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ABSTRACT 

 

The purpose of the solutions, proposed in the article, is further enhancement of reliability of mathematical 

and program support of modern computer systems which require accurate calculations in ill-conditioned 

problems by step by step control of the priori error. For this purpose, a computational method for 

calculating the frequency response of the system, based on the reduction of the real Schur form of the initial 

matrix of coefficients of the system to a triangular form of the general form using orthogonal similarity 

transformation, has been developed. Next, the obtained matrix by permutations is transformed into a new 

triangular form, in the lower part of the main diagonal of which the multiple eigenvalues are placed. The 

value of the matrix frequency response for each predefined frequency value is found as the solution of a 

system of linear algebraic equations with a triangular coefficient matrix with an extracted diagonalizable 

submatrix for multiple eigenvalues. A computational algorithm for calculating the matrix frequency 

response of the system is presented. A comparative assessment of the computational cost in the proposed 

method and the method, based on the Hessenberg form, is conducted in the problem of calculating the 

frequency response of the system. The article shows an obvious advantage in the complexity of 

computations in the absence of multiple eigenvalues, which can be assessed as a linear function of the 

dimension of the matrix, over the quadratic dependence for an alternative method. In the absence of 

multiple eigenvalues the proposed method is not inferior in performance to the method based on the 

Hessenberg form. 
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1. INTRODUCTION  

 

Currently, the number of publications in the 

development of algorithmic support to compute the 

frequency response of dynamic systems is very 

large. However, if you consider the publications 

from the standpoint of their practical use the results 

are no longer so impressive. The reason is a visible 

gap between the purely academic approach to the 

development of methods of analysis, synthesis and 

modeling of dynamic systems, as sections of 

Mathematics, and the need for methods for solving 

specific applied problems.  

Plotting the frequency response is used today to 

check the adequacy of the model of a dynamic 

system, where it is compared with the frequency 

response obtained in the experimental research of 

the real system [13], [14]. The stability analysis, 

determining the stability margins, the system 

bandwidth are conducted using the frequency 

response of an open-loop and closed-loop control 

systems [1], [5], [15]. 

In practice the frequency methods of adjusting – 

proportional-integral-derivative (PID) controllers, 

including the synthesis of robust PID controllers 

[1], [15], [19], the modern algorithms for optimal 

control [15], [3], [17], [19] and algorithms for 

predictive control [6], [8] are applied. 

To date the method for computing the frequency 

response of the system, based on the reduction of 

the system matrix to the Hessenberg form using 

orthogonal similarity transformation constructed by 

House holder’s method [10], [11], [12], is the most 

widespread. It is natural to assume that there are 

other approaches to the computation of the 

frequency response with less computational cost.  

In this paper, we propose such an algorithm for 

computing the frequency response, based on the 

reduction of the real Schur form of a matrix system 

to a triangular form with an extracted 

diagonalizable block and finding a solution to the 

system of equations with a triangular matrix and a 

diagonal submatrix. We present a computational 

algorithm and conduct a comparative assessment of 



Journal of Theoretical and Applied Information Technology 
 31

st
 August 2015. Vol.78. No.3 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
484 

 

the computational cost in the proposed method and 

the method, based on the Hessenberg form. . 

Usually a dynamic system is described by a 

system of linear differential equations of state with 

constant coefficients in the form: 
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(1) 

where x is the state vector of dimension n , u is 

the input variable of the system, y is the output 

vector of dimension m , the components of which 

are the output variables of the system, relative to 

which we need to compute the frequency response, 

the state matrix
nnRA ×∈ , matrix

nmRC ×∈ , 

vectors
nRb∈ and 

mRd∈ . 

Applying the Laplace transform with zero initial 

conditions to equations (1), we get: 
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Let’s define the vector transfer function from the 

input to the state vector as )()()( sUsXsW = , 

the vector transfer function from the input to the 

output vector as )()()( sUsYsWy = and using 

equations (2) we’ll write:  

.)()(

;)()(

dsCWsW

bsWAIs

y +=

=−
 (3) 

To compute the vector frequency response 

)( ωjW and )( ωjWy we’ll go to the frequency 

domain at ωjs = : 

.)()(

;)()(

djCWjW

bjWAIj

y +=

=−

ωω

ωω
 (4) 

Since the computation )( ωjWy is reduced to the 

computation )( ωjW , the focus is on finding a 

solution to the first matrix equation of the system 

(4). 

Search for the complex function )( ωjW is 

reduced to the computation of values of this 

function at the defined values of its real 

argumentω . The problem can be considered solved 

if we find an algorithm for finding a solution to the 

system of linear algebraic equations written in the 

form: 

bwAIj =− )( ω , (5) 

where bA, are taken from the system of 

equations (1), ω  is a parameter, w  is a complex 

vector of unknowns, which, as a result of the 

solution, will give the value of the frequency 

response of the system described by the model (1), 

at the defined frequency valueω . 

It is obvious that the complexity of solving the 

system of linear algebraic equations (5) is 

determined by the coefficient matrix form, and the 

problem feature is the multiple solution of this 

system at variation ofω on the investigated 

interval. On the other hand, the matrix form 

depends on the chosen basis of the state space on 

which the model (1) is defined. 

Then the goal is obvious – before we enter the 

cycle of change of parameterω  we need to choose 

a basis, in which the matrix A will be of such a 

form that at each step of the cycle the number of 

operations, required to solve the system of 

equations (5), should be minimal. 

Let’s proceed from the primitive basis to the new 

basis by the transformable nonsingular 

matrix
nnCT ×∈ , that is, make the change of 

variables Txq =  in the system of equations (1). 

Then in the new basis the model in the state 

variables will appear as 

,)()()(

;)()()(
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tubTtTqATtq 11

+=

+= −−
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 (6) 

where the state matrix is similar to the state 

matrix of the initial system (1). There are several 

canonical forms which can be obtained for the 

matrix by similarity transformations: diagonal form, 

Jordan form, triangular form, Hessenberg form, real 

Schur form [18], [9], [4], [7], [16]. 

The diagonal form gives the minimum number of 

operations, but in the case of multiple eigenvalues it 

may not exist. With close eigenvalues, the problem 
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of obtaining eigenvalues and eigenvectors may be 

ill-conditioned and the error of their computation 

may be exacerbated by the inability to solve the 

problem by unitary similarity transformation. The 

triangular canonical form always exists and can be 

obtained by unitary similarity transformation 

without impairing the conditionality of the problem, 

but at each step of the cycle the solution of the 

triangular system of linear equations will require 

more time than of the decoupled system of 

equations in the case of a diagonal coefficient 

matrix. 

In this paper, we propose a hybrid version of the 

solution, based on the state matrix triangulation of 

the model in the state variables, but using, where 

possible, the diagonalization of the submatrix of the 

state matrix.  

2. MATERIALS AND METHODS  

It is known that the real Schur form SA
for an 

arbitrary real matrix can be obtained by an 

orthogonal similarity transformation performed by 

the practical QR algorithm with preliminary scaling 

of the initial matrix and reducing it to the 

Hessenberg form (Voevodin, 2009; Ikramov, 1991; 

Demmel, 1997; Golub, et al., 1998; Smith, et al., 

1976). Therefore, in our paper we consider that the 

problem of computing the real Schur form SA
of 

the initial matrix A has been solved, that is, such 

an orthogonal matrix S  has been defined, that the 

relation holds: 

ASSA 1

S

−=
. 

(7) 

Let’s determine a similarity transformation 

which will perform the reduction of the 

matrix SA
to a triangular form TA

with an extracted 

diagonalizable block. 

2.1. The reduction of the real Schur form to a 

triangular form with an extracted 

diagonalizable block 

At the first stage we'll reduce the matrix SA
to a 

strictly triangular, in the general case, a complex 

form, which we’ll denote TA
~

. Such transformation 

is performed by unitary similarity transformation: 

NANA T

1

T

~−=
, 

(8) 

where the matrix of multiple permutations N  is 

formed as: 

∏=
ij

ijNN

, 
(9) 

where ijN
 is the matrix of insert of i -th 

diagonal element to
j

-th place of the diagonal with 

the shift of all the diagonal elements from ( 1i+ )-

th place to
j

-th one, in the direction of i -th place. 

So, the matrix ijN
 is formed as a product of 

elementary permutations of two adjacent diagonal 

elements: 

j1j2i1i1iiij NNNN ,,,

~~~
−+++ ⋅⋅⋅= L

, 

where the matrix of elementary 

permutations 1llN +,

~

is different from the identity 

one by the presence of the block of the second 

order on the diagonal, beginning from its l -th 

element:  










−

−

−+
=

+++

+++

+++
1llll1l1l

1l1lll1ll

2
1

2

ll1l1l

2

1ll

i aaa

aaa

aaa

1
n

,,,

,,,

,,, ))((

, 

constructed from the elements of the transformed 

matrix. 

The choice of indices 
ji,

 is based on the task of 

grouping the multiple eigenvalues in the upper part 

of the diagonal and comparing the diagonal 

elements according to the chosen closeness 

criterion. It is important to note that the matrix of 

multiple permutations N is orthogonal.  

Combining the transformations, set by (8) and 

(10) ones, we’ll obtain a transformation which 

transforms the real Schur form SA
 into a triangular 

form TA
: 

.)(
~

HNAHNHNAHNNANA S

1

S

11

T

1

T

−−−− ===
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(101) 

Taking into account the properties of the unitary 

and orthogonal matrices the expression (11) is 

replaced by the equivalent relation: 

.HNAHNA S

HT

T =  
(11) 

Thus, the algorithm on the basis of the 

expression (12) is preferable to its counterpart – the 

relation (11) from a computational point of view. 

Finally, considering the similarity 

transformation, performing the real 

triangularization of the initial matrix, to be known 

and taking into account the orthogonality of this 

transformation, we can write a general similarity 

transformation connecting an arbitrary matrix with 

a triangular form: 

)()( SHNASHNA THT

T =  
(12) 

or 

)()( THT

T SHNASHNA=
. 

(13) 

The result is a triangular matrix TA
, which has 

the form by construction: 










2

121

A0

AA

, 

where the matrices 21 AA ,
 are complex, in the 

general case, they are triangular, and the matrix 2A
 

has different eigenvalues, therefore, is 

diagonalizable, that is, there is a well-conditioned 

matrix of eigenvectors 2S
such that

1

222 SSA −= Λ
, 

whereΛ  is a diagonal matrix, on the diagonal of 

which the diagonal elements of the matrix 2A
 (its 

eigenvalues) are placed. 

Note that the computation of the matrix of 

eigenvectors 2S
for the triangular matrix 2A

 can be 

performed by the known Gaussian back 

substitution, without bringing the additional 

method error in the computation. 

2.2. The algorithm for solving a triangular 

system of linear equations with a diagonalizable 

submatrix 

Previously, we have considered a similarity 

transformation which reduces the coefficient matrix 

of the system to a complex triangular form with an 

extracted block having different eigenvalues. 

Below is an algorithm for solving a system of linear 

algebraic equations when the coefficient matrix is 

triangular with an extracted lower triangular block 

having different eigenvalues: 









=


















−

× 2

1

21n2n

121
n

b

b
w

A0

AA
Ijω

, 

(14) 

from where, presenting









=

2

1

w

w
w

, we get: 









=

















−

−−

× 2

1

2

1

22n1n2n

1211n

b

b

w

w

AIj0

AAIj

ω

ω

. 

 

 

 

(15) 

Let’s consider a subsystem, consisting of the last 

n2 equations of the system (16), in which the 

coefficient matrix is represented in the diagonal 

form:  

22

1

222n bwΛSSIj =− − )( ω
, 

from where, opening the brackets and 

multiplying both parts of this equation on the left-

hand side by
1

2S −

, we get: 

2

1

22

1

22

1

2 bSwSΛwSj −−− =− )()(ω
. 

Denoting 2

1

2

d

2 wSw −=
, 212

d
12 SAA =

 and 

2

1

2

d bSb −=
 in the second equation of the system 

(16) and performing the change of variables 

d
222 wSw =

 in the first equation (16), we obtain an 

equivalent vector-matrix equation relative to the 

vector of unknowns 









d
2

1

w

w

: 
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

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



=





















Λ−

−−

×
d
1

d
2

1

2n1n2n

d
1211n

b

b

w

w
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AAIj

ω
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(16) 

The elements of the vector of unknowns 
d
2w

 are 

determined obviously:  

ii

d

i

i

d

2
j

b
w

λω −
=

, at 2n1i ,,K=
 

(17) 

The elements of the vector of unknowns 1w
 are 

determined using the vector which has already been 

computed
d
2w

 by solving the system of equations:  

d
2

d
121111n wAbwAIj +=− )( ω

. 

It is obvious that the system is triangular, and the 

solution 1w
 is found by the Gaussian back 

substitution. 

It is not too difficult to see that the solution of the 

initial matrix equation (15) is connected with the 

solution of the matrix equation (17) as follows: 






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×
d
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(18) 

2.3. The frequency response compensation  

Let the model of a dynamic system be defined by 

the model in the state variables in the form (1). The 

frequency response of this system is determined by 

the relation (4).  

Let the similarity transformation (14), 

transforming the matrix A into a triangular 

form TA
, be determined. Let’s introduce the 

notation 
SHNQ =

, 

)()( ωω jWQjW 1

T

−=
and

bQb 1

T

−=
. Then, 

using the relation
1

T QQAA −=
, from the 

equations (4) we get: 

TTT bjWAIj =− )()( ωω
. (19) 

Comparing the relation (20) with the initial 

equations of frequency response (4), we find that 

)( ωjWT  is the frequency response in the system 

with a triangular state matrix. The frequency 

response of the system is compensated by formula:  

)()( ωω jQWjW T=
. (20) 

)( ωjWT  is the frequency response in the 

system with a triangular state matrix and is 

determined as the solution wof the matrix equation 

(15), on the right-hand side of which is 

T
2

1
b

b

b
=









. 

Above we have described the method for obtaining 

the solution of the equation (17) with parameter ω . 

Then using the relations (19) from the formula (21), 

we obtain the formula to compute the value of the 

vector frequency response at the defined frequency 

value ω : 

ω
ωω 
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d
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(21) 

The value of the vector frequency response of 

the system relative to the output variables is 

determined as: 

w

w
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0I
CQjW d

2

1

2nn
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y
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111
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
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

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


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
=

×

×

ω
ω)(

 

(22) 

2.4. The algorithm for computing the frequency 

response (a case of scalar input) 

Let the state equations of a linear stationary 

model of the dynamic system be defined in the 

vector-matrix form (1) with matrices ( dC,b,A, ), 

and it is necessary to construct the system 

frequency response on the frequency interval from 

0ω  to fω  with a step ω∆ .  

The first stage is the similarity transformation 

which transforms the coefficient matrix of the 

system A  into a triangular form TA
:  
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AQQAQQSHNASHNA H1THT
T === −)()(

  
(23) 

and the lower block 2A
of dimension 2n

, for 

which the matrix of eigenvectors 2S
 is computed, 

and the other two blocks 1A
 and 12A

 are 

determined. Using the transformable matrices 
Q

 

and 2S
 the matrices are computed: 

212
d
12 SAA =

; 

bQ
b

b
b H

2

1
T =








≡

; 2

1

2

d bSb −=
; 

[ ] CQCCC 21T =≡
; 22

d SCC =
, 

(24) 

which will be used at each step of the cycle of 

frequency change. 

Then we’ll go into the cycle of frequency change 

and at each new frequency value we’ll compute 

vector
d

2w
, based on it we’ll determine 1w

. The 

vector frequency response relative to the output 

variables of the system is determined as:  

)( ωjWy
at a defined step of the 

cycle

[ ] d
w

w
CC d

2

1d
1 +








=

 

(25) 

This value is transferred to the results table for 

further processing and is (or) plotted.  

The algorithm for computing the frequency 

response is presented below:  

Algorithm 1. 

The_computation_of_the_frequency_response ( 

 ,,,, dCbA
 /* – matrices and vectors of the 

model coefficients in the state variables */ 

 ,, ω∆ωω f0  /* – start, end frequency value 

and step of its changes */ 

): 

AAs =  

Obtaining_the_real_Shur_form
),( SAs  

Obtaining_ a_ triangular-

diagonal_form
),,,,,,( 1

222121s SSλAAAN,H,A −
 

212
d
12 SAA =

 









≡=

2

1THT

T
b

b
bSHNb

 /*– in 

accordance with dimensions 21 AA ,
*/ 

2

1

2

d bSb −=
 

/*– block 2b
 of dimension 2n

 corresponds to 

the diagonalizable submatrix
1

222 SSA −= Λ
*/ 

[ ]21T CCCSHNC ≡=
 /* – in 

accordance with dimensions 21 AA ,
*/ 

22
d SCC =

 

0ωω =
 

While fωω ≤
 /* perform in the cycle */ 

Solve 
dd

2 bwλdiagIj =− ))(( ω
relative to 

d

2w
 

/* – solve a decoupled system of linear algebraic 

equations * 

Solve 
d
2

d
121111n wAbwAIj +=− )( ω

relative to 

d
2w

 

/* – solve a triangular system of linear algebraic 

equations * 

[ ] d
w

w
CCW d

2

1d
21y +








=  

 

/* – the value of the vector frequency response at 

a defined frequency value * 

The_procedure_for_using_the 

value_of_frequency_response
),( yWω

 

ω∆ωω +=
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End While 

End 

The_computation_of_the_frequency_response 

2.5. The algorithm for computing the matrix 

frequency response  

Previously we have considered the algorithm for 

computing the frequency response of a linear 

stationary system with scalar input and output 

vector. Let’s generalize the obtained results for the 

case of a dynamic system with input and output 

vectors:  

,)()()(

;)()()(

tDutCxty

tButAxtx

+=

+=&

 

(26) 

where x  is the state vector of dimension n , 

u is the input vector of dimension k , 
y

 is the 

output vector of dimension m and matrices 

DC,B,A,  have consistent dimensions: 
nn

RA
×∈ , 

kn
RB

×∈ , 
nmRC ×∈ , 

km
RD

×∈ . 

The matrix transfer function of a linear stationary 

system (27) is determined as the matrix 
)(sWy  of 

dimension km × , 
),( ji

-th element of which 

)()()(
,

sUsYsW jijiy =
 is the transfer function 

from the
j
-th input to the i -th output. Similarly, 

we’ll determine the matrix transfer function 
)(sW

, 

),( ji
-th element of which 

is
)()()(, sUsXsW jiji =

.  

The computation of the matrix frequency 

response of the system is reduced to the 

computation of the vector frequency response for 

each input variable of the system (27) taking into 

account the fact that for all k components of the 

input variable the same triangular form of the 

coefficient matrix of the system and computation of 

it are used, as well as it is not necessary to 

determine eigenvectors of its diagonalizable 

submatrix k times.  

Knowing the appropriate similarity 

transformation, from the system (27) by the change 

of variables we can go to the model in the state 

variables which is defined by four matrices 

D,C,B,A TTT , where the matrices 









≡

× 21n2n

121

T
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A
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







≡

2

1

T
B

B
B

, 

[ ]21T CCC ≡
 

(27) 

are divided into blocks in accordance with the 

extraction of diagonalizable submatrix 2A
. The 

value of the frequency response of such a system is 

determined as the solution of a matrix equation 

with parameter ω and unknown block matrix 

kn

2

1
R

W

W ×∈
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





: 
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1
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(28) 

Using the spectral decomposition 
1

222 SSA −= Λ
 

by the change of variables 
d
222 WSW =

 the matrix 

equation (29) is transformed into the form:  
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(29) 

where 212
d
12 SAA =

, 2
1

2
d BSB −=

 and 

22
d SCC =

. The solution of the matrix equation 

(30) can be found by solving a system of linear 

algebraic equations of the form (17) with the matrix 

column








d
1

B

B

on the right side k  times. 

The matrix frequency response relative to the 

output variables of the system at a defined 

frequency value is determined as: 

ω
ω)( jWy

[ ] D
W

W
CC d

2

1d
1 +








=

ω . 

(30) 

The algorithm for computing the matrix 

frequency response of the system is presented 

below:  
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Algorithm 2. 

The_computation_of_the_matrix_frequency_res

ponse_of_the_system ( 

 ,,,, DCBA
 /* – the coefficient matrices of 

the model in the state variables */ 

 ,, ω∆ωω f0  /* – start, end frequency value 

and step of its changes */ 

): 

AAs =  

Obtaining_the_real_Shur_form
),( SAs  

Obtaining_ a_ triangular-

diagonal_form
),,,,,,( λSSAAAN,H,A 1

222121s
−

 

212
d
12 SAA =

 









≡=

2

1THT

T
B

B
BSHNB

 

/*– block 2B
 of dimension 

kn2 ×  corresponds 

to the diagonalizable submatrix 2A
*/ 

2
1

2
d BSB −=

 

[ ]21T CCCSHNC ≡=
 

22
d SCC =

 

0ωω =
 

While fωω ≤
 /* perform in the cycle */ 

For 1i = to k  

)(i

d
1

d
1

B

B

b

b
b 








=








≡  

 /* – i -th column */ 

)(iDd ≡   /* – i -th column */ 

Solve 
dd

2 bwλdiagIj =− ))(( ω
relative to 

d

2w
 

/*– solve a decoupled system of linear algebraic 

equations */ 

           Solve 
d
2

d
121111n wAbwAIj +=− )( ω

 

relative to 1w
 

                    /*– solve a triangular system of 

linear algebraic equations */ 

[ ] d
w

w
CCW d

2

1d
1

i
y +








=  )(

 

                    /*– i -th column of the matrix 

frequency response of the system */ 

End For 

/* the value of the matrix frequency response of 

the system yW
 has been computed 

               At defined frequency value ω */ 

The_procedure_for_using_the 

value_of_frequency_response
),( yWω

 

ω∆ωω +=
 

End While 

 

End The_computation 

_of_the_frequency_response_of_the_system 

It is interesting to compare the method, proposed 

in this article, with the method for computing the 

frequency response described in the works [10], 

[11], the principle of which is that the frequency 

response is computed in the system defined by the 

model in the state variables with the state matrix in 

the Hessenberg form. 

3. RESULTS  

 

Accurate to the notation, as well as in this work, 

in the work (Laub, 1981) the problem of computing 

the matrix frequency response of a linear stationary 

dynamic system, defined by the model in the state 

variables, is considered as the problem of 

computing the complex expression of real matrices 

QAIjP 1−− )( ω
, 

(31) 

for a large number of values of the real 

parameterω . 
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In this case it is assumed that 

knRQ ×∈
,

nm
RP

×∈ , 
nn

RA
×∈ , at that mn ≥  

and rn ≥ , and the number N , defining how many 

times the expression (32) is to be computed at 

different values of the parameterω , is large, so 

that nN >> . 

To solve this problem the work [10] proposes a 

method, based on the preliminary transformation of 

the basis of the state space in such a basis, in which 

the state matrix A  of the system, being 

investigated, takes the real Hessenberg form 

(almost an upper-triangular matrix, different from it 

by the elements i1ia ,+ , which are non-zero in the 

general case). This uses the orthogonal similarity 

transformation, constructed according to 

Householder’s method. 

Since the Hessenberg form is form-invariant to 

the operations of addition with a diagonal matrix, to 

compute the expression (32), at each valueω  we 

need to solve the system of linear algebraic 

equations, in which the coefficient matrix has the 

upper Hessenberg form. 

It is obvious that we’ll require less computational 

resources for solving a system of linear algebraic 

equations in the case of the matrix in the 

Hessenberg form than in the case of an arbitrary 

matrix. This conclusion about the effectiveness of 

this algorithm is confirmed by the quantitative 

assessments of the computational cost for these 

cases. 

Next, under the assessment of computational cost 

we’ll understand the number of long complex 

arithmetic operations (multiplications and 

divisions) required for conducting the assessed 

computations.  

Let the model of a linear dynamic system be 

defined in the form:  

,)()()(

;)()()(

tDutCxty

tButAxtx

+=

+=&

 

(32) 

where
nn

RA
×∈ ,

kn
RB

×∈ ,
nmRC ×∈ , 

mm
RD

×∈ . 

The whole way of computing the frequency 

response can be assessed by formula: 

)( ubp0 NNNNN ++=
. 

(33) 

Here pN
is the assessment of cost of preliminary 

computations required to obtain the system model 

in the chosen basis. These computations are 

performed once. bN
 is the assessment of cost of 

basic computations required for obtaining the 

matrix frequency response in the assumption that 

the output vector is the state vector of the system in 

the chosen basis. These computations are 

performed for each predefined frequency value 

( N times, and nN >> ) and are significantly 

different for various bases. uN
 is the assessment of 

cost of computations required to compensate the 

desired matrix frequency response in the initial 

basis. These computations are also performed for 

each predefined frequency value, but in contrast to 

bN
, the assessment uN

 can be considered 

independent of the chosen basis and equal to about 

mnk . Thus, the comparative analysis of the 

presented methods for computing the frequency 

response of the system is reduced to obtaining the 

value bN
 exactly, for each of the methods. . 

The assessment bN
 determines the complexity 

of computing the matrix expression: 

b
1

b BAIj −− )( ω
, 

(34) 

where 
ATTA 1

b
−=

 is the matrix obtained by 

the similarity transformation with the transformable 

matrix T from the initial state matrix A , 

BTB 1
b

−=
. It is obvious that the value of the 

matrix expression satisfies the linear matrix 

equation with the unknown variable 
knCZ ×∈ : 

bb BZAIj =− )( ω
, (35) 

and can be determined by solving k systems of 

linear algebraic equations of n-th order. 

A case of state matrix of the general form 
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Let’s consider computing the matrix expression 

(35) for a case of arbitrary dense matrix of the 

general form 
AAb = . 

Computing the expression (35) is performed in 

several stages. 

First LU -decomposition of the matrix 

)( bAIj −ω
 is determined: 

LUAIj b =− )( ω
, (36) 

where 
nnCL ×∈  is a lower triangular matrix 

with a unit diagonal, 
nnCU ×∈  is un upper 

triangular matrix. It is known that LU -

decomposition of an arbitrary matrix with complex 

elements will require approximately 

3n
3

1

 long 

complex arithmetic operations. 

We’ll search for the value of the matrix 

expression (35) as the solution of the matrix 

equation (36) which, taking into account (38), can 

be rewritten as: 

ZBLU b
11 =−−

. 
(37) 

Let’s introduce an unknown matrix
kn

1 CZ ×∈
 

such that 

b
1

1 BLZ −=
, 

(38) 

and determine it as the solution of the matrix 

equation 

b1 BLZ =
. (39) 

To determine
kn

1 CZ ×∈
it is necessary to solve a 

system of linear algebraic equations with lower-

triangular complex matrix
nnCL ×∈ with a unit 

diagonal k times. This will require 
)( 1nkn

2

1
−

 

long complex arithmetic operations. 

Assuming that the matrix 1Z
is known, the 

equation (38) can be rewritten as the matrix 

equation relative to the unknown
knCZ ×∈ : 

1ZUZ =
. (40) 

In order to find 
knCZ ×∈ , satisfying this 

equation, it is necessary to solve a system of linear 

algebraic equations with upper-triangular complex 

matrix
nnCU ×∈  with a unit diagonal k times. 

This will require 
)( 1nkn

2

1
+

 long complex 

arithmetic operations. 

In the end, the computational cost bN
, required 

to compute the expression (35) in the case of 

arbitrary dense matrix 
AAb = , denoted as aN

 in 

this case, can be assessed as: 

 

23
a knn

3

1
N +=

. 
(41) 

A case of the matrix in the Hessenberg form 

Let’s consider computing the matrix expression 

(35) for the case of the matrix in the Hessenberg 

form: hb AA =
. It is obvious that the matrix 

)( hAIj −ω
will also be in the Hessenberg form.  

It is known that as a result of LU -

decomposition of the Hessenberg matrix the two-

diagonal lower triangular matrix L with a unit 

diagonal is obtained. Then the solution of the 

vector-matrix equation (40) will require kn  

operations.  

The solution of the vector-matrix equation (41) 

in the present case, as in the general case, will 

require 
)( 1nkn

2

1
+

 operations. In the end, the 

computational cost hN
, required to compute the 

matrix expression h
1

h BAIj −− )( ω
 (see the 

analogous expression (35) for the general case) in 

the case of the matrix in the Hessenberg form hA
, 

can be assessed as: 
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)1(
2

1
)( +++= nknknNN HLUh

. 

(42) 

We can assess the number of operations, 

required to compute the matrix expression (35), if 

we apply the Gaussian elimination for solving the 

system of linear algebraic equations relative to the 

matrix equation:  

hBHZ =
, (43) 

where H is the Hessenberg matrix (almost 

triangular).  

To perform a forward path of the method of 

Gauss on the Hessenberg matrix with simultaneous 

carrying out appropriate computations on the right 

side of the matrix equation 

)())(( 1nk2n1n
2

1
−++−

 long complex 

arithmetic operations will be required. 

To perform the Gaussian back substitution with 

arbitrary diagonal elements 

)( 1nkn
2

1
+

 long 

complex arithmetic operations will be required. 

In the end, the computational cost hN
, required 

to compute the matrix 

expression h
1

h BAIj −− )( ω
using the Gaussian 

elimination and taking into account the Hessenberg 

form of the matrix hA
, can be assessed as:  

))(( 1k2nn
2

1
N 2

h +−+=
. 

(44) 

The right side of this expression can be reduced 

to the form

)())(( 1k1k1nn
2

1
+−++

and 

discarding the subtrahend 
)( 1k +

we can obtain 

the upper bound: 

))(( 1k1nn
2

1
Nh ++<

. 

(45) 

From (45) we can obtain the lower bound:  

)( 1kn
2

1
N 2

h +>
. 

(46) 

This lower bound is presented in the work 

(Ikramov, 1991). 

Now we can give an interval assessment of cost 

in the form of: 

))(()( 1k1nn
2

1
N1kn

2

1
h

2 ++<<+

. 

(47) 

A case of upper-triangular complex matrix 

Let’s consider computing the matrix expression 

(35) for the case of upper-triangular complex 

matrix (matrix in the Schur form): tb AA =
. It is 

obvious that the matrix 
)( tAIj −ω

will be also 

upper-triangular. Then the solution of the matrix 

equation (36) at the defined parameter ω  

and tb AA =
and tb BB =

 relative to the unknown 

matrix
knCZ ×∈ will require 

)( 1nkn
2

1
+

long 

complex arithmetic operations. Thus, for the case 

of the choice of a basis of the state space such that 

the state matrix is represented by an upper-

triangular complex matrix, the assessment of 

computational cost of type bN
, required to compute 

the matrix expression (35), may be taken in the 

form:  

k1nn
2

1
Nt )( +=

. 

(48) 

A case of diagonal complex matrix  

Let a diagonal matrix, which is similar to the 

initial state matrix of the system, defined by the 

model in the state variables, exist. Setting a 

problem of computing the frequency response of 

such a system we’ll consider computation of the 

matrix expression (35) for the case of diagonal 

complex matrix: db AA =
. It is obvious that the 

matrix 
)( dAIj −ω

will be also diagonal. Then the 

solution of the matrix equation (36) at the defined 

parameterω  and db AA =
and db BB =

 relative to 
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the unknown matrix
knCZ ×∈  will require 

kn long complex arithmetic operations. Thus, for 

the case when the choice of a basis of the state 

space, such that the state matrix is represented by a 

diagonal complex matrix, is possible, the 

assessment of computational cost of type bN
, 

required to compute the matrix expression (35), 

may be taken in the form: 

nkN d = . (49) 

A case of complex triangular matrix with a 

diagonalizable block  

And, finally, we’ll consider the proposed hybrid 

case. The solution of the matrix equation 

bb BZAIj =− )( ω
, (50) 

for this method is replaced by the solution of the 

matrix equation: 









=

















× 2

1

2

1

d1n2n

12t

B

B

Z

Z

A0

AA

. 

(51) 

where 21 nnn +=
,

11 nn

t CA
×∈

is an upper-

triangular matrix,
22 nn

d CA
×∈

is a diagonal matrix, 

21 nn

12 CA ×∈
, 

kn

1
1CB ×∈

, 
kn

2
2CB ×∈

. To solve 

the matrix equation (52) we need to solve a system 

of linear algebraic equations, the coefficient matrix 

of which has a triangular form with a diagonal 

lower block, k  times. 









=

















× 2

1

2

1

d1n2n

12t

b

b

z

z

A0

AA

. 

(52) 

In order to determine 2n
unknown elements of 

the vector 2z
we’ll need to perform 2n

long 

complex arithmetic operations. In order to 

determine 1n
unknown elements of the vector 1z

, 

first we’ll need to perform 21nn
 multiplication 

complex arithmetic operations to obtain a triangular 

system 1n
of linear algebraic equations, and then 

the solution of it will require 
)( 1nn

2

1
11 +

long 

complex arithmetic operations. In total, the 

computational cost of solving the system of 

equations (53) can be assessed 

as
))(( 21 nn1n

2

1
++

. 

Thus, for the case when the basis of the state 

space has been chosen such that the complex state 

matrix is represented by a triangular matrix with 

( 22 nn ×
) diagonalizable block, the assessment of 

the computational cost of type bN
, required to 

compute the matrix expression (35), may be taken 

in the form: 

)()(/ 1nkn
2

1
1nkn

2

1
N 22dt −−+=

. 
(53) 

This shows that this method offers advantage in 

the number of operations over the use of a 

triangular matrix and it is assessed 

as
)(/ 1nkn

2

1
NN 22dtt −=−

long complex 

arithmetic operations. Also it can be seen that in the 

absence of multiple eigenvalues the equation (54) 

gives nk long complex arithmetic operations. 

The proposed method, in the absence of multiple 

eigenvalues, runs as fast as the method based on the 

diagonal form. The error, in the case of multiple 

eigenvalues, does not exceed the error of methods 

based on the use of triangular canonical form, 

because the matrix 2S
is computed from the 

triangular matrix 2A
using the Gaussian back 

substitution, which does not have methodical 

errors, and is well-conditioned by construction of 

the matrix 2A
. 

The obtained assessments of the computational 

cost, being compared, are presented in Table 1. 

Table 1.The Assessment Of The Computational Cost Of 
The Methods For Calculating The Value Of The Matrix 

Frequency Response 
knCjW ×∈)( ω
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4. DISCUSSION  

 

Using the Hessenberg form solves the problem 

of computing the frequency response [10], [11], 

[16] even in the case when the condition numbers 

of eigenvalues are large. The Hessenberg form can 

be obtained from any initial matrix using 

orthogonal similarity transformation, implemented, 

for example, by direct Householder’s_method [9], 

[4], [7]. In the method discussed, the eigenvalue 

problem is not set. For solving a system of linear 

equations the coefficient matrix in the Hessenberg 

form is preferable to an arbitrary matrix, and 

orthogonal similarity transformations guarantee 

high accuracy of both obtaining form and 

compensating the frequency response in the initial 

basis. 

In the method, proposed in the article, the 

eigenvalue problem is solved in the general case for 

the matrix block. Possible ill-conditioning of the 

eigenvalue problem is taken into account and is 

avoided. Firstly, this is achieved by using the Schur 

form, for which the assertion is proved that it exists 

for any matrix [9], [4], [7], and it can be obtained 

by an orthogonal similarity transformation that 

does not degrade the conditioning of the initial 

problem. Secondly, from the Schur form the upper 

triangular form by unitary similarity transformation 

using the QR algorithm with double shift is 

computed. Thirdly, by permutations a triangular 

matrix is reduced to the form, in which various 

eigenvalues are concentrated at the bottom of the 

matrix. Finally, by unitary and orthogonal 

similarity transformations a triangular matrix with a 

diagonalizable block in the lower part of the 

diagonal is obtained. For this and only for this 

triangular diagonalizable, well-conditioned block 

the eigenvalue problem is solved.  

The article shows that if an eigenvalue, being 

well-conditioned, is not assigned to a 

diagonalizable matrix the method will work with 

accuracy and speed not worse than ones in the 

method based on the Hessenberg form. 

In the case of absence of multiple eigenvalues, as 

well as in the method, based on the Hessenberg 

form [10], the assessed complexity of computations 

is a quadratic function of the dimension of the 

system matrix. In the absence of multiple 

eigenvalues, the complexity of computations in this 

method is significantly decreased, becoming a 

linear function of the dimension of the system 

matrix, whereas the method with the Hessenberg 

form also gives a quadratic dependence in this case.  

So, the method for calculating the frequency 

response, proposed in this article, can compete with 

the well-known method which uses the Hessenberg 

form [10], [11], giving an obvious advantage in 

time. 

5. CONCLUSION 

 

The proposed solutions are important, because 

they help to enhance reliability of mathematical and 

program support of modern computer systems 

which require accurate calculations in ill-

conditioned problems by step by step control of the 

priori error. 

The algorithm for computing the matrix 

frequency response, presented in the article, is 

based on the similarity transformation of the system 

matrix and reduction to a triangular form with an 

extracted diagonalizable block for multiple 

eigenvalues. Such an approach for each predefined 

frequency value allows us to determine the value of 

the matrix frequency response as the solution of a 

system of linear algebraic equations with a 

triangular coefficient matrix with a diagonal 

submatrix. 

The method characteristics, obtained in the 

paper, show that in the absence of multiple 

eigenvalues, the complexity of computations by the 

proposed method is dramatically decreased, as it is 

close to linear dependence on the dimension of the 

system matrix. 

Using the algorithm in the absence of multiple 

eigenvalues gives assessment of performance, 

which is a quadratic function of the dimension of 

the system matrix. In the intermediate case a 

quadratic component of the dependence is 

weakened by a coefficient, which is less than unity 

per value of the squared ratio of dimension of the 

diagonalizable matrix to the dimension of the 

system. 
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The proposed method is a reliable method, based 

on matrix factorizations, using the orthogonal, 

unitary similarity transformations and direct, not 

having the methodical error computations. 
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