the Poisson adiabat. We will consider the
oscillations of the gas in a cylindrical tube. Suppose
that the gas is radially inhomogeneous, and there is
a power-law dependence of the density on the radial
coordinate. In addition, we use Boyle's law at
constant temperature. Then in the cylindrical
coordinate system, provided that the sought-for
functions depend only on the spatial variable r and
the time t, the considered hydrodynamic equations
after their linearization will assume the form of an
equation, in which the Bessel operator is applied to
the spatial variable r. Thus, this physical problem
can be interpreted as the problem of studying small
oscillations of a gas in a cylindrical tube within a
single cross-section, while considering the behavior

of the gas constant within each radius. Therefore, it
became necessary to solve the boundary value
problem for the hyperbolic equation with the Bessel
operator in a rectangular domain, which is
considered in this paper. We prove the uniqueness
of solution of this boundary value problem. The
solution of the problem is obtained explicitly. The
existence of solution is justified by the method of
spectral expansions. The research results are new in
the sense of formulation of the problem with a
nonlocal integral condition and have practical
applications in the field of gas dynamics.

Nonlocal problems for a hyperbolic equation
with the Bessel operator with integral conditions of
the first and second kind were investigated in the
works [13], [14]. Nonlocal problems for a parabolic
equation with the Bessel operator with integral
conditions of the first and second kind were studied
in the works [15]-[17].

The studies of nonlocal problems with integral
conditions have showed that the classical methods
are not always applicable to the solution of these
problems. The presence of non-local conditions
causes a number of difficulties, which do not allow
using the standard methods for the study of
nonlocal problems, and, therefore, the question of
development of the research methods still remains
topical today. The results of the present work are a
continuation of the studies of the mixed problems
with nonlocal integral conditions for hyperbolic
equations.

2. FOURIER METHOD FOR SOLVING A
MIXED PROBLEM WITH AN INTEGRAL
CONDITION OF THE SECOND KIND

2.1. Formulation of the problem

Let
  , 0 1,0D x t x t T    

be a
rectangular domain in the coordinate plane Oxt; we
denote the boundary of the domain as

  0 , 0,0x t x t T    
.

In the domain D we consider a hyperbolic
equation with the Bessel operator or a B-hyperbolic
equation of the form

2

2
0x

U
B U

t


 

 ,
(1)
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where

2

2
k k

x

k
B x x

x x x x x
             is

the Bessel operator, 1 2k  is a given real
number.

It is required to find a function

 ,U x t
satisfying the following conditions:

       2 1
0,U x t C D C D C D   

,
(2)

2

2
0x

U
B U

t


 

 ,
 ,x t D

,
(3)

0

0
x

U

x 





, 0 t T  ,

(4)

 0t
U x




,
 0t t

U x



, 0 1x  ,
(5)

   
1

0

1,
, 0kU t

U x t x dx
x


 

 
, 0 t T  ,

(6)

where
 x

and
 x

are given sufficiently
smooth functions.

The nonlocal integral condition (6), in addition to
the integral operator, contains the value of the
derivative of the sought-for solution with respect to
the spatial variable, and, therefore, is an integral
condition of the second kind. Or, according to [6],
[7], if the values of the sought-for solution or its
derivatives are included in the relation, then such
relations are called non-local conditions of the
second kind.

Let us formulate the purpose of the work: to
study the posed boundary value problem for the
hyperbolic equation (1) with the Bessel operator
with the nonlocal integral condition (6) of the
second kind and to prove the unique solvability of
the problem.

2.2. Uniqueness of the solution of the mixed
problem

Theorem 2.2.1. The mixed problem (2)-(6) with
the integral condition (6) cannot have more than
one solution.

Proof. We prove the theorem using the method of

reductio ad absurdum. Let 1U
and 2U

be two
supposed solutions of the problem (2)-(6). Then

their difference 1 2U U  
satisfies the

conditions (2)-(4) of the problem (2)-(6), the
homogeneous initial conditions

0
0

t




, 0
0t t





( 05
)

and the homogeneous integral condition

   
1

0

1,
, 0kt

x t x dx
x





 

 
.

( 06
)

It is not difficult to check that there holds the
identity

2 22

2

1

2
k k k

t x

V V V V V
x V B V x x

t t t x x t x

                                            

Putting in this identity V  and taking into
account that  is a solution of equation (1), we get

2 2
1

2
k kx x

t t x x t x

                                      

Integrating the last identity with respect to x over

the segment
 0,1

, we have

     1
1, 1,

2 t xE t t t
t

 



 ,

(7)

where

 
2 21

0

kE t x dx
t x

                 


.
(8)
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Multiplying equation (1) by
kx and integrating it

with respect to x over the segment
 0,1

, we get

 1

0

1,k
tt

t
x dx

x








.
(9)

In the condition ( 06
) we substitute

 1,x t
by

its value from (9), as a result of which we have

 
1 1

0 0

, 0k k
tt x dx x t x dx   

.
(10)

Setting here

   
1

0

, kx t x dx Z t 
, we obtain

the equation 0Z Z   , whose general solution

has the form
  1 2cos sinZ t c t c t 

, thus,

 
1

1 2

0

, cos sinkx t x dx c t c t  
.

By virtue of initial conditions ( 05
), 1 0c 

and

2 0c 
, and, hence,

 
1

0

, 0kx t x dx 
. It

follows from here and ( 06
) that

 1,
0

t

x




 .
Now, from this and from (8) and (9) we get

2 21

0

1
0

2
kx dx

t t x

                   


.

Whence we conclude that

2 21

0

kx dx C const
t x

                  


.
(11)

Putting in (11) 0t  and taking into

consideration initial conditions ( 05
), we get

0C  , and hence

2 21

0

0kx dx
t x

                 


.

It follows that
0

t




 and
0

x




 .

Therefore,
 ,x t c 

. It follows from this

equality and initial conditions ( 05
) that 0c  .

Thus, we have obtained 0  and 1 2U U
. The

theorem is proved.

2.3. The construction of particular solutions of
equation (1) in a rectangular region by the
Fourier method

First we construct a system of particular solutions
of equation (1) satisfying the conditions

       2 1
0,U x t C D C D C D   

,
(12)

2

2
0x

U
B U

t


 

 ,
 ,x t D

,
(13)

0

0
x

U

x 





, 0 t T  ,

(14)

   
1

0

1,
, 0kU t

U x t x dx
x


 

 
, 0 t T  .

(15)

We look for a particular solution of equation (1)
of the form

     ,U x t X x T t
,

(16)

where X and T are yet undetermined functions.
We find them from the requirement that the
function (16) satisfy conditions (12)-(15). To this
end, we substitute it into equation (1) and boundary
conditions (14) and (15).

0xXT TB X  
,

(17)

   0 0X T t 
,

(18)
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     
1

0

1 0kX X x x dx T t
 
   

 


.
(19)

Separating variables in equation (17) and
dividing equations (18) and (19) by T, we get the
ordinary differential equations and conditions for
the undetermined functions:

2 0T T   ,
(20)

2 0xB X X 
,

(21)

 0 0X  
,

(22)

   
1

0

1 0kX X x x dx  
.

(23)

With respect to function X we have come to a
Sturm—Liouville problem concerning eigenvalues
and eigenfunctions. Let us find the general solution
of equation (21), i.e. the equation

2 0
k

X X X
x

   
. Multiply this equation by

2x and perform the variable change according to

the formulas

1

2

k

X







   
  ,

x




. As a result,
the equation is reduced to the Bessel equation,
which appears in many questions of physics,
mechanics and astronomy:

22
2 2

2

1
0

2

d d k

d d

 
   

 

       
    .

(24)

Let

1

2

k 

be a non-integer number. Then it is
known [20] that among the particular solutions of
the Bessel equation there are functions which have
the same name with the equation, the Bessel
functions of the first kind, defined by the formulas

2

0

( 1)
2

( )
! ( 1)

n
n

n

x

J x
n n



 







   
 

  
,

2

0

( 1)
2

( )
! ( 1)

n
n

n

x

J x
n n



 

 






   
 

   
,

where
 

is the Gamma-function defined for
all positive values by the formula [20]:

  1

0

xe x dx

   

.

Since the expansions in the right-hand side of the
formulas for the definition of the Bessel functions
begin with different powers of x, then the partial

solutions

   1 1

2 2

,k kJ J  

of Bessel equation
(24) will be linear independent, whereas the general
solution has the form

     1 1 2 1

2 2

k kc J c J     
.

(25)

Coming back to the old variables in (25), we
have

     
1 1

2 2
1 1 2 1

2 2

k k

k kX x c x J x c x J x 
 

  
,

(26)

where 1 2, ,c c 
are arbitrary constants. We will

find them from the requirements that the general
solution (26) satisfy conditions (22) and (23). To
this end, we substitute it into these conditions.

Due to the known formula of differentiation of
the Bessel functions [20]:

   
1 1

2 2
1 1 2 1

2 2

k k

k k

dX
c x J x c x J x

dx
   

 

 


  

.

Also, by virtue of the known asymptotic formula

for the Bessel function as 0x [18],
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we have for 2 0c 
: 0

lim
x

dX

dx
 

, whereas for

2 10, 0c c 
: 0

0
x

dX

dx 



Then, according to condition (22), for the general

solution (26) to be bounded we must put 2 0c 
; as

a result, we get

 
1

2
1 1

2

k

kX c x J x



. Here we

also put 1 1c 
, since the Eigen functions are

determined up to a constant factor. Thus, the
solution of equation (21), satisfying condition (22),
has the form

 
1

2
1

2

k

kX x J x




(27)

Substitute (27) into condition (23):

 
1

2
1

2

k

k

dX
x J x

dx
 



 
, whence

   1

2

1
k

dX
J

dx
  

.

As a result of substitution we have

   
1 1

2
1 1

2 20

0
k

k kJ J x x dx  


   
(28)

It is known [18] that

   1 1
1

p p
p pJ x x dx x J x c 

 
(29)

Calculating the integral in (28) with the help of
formulas (29) and the Newton—Leibniz formula,

we obtain

   
1 1

2
1 1

2 20

1k

k kJ x x dx J 




 
From this and (28) we have:

   1 1

2 2

1
0k kJ J  

   
or

 1

2

0kJ  
.

(30)

It is known [19] that the transcendental equation
(30) has an infinite set of real roots. Let

1 2, ,..., ,...n  
be positive roots of equation (30)

placed in the order of increasing. Then the numbers

1 2, ,..., ,...n  
determine the eigenvalues of the

spectral problem. Setting in (27) n 
, we obtain

the corresponding Eigen functions of the Sturm—
Liouville problem

 
1

2
1

2

, 1, 2,3,...
k

n k nX x J x n


 

(31)

Let us prove that the system of functions (31) is

orthogonal on the interval [0,1] with the weight
kx .

The function (27) is a solution of equation (21), i.e.

   
1 1

22 2
1 1

2 2

0
k k

k k
k k

d d
x x x J x x J x

dx dx
  

 


 

    
          

(32)

Multiplying equation (32) by
kx , we get

   
1 1

22 2
1 1

2 2

0
k k

k k
k k

d d
x x J x x x J x

dx dx
  

 

 

    
          

or

   
1 1

2 2 2
1 1

2 2

k k
k

k k

d d
x J x x x J x

dx dx
  

 

 

  
       

(33)

Setting in this equality 1 
and 2 

, we
have

   
1 1

2 2 2
1 1 1 1 1

2 2

k k
k

k k

d d
x J x x x J x

dx dx
  

 

 

  
       

   
1 1

2 2 2
2 1 2 1 2

2 2

k k
k

k k

d d
x J x x x J x

dx dx
  

 

 

  
       

We multiply the first of these equalities by

 
1

2
1 2

2

k

kx J x




and the second one, by

 
1

2
1 1

2

k

kx J x




, then we subtract the first equality
from the second. As a result, we get after some easy
transformations
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     2 2
2 1 1 1 1 2

2 2

k kxJ x J x     

       
1 1 1 1

2 2 2 2
1 2 1 1 1 1 1 2

2 2 2 2

k k k k

k k k k

d d d
x J x x J x x J x x J x

dx dx dx
   

   

   

    
      

     

       
1 1 1 1

2 2 2 2
1 1 1 2 1 2 1 1

2 2 2 2

k k k k
k

k k k k

d d d d
x x J x x J x x J x x J x

dx dx dx dx
   

   

   

        
         
         

Since the second bracket turns to zero, the last
equality assumes the form

     2 2
2 1 1 1 1 2

2 2

k kxJ x J x     

(34)

       
1 1 1 1

2 2 2 2
1 2 1 1 1 1 1 2

2 2 2 2

k k k k

k k k k

d d d
x J x x J x x J x x J x

dx dx dx
   

   

   

    
     

     

Calculating the inner derivatives in equality (34),
we get

             2 2
2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 2

2 2 2 2 2 2

k k k k k k

d
xJ x J x xJ x J x xJ x J x

dx
              

 
   

 

Integrating this equality with respect to x over
the segment [0,1], we get

     
1

2 2
2 1 1 1 1 2

2 20

k kxJ x J x dx     

       
1

2 1 1 1 2 1 1 1 1 2

2 2 2 20

k k k k

d
xJ x J x xJ x J x dx

dx
        

 
   

 


       2 1 1 1 2 1 1 1 1 2

2 2 2 2

0k k k kJ J J J          

(35)

Thus, it is proved that the system of Bessel

functions

 1

2

k nJ x

 
 
  is orthogonal with the

weight x on the interval [0,1]. It follows from here
that the system of functions (31) is orthogonal with

the weight
kx on the interval [0,1].

In (35) we replace 2
with  , 1 2   

             
1

2 2
1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 20

k k k k k kxJ x J x dx J J J J                

Since

 1 1

2

0kJ  
, the last equality assumes

the form

   
   1 1 11

2 2
1 1 1 2 2

12 20

k k

k k

J J

xJ x J x dx

  
 

 

 

  


(36)

Now let us take the limit as 1 
in the

equality (36). Since both the numerator and

denominator converge to zero as 0 , we
evaluate the indeterminate form in the right-hand
side of this equality by L’Hopital’s rule:

 
 2

1 11
2 2

1 1

20 2

k

k

J

xJ x dx






 
. Thus we have

       
1 1 11 1

2 2
1 1 1 1

2 2 2 20 0 0

( ) ( )
k k

k k
i j k i k j k i k jX x X x x dx x J x x J x x dx J x J x xdx   

 

       

(37)

 2
1

2

0,

1
,

2 k i

j i

J j i


  

where i
and j

are positive roots of the

equation

 1

2

0kJ  
.

Let an arbitrary function
 f x

be
representable in the form of the series

   
1

2
1

1 2

k

i k i
i

f x a x J x






.

(38)

To determine the coefficients ia
, we multiply

both sides of the expansion (38) by

 
1

2
1

2

k

k jx J x




and integrate with the weight
kx

over the segment [0,1], considering term-by-term
integration possible. Then, taking into account (37),
we get
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     
1 1

2
12

1 20
2

2 k

i k i i
k i

a f x x J x dx f
J









 

(39)

The expansion (38), whose coefficients are
determined by formula (39), is the expansion of
function f(x) into the Fourier—Bessel series.

Setting in equation (20)
2 2

n 
, we get

2 0.n n nT T 
The general solution of this

ordinary differential equation has the form

cos sin , 1,2,...n n n n nT a t b t n   

Thus, the system of partial solutions of equation
(1), satisfying conditions (12)-(15), is determined
by the formula

     
1

2
1

2

, cos sin , 1, 2,...
k

n n n n n k nU x t a t b t x J x n  


  

(40)

3. RESULTS OF SOLVING THE MIXED
PROBLEM WITH AN INTEGRAL
CONDITION

To solve the problem (2)-(6), we apply the
method of separation of variables, which was
described above. Let us justify the existence of
solution of the problem (2)-(6) using the method of
spectral expansions.

We will look for a solution of the problem (2)-(6)
in the form of the following series

     
1

2
1

1 2

, cos sin
k

n n n n k n
n

U x t a t b t x J x  





 
(41)

where na
and nb

are yet undetermined
constants. We will find them from the requirements

that the function
 ,U x t

, determined by the series
(41), satisfy the initial conditions (5). To this end,
we substitute this function into these initial
conditions:

   
1

2
1

1 2

k

n k n
n

a x J x x 






(42)

   
1

2
1

1 2

k

n n k n
n

b x J x x  






(43)

The series (42) and (43) are the expansions of the

functions
 x

and
 x

into the Fourier—
Bessel series. Due to (39), the coefficients of these
expansions can be represented in the form

     
1 1

2
12

1 20
2

2 k

n k n n
k n

a x x J x dx
J

  







 
,

(44)

     
1 1

2
12

1 20
2

2 k
n

n k n
k n n n

b x x J x dx
J


 

  






 
.

(45)

Based on the differentiation formulas for cylinder

functions, the integrals for n
and n

can be
represented in the form

     
1 1

2
12

1 20
2

2 k

n k n
k n n

d
x x J x dx

J dx
  

 






 
  

 


,

     
1 1

2
12

1 20
2

2 k

n k n
k n n

d
x x J x dx

J dx
  

 






 
  

 


Let
 1, 0,1C  

. Then, integrating these
integrals by parts, we get

     
1 1

2
12

1 20
2

2 k
n

n k n
k n n n

x x J x dx
J


  

  







   

(46)

     
1 1

2
12

1 20
2

2 k
n

n k n
k n n n

x x J x dx
J


  

  







   

(47)

Also, we represent the integrals for n
and n 

in the form
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 
   

1 3

2
32

1 20
2

2 k

n k n
k n n

x d
x J x dx

J x dx


 

 






  
   

 


,

 
   

1 3

2
32

1 20
2

2 k

n k n
k n n

x d
x J x dx

J x dx


 

 






  
   

 


.

Now, let
     2, 0,1x x C  

and

   1 0, 1 0   
. Then, integrating by parts

the last integrals, we get

 
     

1 3

2
32 2

1 20
2

2 k
n

n k n
k n n n

x x x
x J x dx

J x

  
 

  






  
    

(48)

 
     

1 3

2
32 2

1 20
2

2 k
n

n k n
k n n n

x x x
x J x dx

J x

  
 

  






  
    

(49)

Then we consider integrals for n
and n 

.
These integrals will be also represented in the form

 
     

1 5

2
52 3

1 20
2

2 k

n k n
k n n

x x x d
x J x dx

J x dx

 
 

 






   
   

 


,

 
     

1 5

2
52 3

1 20
2

2 k

n k n
k n n

x x x d
x J x dx

J x dx

 
 

 






   
   

 


.

Let
     3, 0,1x x C  

and
           1 0, 1 0, 1 0, 1 0, 1 0, 1 0             

. Integrating the last integrals as above, we get

 
       

21 5

2
52 4

1 20
2

3 32 k
n

n k n
k n n n

x x x x x
x J x dx

J x

   
 

  






    
  

(50)

 
       

21 5

2
52 4

1 20
2

3 32 k
n

n k n
k n n n

x x x x x
x J x dx

J x

   
 

  






    
  

(51)

Substituting in (48) and (49) n
and n 

by
their values from (50) and (51), we will have

2
n

n
n







  
,

2
n

n
n







  
.

(52)

Then, substituting in (46) and (47) n
and n 

by their values from (52), we will obtain

3
n

n
n








,

3
n

n
n








.

(53)

It follows from (44) and (45) that the coefficients
of the series (41) are represented in the form

3
n

n
n

a





,

4
n

n
n

b





.

(54)

Substituting the coefficients of the series (41) by
their values from (54), we get

   
1

2
13 4

1 2

, cos sin
k

n n
n n k n

n n n

U x t t t x J x
 

  
 






  
  
 


(55)

Let us prove the uniform convergence of the

series (55) in the domain D . It is known (Watson,
1949) that for the Bessel function of the first kind

there holds an asymptotic formula as  

  1 2

1
J O 


 

  
  .

(56)

It is also known (Watson, 1949) that for

   0,1f x C
and  

   
1

3 2
0

1
f x xJ x dx O 


 

  
 


.

(57)

According to formulas (56) and (57), we will
have for n

1 2

1
n

n

O

 

  
  ,

1 2

1
n

n

O

 

  
  .

(58)

It follows from the asymptotic formulas (56)-(58)

that in the domain D for n

 
1

2
13 4 7 2

2

1
cos sin

k
n n

n n k n
n n n

t t x J x O
 

  
  





    
    

   
.
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This yields that for the terms of series (55) there

holds in the domain D the following estimate

 
1

12
13 4 7 2

2

cos sin
k

n n
n n k n

n n n

c
t t x J x

 
  

  





  
  

 

By virtue of the Weierstrass criterion, the series

(55) and (41) converge uniformly in D and, hence,

   ,U x t C D
.

Let us prove now that
   1,U x t C D

. To
this end, we differentiate series (55) with respect to
t and x.
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(59)
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(60)

With the help of asymptotic formulas (56), (58)
and analogously to what is proved above, it can be
showed that for the terms of the series (59) and (60)
there hold in the domain D the following estimates
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It follows from this that the series (59) and (60)
converge uniformly in D and, hence,

   1,U x t C D
.

Let us now prove that
   2,U x t C D

.
Differentiating twice the series (55) with respect to
t and applying to it the Bessel operator
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k
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(61)
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(62)

Also, with the help of asymptotic formulas (56)-
(58), it can be proved that for the terms of series
(55) in the domain D there hold the following
estimate
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It follows from this estimate that series (61) and
(62) converge uniformly in the domain D and,

hence,
   2,U x t C D

.

Thus, we have proved the following theorem,
which is one of the main results of our study.

Theorem 3.1. If the functions
 3, 0,1C  

,

     1 0, 1 0, 1 0     
and

     1 0, 1 0, 1 0     
, then the

problem (2)-(6) is uniquely solvable, and the
solution is defined by the series (41).

4. CONCLUSION

As it was already mentioned in the introduction,
the topicality of the subject of this work is justified
by the need of theoretical generalization of the
classical problems of mathematical physics. Also it
is justified by the applied character of the work,
which we will now discuss. The problem,
considered in the paper, has the following physical
meaning. Suppose that there is an "infinite"
(extending in both directions to infinity) immovable
cylindrical tube with the cross-sectional radius
equal to R. Fill this tube with gas. Let the gas
undergo small harmonic oscillations about its
equilibrium position. In studying these small
oscillations we restrict ourselves, for simplicity, to
the case of radial oscillations. Then the function
U , the velocity potential, will depend on the
distance of the oscillating gas particle to the Oz axis
and on time. After transition to cylindrical
coordinates, the wave equation describing the
motion of the gas in the tube will assume the form:
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2 2

2 2 2

1 1U U U

r r r a t

  
 

   .
(63)

Let us formulate a problem about small
oscillations of gas in the cylindrical tube: find a
solution of equation (63), satisfying the initial
conditions

 0t
U r




,
 0t t

U r



(64)

and the boundary condition

0
r R

U

r 





.

(65)

We will solve the posed problem by the Fourier
method, according to which we will look for
particular solutions of the form

( , ) ( ) ( )U r t T t W r .
(66)

Substitute (66) into equation (63) and conditions
(64), (65). After separation of variables and the
calculations, which were demonstrated above, we
will obtain a solution of the problem (63)-(65) in
the form of the series
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,

whose coefficients are determined by the
formulas:
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,

whereas 1 2 3, , ,...  
are positive roots of the

transcendental equation
 1 0J  

, placed in the
increasing order.

Obviously, equation (1) is more general
compared with equation (63). Equation (63) is

obtained from (1) for the value 1k  . The problem
(63)-(65) is usually regarded as a mathematical
model of oscillations of a real gas in a cylindrical

tube. However, equation (63) is obtained after some
mathematical simplifications. Thus, it makes sense
to assume that equation (1) can describe more
accurately the behavior of a real gas for some minor

deviations from the value 1k  . The problem (2)-
(6) can be interpreted as a problem about
oscillations of gas in an infinite tube, whose cross-
section is a rectangular domain.

The solution of the problem has been obtained
explicitly, in the form of a series. The results of
further studies of the obtained solution will be
displayed as a graphic dependence of the velocity
potentials on time and the space variable. It will be
possible to evaluate the behavior of gas for some

deviations of the value of the parameter k from the

value 1k  . We hope that the planned results will
be useful in the study of physical experiments of
gas dynamics. In the future, we plan to consider the
boundary value problem for the equation of small
oscillations of a gas in the case when the considered
functions depend not on one spatial variable, as was
already mentioned in the introduction, but also on
the second spatial variable in a cylindrical
coordinate system. We will also consider other
problems for the equation of small oscillations of a
gas.

In solving the problem, we used the well-known
method of separation of variables, which enabled us
to investigate the solvability of the problem. The
scientific novelty of this work is the following:
setting of the problem in a rectangular region for a
hyperbolic equation with the Bessel operator and an
integral condition of the second kind; the proof of
the unique solvability of the problem in a rectangle;
in the course of solving the problem there have
been identified some restrictive conditions on the
functions included in the classical initial data of the
problem. The results of this study, as was
mentioned in the introduction, are continuation of
the studies of the mixed problems with nonlocal
integral conditions for hyperbolic partial differential
equations.
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