
Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

ONTOLOGY ASSISTED SEMI-SUPERVISED BUG REPORT
CLASSIFICATION

1SAKTHI KUMARESH, 2BASKARAN R
1Associate Professor, Dept. of Computer Science, MOP Vaishnav College for Women, Chennai, India

2Associate Professor Department of Computer Science and Engineering, Anna University, Chennai, India

E-mail: 1sakthimegha@yahoo.co.in, 2.dr.baskaran10@gmail.com

ABSTRACT

Automated bug report clustering and classification plays a significant role in managing, assigning, and
understanding the bug categories. The most challenging problem in bug report classification is the
inadequate amount of labeled dataset. The proposed framework introduces an Ontology-assisted Semi-
supervised Clustering Based Classification (OS-CBC) for bug reports amid a small size of the labeled
dataset scenario. The proposed approach enriches the data set of the bug report using constructed Bug and
Enriched Meta-feature Extraction (BEME) ontology. Semantic constraints based semi-supervised
hierarchical clustering (Semantic-HAC) algorithm prioritizes the constraints for clustering the bug reports
based on the BEME ontology. The cluster formation of bug reports depends on the transitive dissimilarity
and ultrametric distance using ontology-based prioritized constraints. It extends the dataset (stretched) of
the bug reports based on the maximum likelihood of the features in the cluster for labeling the unlabeled
data. Moreover, the proposed approach categorizes the bug reports of stretched test set under the category
of training set label using Multi-label Naive Bayes (MLNB) classifier. The classification technique focuses
on the threshold based filtered weight of each term in the training set to improve the accuracy. The
proposed OS-CBC approach significantly improves the classification accuracy of the bug reports.

Keywords: Bug, Classification, Clustering, Ontology, Constraint, Semi-Supervised

1. INTRODUCTION

A software bug is a common concern in
software engineering and one needs to embark upon
with it in a systematic way. In software systems,
defect management is an important aspect to ensure
the software system’s reliability. Automated
software defect management solves many issues
related to software maintenance. Software
repositories encompass the information of software
bugs in the form of Extensible Markup Language
(XML) or Hypertext Markup Language (HTML). A
software bug or defect mainly consists of the title,
description, and comments in textual format. The
Bug Tracking System (BTS) manages the bug
fixing process right from receiving the bug to the
assignment. Software developers, testers, and end-
users submit the bug reports to the bug repository.
Bugzilla, Perforce, and JIRA are the open source
bug trackers that allow the bug report from both
developers and end-users. Bug triage is the process
of assigning each bug report to the appropriate
developer. An automatic bug tracking system
tackles the issues of the labor-intensive, fault-
prone, and time-consuming software bug process.

Bug report datasets available in the text
summary format in which data analysis tool
extracts the unknown structures and manages the
vast datasets. Mining in bug reports improves the
quality of bug report categorization. Mining based
bug report analysis avoids the complexity of bug
report identification. A bug report assignment to the
software developers depends on the severity of
bugs and experience of the developers. Mining
techniques are used to identify the bug category of
the bug reports. Bug report analysis through mining
techniques assigns each class to an appropriate bug.
Cluster analysis finds the group of identical objects
that reveals homogeneous characteristics of bug
reports in a group. A comprehensive survey
discusses text clustering algorithms in the field of
linked data and social networks [1]. The
classification framework comprises of two phases
namely, training, and the testing phase. Training
data for the classifier creates the classification rules.
The test set of classifier maps the test dataset of the
bug report to appropriate classes depending on the
training dataset. Real-world applications exploit the
classification of tasks and require multi-class
classifiers. A keyword extraction provides related

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

information to the word in the documents [2].
Ontology [3] provides the knowledge
representation with the help of relationships and
concepts of artifacts. It contains classes, properties,
and the relationship of each term in a particular
domain of knowledge. Ontology integrates the
semantic knowledge to understand the related
information and extracts the keyword [4]. It
enhances the management, information
organization, and understanding. It consists of
classes and instances with the provisioning of
machine learning semantics of the metadata. The
significance of ontology is to improve the content
intelligence further. The bug ontology framework
integrates the knowledge of the bug report. The
existing text classification [5] and the semi-
supervised clustering [6] method exploits only
submitted keywords in textual documents for
performing classification and clustering. It degrades
the performance of dissimilarity between clusters.
To address this problem, the proposed approach
employs ontology-based clustering and
classification of bug reports.

In this paper, the proposed framework
introduces Ontology-assisted Semi-supervised
Clustering Based Classification (OS-CBC)
approach to enhance the accuracy of bug
classification. The proposed approach has four
major phases such as Meta-feature generation,
clustering, stretched training and test set generation,
and classification. Preprocessing of the textual bug
report is the initial stage to get the structured data.
In the first phase, the proposed approach constructs
BEME ontology for adding meta-features with each
term of the dataset in the bug report. The second
phase clusters the ontology-based labeled and
unlabeled data using Semantic-HAC algorithm. It
considers the prioritized triple-wise relative
constraints using BEME ontology, dissimilarity
matrix, and ultrametric distance for clustering the
bug reports. In the third phase, the proposed
approach extends the labeled and unlabeled dataset
based on cluster attributes. The extension of the
labeled and unlabeled dataset of the bug reports
depends on the maximum likelihood of features in a
cluster. In the training set, feature extension based
on taxonomy is done for adding cluster features
under the label of the training set. The extended
form of the labeled and unlabeled data is known as
stretched training and stretched test set. The final
phase classifies the stretched test set under the
stretched training set of bug reports using MLNB
classifier. It classifies the test set threshold based on
the filtered weight of the term in the training set
and the number of times it occurs in the class.

Finally, each test set of the bug related word has the
labels. The experimental results reveal that the
semantic constraint-based semi-supervised
clustering based classification improves
classification accuracy.

1.1 Contributions
 The proposed framework introduces
ontology-assisted clustering based
classification model for improving the
accuracy in bug report classification.
 The proposed approach presents the
BEME ontology for extracting the keyword of
bug report dataset with additional features in
the form of classes and instances.
 This proposed approach suggests semantic
constraints based semi-supervised hierarchical
technique for clustering the software bug
reports. It considers the ontology-based
priority of triple-wise relative constraints, and
ultrametric distance matrix based elements on
the constraints for clustering the ontology
established labeled and unlabeled dataset.
 It also proposes the clustering based
classification using MLNB classifier. The
proposed approach extends the ontology
established labeled and unlabeled dataset
using cluster features. MLNB classifier
categorizes the bug reports based on stretched
test sets under stretched training set labels.
The proposed categorization employs the
weight of each term in the stretched training
set and number of occurrences for identifying
the probability of the term in the category.

2. RELATED WORK

Bugzie [7] assigns bug reports to the expertise
of right developers depending on the Fuzzy set-
based modeling. Automatic bug triaging of Bugzie
approach fixes the bug with multiple technical
terms of a bug report and the capability of
developers. A hybrid approach classifies the bug
reports using text mining and data mining
techniques to predict the bug automatically. It
consists of two stages, the textual bug report
classification and the machine learning of future
extraction. The data grafting merges the extracted
features with the selected feature of the bug report
and provides the output to machine learner [5]. The
work [8] exploits Naive Bayesian classifier to
categorize the textual bug reports using terms of the
document. The feature extraction of classification
depends on the presence or absence probability of a
term in the document. The work [9] classifies the

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

172

defects in software system automatically. It
categorizes the text and code features of the defects
based on the multi-class classification.

2.1 Classification and Clustering
Automated orthogonal defect classification

(AutoODC) [10] enhances Relevance annotation
framework. It automatically classifies the software
system defects using textual features of defect
reports. The semi-supervised text classification
approach enriches the Naive Bayes (NB) classifier
using expectation-maximization. Bug-triage
employs semi-supervised classification method for
avoiding the deficiency of the labeled bug report
[11]. A string kernel [12] classifies the text
documents based on the sub-sequence length of the
feature. Kernel-based learning system text
categorization exploits the Support vector machine.
Clustering based classification (CBC) approach
considers both labeled and unlabeled data of the
dataset. Initially, CBC clusters the labeled data. It
labels the unlabeled data depends on clusters. The
trained set of expandable labeled data is the input
for classifier for improving the accuracy of
classification [13].

Hierarchical Agglomerative Clustering [14]
enhances the constraints based clustering. It
employs clustering constraints ordering format to
improve the similarity of constraints in a
hierarchical manner. Predicting priority via a multi-
faceted factor analysis automatically prioritizes the
bug reports that depend on machine learning. The
priority level focuses multiple factors such as
temporal, textual, related-report, author, product,
and the severity of the bug reports. The extracted
features of various factors are the input for
ThresholdinG and Linear Regression to ClAssifY
Imbalanced Data (GRAY) classification engine
[15]. Graph partitioning algorithm [16] clusters the
textual information of bug reports. It exploits three
clustering algorithms such as normalized cut
(summary), size regularized cut (description), and
k-means algorithm (summary and description).

Ontology-based text clustering improves the
clustering performance. The clustering method
depends on the distance measure of each word
using the ontology. Distance measure calculation
depends on the Euclidean distance and two k-means
clustering algorithms [17]. Semi-supervised
hierarchical clustering [6] considers the triple-wise
relative constraints and ultrametric dendrogram
distance. It exploits constrained optimization
technique and transitive dissimilarity based
technique for achieving an effective accuracy of
semi-supervised clustering. A comparative analysis

in [18] evaluates the clustering algorithms of
agglomerative clustering and partition approaches.
A constrained agglomerative hierarchical clustering
model solves the problem of the initial merging
error in agglomerative clustering method.

The existing techniques for text classification
are supervised learning models. The proposed
approach exploits a Naive Bayesian learning
method for classifying the textual bug reports due
to the natural adaptation of multi-label
classification. The constrained agglomerative
hierarchical clustering approach improves the
clustering performance and the high complexity of
the data.

3. PROPOSED METHODOLOGY
The proposed framework is the ontology

assisted clustering and classification algorithm.
Fig.1 illustrates the bug report processing stages
such as a pre-processing, meta-feature generation
using bug ontology, BEME ontology-based
prioritization for clustering, extended training, and
test set creation and filtered weight based
classification of software bugs.

The bug tracking system manages the bug
reports and enables end-users or software
developers submit the bug reports. Bug reports
contain more information, for instance, one-line
bug summary, data and time of a bug, bug location,
priority and severity of software defects. The
proposed framework constructs the bug ontology
based on the significance of the bug reports.

The proposed approach enriches the UltraTran
[6] approach to clustering the bug reports.
UltraTran degrades the performance due to the
weak similarity of clustering constraints. The
existing semi-supervised clustering algorithm fails
to consider the vital constraint identification for
clustering. The enriched structure of the UltraTran
clustering method is a Semantic-HAC algorithm
using ontology-based constraint prioritization. The
proposed approach extends the text classification
approach [5] using clustering based extended
training and testing set. The proposed classification
approach uses an MLNB classifier for multi-label
classification.

3.1 Preprocessing
Preprocessing of the textual bug report is the

initial stage in clustering and classification. It
provides the relative technical information about a
textual bug report from bug repositories.
Tokenization, stop-word removal, and stemming
are the pre-processing steps. Tokenization splits the
textual bug document into constituent words while

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

173

removing numbers, punctuation marks, and weak
correlation terms of bug reports. Hence, it extracts
the keywords from bug documents and performs
the stop-word removal process after the completion
of tokenization of the document for providing
technical terms.

Stemming is the process of modifying the
related words to root words. For instance, “modify”
is the fundamental form of similar words such as,
“modification”, “modified”, “modifies”.

3.2 Bug Ontology
Ontology provides related information to

understand the technical strength of the word.
OntoDM [19] discusses the ontology for the data
mining domain. Ontology construction mainly
depends on the factors of concepts, properties,
instances, axioms, and relationships for a particular
domain. Domain experts construct the ontology
based on the ontology construction tools such as
Protege and OntoEdit. Ontology development has
the two necessary stages. In the first, it receives the
information about domain knowledge in terms of
properties, concepts, and relationships. In the
second, it constructs the hierarchy structure in the
form of classes, subclasses, and instances. The
proposed bug ontology construction exploits the
knowledge base driven ontology construction [20].

The proposed approach constructs the bug
ontology to ensure the relative extraction of the
given bug report. Bug and Enriched Meta-feature
Extraction (BEME) ontology consists of the classes
and instances of bug information. The proposed
approach enriches the dataset with the support of
BEME ontology for adding additional features of
the dataset based on the semantic information. The
dataset includes labeled and unlabeled dataset of
the bug reports. BEME ontology automatically
extracts the relative information of the bug report. It
integrates the keyword of the bug report with new
features to enhance the real strength of the term.

The construction of BEME ontology depends
on the concepts, instances, properties, and axioms
of software bug reports. Bug ontology
representation languages are Web Ontology
Language (OWL), Resource description framework
(RDF), and simple ontology HTML extension
(SHOE). BEME ontology forms the hierarchy with
the related terms of bug reports information in the
bug repositories. The constructed bug ontology
establishes the relevant keywords in various forms
such as class, subclass, and equivalent class. BEME
ontology extracts the dataset keywords based on
semantic relativity. Bug ontology retrieves the

information related to the keywords for enriching
the bug report dataset.

3.3 Clustering
Clustering stage forms the group of

preprocessed bug attributes based on the similarity
measurement of each term in a text document.
Cluster formation fully depends on the weighted
similarity between each software bug attribute.
Dataset of the bug report contains inadequately
labeled data and unlabeled data of attributes. A
clustering technique receives input from both
labeled and unlabeled data for bug reports. The
proposed approach employs the agglomerative
model of the hierarchical clustering [14] for
clustering the constraints. It clusters the features of
the bug report, depending on the similarity
constraints and the distance between the terms. The
proposed ontology-based prioritization of
constraints addresses the problem of dissimilarity
among clustering constraints.

3.3.1 Constraint prioritization
The proposed approach addresses the problem

of constraint importance for identification using
ontology-based constraint prioritization. Semantic-
HAC algorithm prioritizes the semantic constraints
of the bug report based on the constructed BEME
ontology. Root word includes constraints at various
distances in the hierarchical form. The proposed
approach considers triple-wise constraints and each
constraint has the three elements of the bug
ontology. A constraint has the highest priority for
clustering if two elements of a constraint are a
direct child (equal distance) from the root element.
The constraint priority depends on the similar
features between the bug reports. It provides the
high bonding information of constraints to form
clusters. Initially, a constructed BEME ontology
consists of related information of each keyword in
the bug report. Hence, the proposed approach
exploits the BEME ontology for prioritizing the
constraints.

3.3.2 Cluster Formation
The proposed algorithm depends on semi-

supervised clustering to form the cluster using an
ultrametric distance. It forms the cluster based on
the ultrametric distance between the BEME
ontology-based prioritized constraints. C1 and C2

are the nearest two clusters to be merged using an
agglomerative hierarchical clustering method.
Ultra-metric distance consideration, groups the two
nearest clusters to form a single cluster using the
agglomerative hierarchical clustering method. The

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

174

selected two nearest clusters satisfy the following
condition,

d(C1,C2) ≤ min (d(C1,C2), d(C2,C3)) (1)

min(d(C1,C2),d(C2,C3)) ≤d(C1 C2,C3) a=1,2,3(2)

The combining order of the constraints to
form a cluster depends on the ultrametric distance
and transitive dissimilarity of each keyword in the
bug report. Constraint set has three constraints such
as ai, aj, and al to create each cluster. It assumes that
the constraint set is in the form of (i,j,k) and (i,j,l).
The order of prioritized constraints entirely focuses
on the similarity strength of the bugs due to the
meta-features in BEME ontology. It decides to
merge the order of prioritized constraints using the
following condition,

d(ai,aj) ≤ max(d(ai,aj),d(aj,al)) ai,aj,al (3)

The semi-supervised hierarchical method
forms the dissimilarity matrix (DB) for bug reports.
Hierarchical clustering converts DB into the
ultrametric distance (D’B) formation for clustering
the prioritized constraints. The optimal ultrametric
distance of the bugs for clustering is as follows.

Equation (4) produces the exact constraints of
(i,j) that has the minimum distance (similarity) to
form a cluster. It provides the optimal solution
based on the ultrametric distance matrix. This
proposed approach does not require the minimum
distance value to create the cluster. Hence, it
exploits argmin function to find the clustering terms
with minimum distance from the ultrametric
distance matrix.

The transitive dissimilarity matrix includes the
row and column of each term of the bugs and value
represent the weight of the terms or words. For
instance, d(ai,al) is the dissimilarity value between
ai and al from DB matrix. The proposed approach
combines the constraints to form a cluster using
prioritized constraints of dissimilarity matrix and
ultrametric distance. Hence, it constructs a set of
clusters, and each cluster has ID with similar
attributes of the bug words.

3.4 Extension
Extended labeled, and unlabeled dataset also

has the additional features of the initial labeled and
unlabeled dataset. The outcome of stretched
training data ((f1,l1)*) depends on the maximum
likelihood of similarity between cluster attributes

and training data under the class label. Similarly,
the stretched test set (F1*) includes the additional
features of each cluster. The proposed approach
creates taxonomy based on the bug reports in the
repository

The proposed approach exploits the weighting
scheme of the TFIDF model as a classic TFIDF
model. It considers the Boolean form of the
presence and absence of the word in a text
document for term frequency. Each bug report is in
the form of a vector of words representation. Each
word in the bug report collects the relevant
information of the word in the cluster and training
sets. Weighted similarity measurement of each bug
report exploits the TFIDF model based on the term
frequency (TF) and inverse document frequency
(IDF) of each word. Weight of each additional
feature (wi+a) in the bug report is calculated as,

In the training set, cluster feature based TFIDF
model does not include the meta-feature accurately
due to the categorization problem of similar
features in the cluster. Hence, it employs taxonomy
based categorization. The proposed approach
considers each document of the cluster includes the
additional feature (wi+a). Inverse document
frequency IDF(wi+a) is given as,

Where,
k – Number of documents in the cluster
|K| - total number of clusters
|Ca| - number of occurrence cluster

The proposed approach uses the TFIDF model
for measuring the weighted similarity of bug
keywords with the cluster. Cluster-based TFIDF
model adds the extra features to the test set of the
bug reports. The meta-feature of the term is added
to the test set if the term of the cluster has higher
weight than other clusters.

3.5 Classification
Clustering based classification approach

exploits a stretched training and test set of bug
reports based on cluster features. Stretched training
and the test set contain the initial bug report
features with additional relative features. An
ensemble classification using multi-label Naive

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

175

Bayes classifier (MLNB) discussed in [21]. The
stretched training set is the input to the MLNB
classifier for categorizing the stretched test data
sets. Multi-label classification allows more than a
few classes at the same time for classifying each
term. The proposed classifier categorizes each bug
report in stretched test set based on the posterior
probability. The primary method of multi-label
Naive Bayes classifies the word in the test set
classes based on the term frequency. It evaluates
the presence or absence of the word in the training
set. In some case, it degrades the classification
accuracy of the term due to the mere consideration
of the number of occurrences.

The proposed approach categorizes the term
based on labeled data weight. In the training set,
each word has the weight for classifying the word
of the test set using TFIDF model. The stretched
training set contains the filtered weight features
based on the threshold value. Threshold value
based weighted term in each class increases the
similarity of term strength. The probability of each
word depends on the number of occurrences and
weight (Wt) of each term in the training set. It
improves the term strength in the class based on
weight.

The data set contains a collection of bug
reports B={b1,b2,...bN}. Each bug report consists
class labels C={c1,c2,...cC} and bag of words
(terms) in the training set, w={w1,w2,...wT}. The
Naive Bayes method employs the joint probability
of classes and words for evaluating the class
probability of the bug report. MLNB classifier
trained with the stretched training set examples to
assign a bug report to classes based on the
probability. In this proposed approach, each bug
report is considered as a document. In each bug
report, word (wt) occurs nwt

c-times in category ‘c’
and nwt

c’-times of other than the category ‘c’. The
probability of the word in the specific class label (P
(wt | c)) depends on the number of occurrences of
each term (nwt) and weight of each term (Wt). The
probability of the word for class c and other than c-
class labels is as follows.

The proposed approach selects the number of
classes based on the filtered weight of each term.
The weight of each term depending on the number
of times it occurs in bug reports. If the training set

contains N- the total number of bug reports and C -
classes in category c, the probability of the category
c and other than c is given as,

P(C) = C / N (9)

P (c‘) = N – C / N (10)

The proposed classification depends on the
probability of the word in each document and the
probability of the category using the total number
of bug reports. In the testing set, the bug report Bi

contains M number of words WBi = {wi
1,wi

2,...wi
M}.

According to a multi-label Naive Bayes theorem,
the probability of the category c and c’,

MLNB classifier assigns the term to the
corresponding category if the probability of the bug
is higher than the threshold probability value
among multiple classes of the stretched training set.
The probability of P(c | Bi) + P(c’ | Bi) = 1.

The proposed approach performs
preprocessing the dataset of the bug reports from
the bug repository. Fig.2 shows the proposed
algorithm. Labeled and unlabeled dataset feature
extraction is depending on the BEME ontology
related terms (ti

o) and add relative extraction of
ontology terms to the dataset features. In clustering
phase, each constraint has the set of three elements
based on the BEME ontology. The proposed
approach prioritizes the constraints for clustering
using the related information. It forms the
Dissimilarity Bug matrix (DB) based on the weight
of each term. The proposed approach transforms
the DB matrix into the ultrametric distance. Hence,
the proposed method forms the cluster (Ca) using
prioritized constraints. It extends the training and
test set based on the cluster using the maximum
likelihood of features and taxonomy category.
Stretched training set ((f1,l1)*) and the stretched
test set (F1*) is input for MLNB classifier. It
categorizes the bug reports into stretched test set
with labels ((Fi,li)*) based on the posterior
probability of the number of occurrences and
weight of the term in a document.

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

176

Table 1: Center Table Captions Above The Tables.

Figure 2: Ontology-assisted Semi-supervised Bug
report classification algorithm

4. Experimental Evaluation

This experiment exploits Eclipse and Mozilla
dataset to evaluate Ontology-assisted Semi-
supervised Clustering Based Classification (OS-
CBC) of bug reports. The proposed approach
compared with baseline algorithms of constraint-
based semi-supervised hierarchical clustering
(UltraTran) [6], CBC [13] and bug report
classification (Data grafting) [5].

4.1 Experimental Setup
The proposed approach evaluates 1000 unique

samples of bug reports from each dataset of Eclipse
and Mozilla. It employs Bugzilla bug tracker for
both Eclipse and Mozilla repository. The proposed
framework forms 1000 Bugs into 600 labeled data
and 400 unlabeled data. It creates the set of bug
reports into 3 clusters. Classify samples of 1000

Input : Dataset of Bug reports

Output: Test set with predicted labels

Labeled dataset = {(f1,l1), (f2,l2),...(fn,ln)}

Unlabeled dataset ={F1,F2,....Fn}

StretchedTrainingset= {(f1,l1)*, (f2,l2)*,...(fn,ln)*}

Stretched Test set ={F1*,F2*,....Fn*}

//Meta-features generation of dataset using

BEME ontology

for Parsed bug reports -> BEME ontology

Mapping ((f1,l1) and Fi) -> ti
O

if(match((f1,l1) and Fi)=ti
O))

Add meta-features to (f1,l1) and Fi)

endif

endfor

//Semantic-HAC algorithm

//Ontology-based constraint prioritization for

clustering

for(Cons1,....consM)

ConsM={xa
m,xb

m,xc
m}

if(Dist(xa
mxb

m=xa
mxc

m))

Add elements into priority set (P(1), consM)

elseif (Dist(xa
mxb

m<xa
mxc

m))

Add elements into priority set (P(0), consM)

endif

endfor

Create matrix for bug report attributes of DB

Transitive dissimilarity strength of S

Init: DB = S

Select similarity based constraints

for k <- 0 to n do

for i <- 0 to n do

for j <- 0 to n do

for all cons = {ai,aj,ak}do

min cons = min(min cons,d(ai,ak))

endfor

mij = min{mij , max(mil,mjl),min cons}

endfor

endfor

endfor

Return S

Create cluster based on constraints order

Ca = {(fi+Fi,li)}

//Generation of stretched training and

testing set

Taxonomy based stretched features formation

Create category depends on bug report

repository

Consider maximum likelihood features of Ca

for training set

(fi,li)* = ((fi,li),Ca)

Fi* = (Fi,Ca)

//Multi-label Naive Bayes classifier

Training set contains threshold based filtered

weight for each term

Calculate Wt for each word in training set

(fi,li)* -> MLNB

Categorize Fi* under labels of (fi,li)* using

posterior probability of (nwt * Wt)

Fi* -> (Fi,li)*

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

177

bug reports into three classes. Each class includes
200 bug reports of the labeled data.

The experimental evaluation implements the
proposed framework using Java platform. The
proposed framework exploits two datasets such as
Eclipse and Mozilla dataset for classifying the bug
reports. Stanford parser performs the preprocessing
for both Eclipse and Mozilla bug reports. The
parsed data in the bug reports are inputs for
constructing bug ontology (BEME). The proposed
implementation relies on the Jena API for bug
reports and BEME ontology. Each dataset contains
the labeled and unlabeled data (.txt files) of the bug
reports. The proposed approach clusters the labeled
and unlabeled bug reports using BEME ontology.
Semantic-HAC algorithm prioritizes the constraints
based on the BEME ontology meta-features.

4.2 Evaluation Metrics
 True Positive (TP): It is the ratio between

the number of predicted bug reports to be
similar and actual similar bug reports.

 True Negative (TN): It is the ratio
between the number of predicted bug
reports to be dissimilar and actual
dissimilar bug reports.

 False Positive (FP): It is the ratio between
the number of predicted bug reports to be
similar and actual dissimilar bug reports.

 False Negative (FN): It is the ratio
between the number of predicted bug
reports to be dissimilar and actual similar
bug reports.

4.3 Evaluation Results
The proposed framework evaluates the results

in terms of precision, recall, and F-measure.

4.3.1 Precision
Precision = TP / (TP + FP)

Figure 3: Precision of OS-CBC

In this experiment, the proposed approach
exploits 1000 samples for classifying the bug
reports. Fig.3 shows the impact of OS-CBC
precision value for Eclipse dataset. The proposed

precision value of 92 % has the better result than
UltraTran due to the constraint prioritization based
on the BEME ontology. Hence, the proposed
approach improves the performance of precision
than existing algorithms due to Semantic-HAC
algorithm and MLNB classifier.

Figure 4: Comparison of Precision in Mozilla and
Eclipse

The proposed experiment evaluates the
datasets of Mozilla and Eclipse. The performance
evaluation in Fig.4 describes the precision value
while increasing the number of bug reports in both
Mozilla and Eclipse dataset. BEME ontology
improves the performance of relevant features of
the bug reports. Semantic-HAC algorithm
significantly increases the similarity strength due to
ontology-based clustering and extension of labeled
and unlabeled datasets. Hence, it improves the
classification accuracy of the bug reports.

4.3.2 Recall
Recall = TP / (TP + FN)

Figure 5: Recall of OS-CBC

Fig.5 illustrates the Recall of OS-CBC value while
increasing the number of bug reports from Eclipse
dataset. The proposed approach improves the recall
value than data grafting techniques due to
clustering based classification. It improves the
classification accuracy based on the cluster
attributes and extended dataset. The recall value
decreases while increasing the number of

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

178

documents. In this case, the recall value of the
proposed approach is better value than CBC due to
ontology-assisted clustering based classification.
The OS-CBC framework effectively classifies the
bug reports using MLNB classifier.

Figure 6: Comparison of Recall in Mozilla and Eclipse

Fig.6 shows the recall of two data sets
(Mozilla and Eclipse) of 1000 bug reports
classification. The proposed experiment achieves
the high performance due to semantic constraint-
based semi-supervised clustering. MLNB classifier
categorizes the bug reports based on the features in
each class with high similarity due to ontology-
based extraction and extended features of the bug
reports.

4.3.3 F-measure
F-measure = 2 * ((Precision * Recall) / (Precision
+Recall))

Figure 7: F-measure of OS-CBC

F-measure or F-score is a measure to test the
accuracy of the bug report classification. It depends
on the precision and recall value of the bug report
clustering based classification. The proposed
approach has the best F-measure value due to the
better precision and recall value. It is the harmonic
mean of the precision and recall value in each label
due to multi-label classification. Fig.7 shows the F-
measure value than existing approaches due to
ontology-assisted bug report classification. The

proposed OS-CBC achieves 89% of the F-measure
value while evaluating 1000 samples of bug
reports. Fig.7 plots the experimental results for
Eclipse dataset.

Figure 8: Comparison of F-measure in Mozilla and
Eclipse

Fig 8 illustrates the F-measure performance while using
1000 bug reports from Mozilla and Eclipse dataset.

5. Conclusion
This paper presents Ontology-assisted Semi-

supervised Clustering Based Classification (OS-
CBC). The proposed approach clusters the bug
reports using BEME ontology-based labeled and
unlabeled dataset and Semantic-HAC algorithm.
Taxonomy of the category and maximum
likelihood of the features extend the labeled and
unlabeled data based on the cluster features. The
extension phase produces the stretched training and
test set for classifying the bug reports. Furthermore,
the proposed approach categorizes the stretched test
set of the bug reports using MLNB classifier and
considers the threshold weight based filtered term
in the stretched training set. Experimental
evaluation reveals the classification accuracy of the
labeled and unlabeled bug reports.

REFRENCES:
[1] Aggarwal, Charu C., and ChengXiang Zhai, “A

survey of text clustering algorithms”, Springer
transaction on Mining Text Data, 2012, pp.77-
128,

[2] K. Coursey, R. Mihalcea, and W. Moen,
“Automatic Keyword Extraction for Learning
Objects Repositories” In Proceeding
Conference of the American Society for
Information Science and Technology, Vol.45,
No.1, 2008, pp.1-10

[3] Chandrasekaran, Balakrishnan, John R.
Josephson, and V. Richard Benjamins, “What
are ontologies, and why do we need them?”,

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

179

IEEE Intelligent systems, 1999 Vol.14, No.1,
pp.20-26

[4] Gašević, Dragan, Nima Kaviani, and Milan
Milanović, “Ontologies and software
engineering”, Springer Berlin Heidelberg, In
Handbook on Ontologies,2009, pp.593-615

[5] Zhou, Yu, Yanxiang Tong, Ruihang Gu, and
Harald Gall, “Combining Text Mining and
Data Mining for Bug Report Classification”,
IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2014,
pp.311-320,

[6] Zheng, Li, and Tao Li, “Semi-supervised
hierarchical clustering”, IEEE 11th
International Conference on Data Mining
(ICDM),2011, pp.982-991

[7] Tamrawi, Ahmed, Tung Thanh Nguyen, Jafar
Al-Kofahi, and Tien N. Nguyen, “Fuzzy set-
based automatic bug triaging: NIER track”,
33rd IEEE International Conference on
Software Engineering (ICSE), 2011, pp.884-
887

[8] Lamkanfi, Ahmed, Serge Demeyer, Emanuel
Giger, and Bart Goethals, “Predicting the
severity of a reported bug”, 7th IEEE Working
Conference on Mining Software Repositories
(MSR),2010, pp.1-10

[9] Thung, Ferdian, David Lo, and Lingxiao Jiang,
“Automatic defect categorization”, IEEE 19th
Working Conference on Reverse Engineering
(WCRE),2012, pp.205-214

[10] Huang, LiGuo, Vincent Ng, Isaac Persing,
Ruili Geng, Xu Bai, and Jeff Tian, “AutoODC:
Automated generation of orthogonal defect
classifications”, 26th IEEE/ACM International
Conference on Automated Software
Engineering (ASE),2011, pp.412-415

[11] Xuan, Jifeng, He Jiang, Zhilei Ren, Jun Yan,
and Zhongxuan Luo, “Automatic Bug Triage
using Semi-Supervised Text Classification”, In
SEKE,2010, pp.209-214

[12] Lodhi, Huma, Craig Saunders, John Shawe-
Taylor, Nello Cristianini, and Chris Watkins,
“Text classification using string kernels”, The
Journal of Machine Learning Research, 2002,
Vol.2, pp.419-444

[13] Zeng, Hua-Jun, Xuan-Hui Wang, Zheng Chen,
Hongjun Lu, and Wei-Ying Ma, “CBC:
Clustering based text classification requiring
minimal labeled data”, Third IEEE
International Conference on Data Mining
ICDM, 2003, pp.443-450

[14] Zhao, Haifeng, and Zijie Qi, “Hierarchical
agglomerative clustering with ordering
constraints”, IEEE Third International

Conference on Knowledge Discovery and Data
Mining,2010, pp.195-199

[15] Tian, Yuan, David Lo, and Chengnian Sun,
“Drone: Predicting priority of reported bugs by
multi-factor analysis”, 29th IEEE International
Conference on Software Maintenance (ICSM),
2013, pp.200-209

[16] Rus, Vasile, Xiaofei Nan, Sajjan G. Shiva, and
Yixin Chen, “Clustering of Defect Reports
Using Graph Partitioning Algorithms”, In
SEKE,2009, pp.442-445.

[17] Jing, Liping, Lixin Zhou, Michael K. Ng, and
J. Zhexue Huang, "Ontology-based distance
measure for text clustering”, In Proceedings of
the Text Mining Workshop, SIAM
International Conference on Data Mining,
2006, Vol.23

[18] Zhao, Ying, George Karypis, and Usama
Fayyad, “Hierarchical clustering algorithms for
document datasets”, Data mining and
knowledge discovery,2006, Vol.10, No.2,
pp.141-168.

[19] Panov, Pance, Saso Dzeroski, and Larisa N.
Soldatova, “OntoDM: An ontology of data
mining”, IEEE International Conference on
Data Mining Workshops ICDMW'08, 2008,
pp.752-760.

[20] Aaberge, Terje, and Rajendra Akerkar,
“Ontology and Ontology Construction:
Background and Practices”, International
Journal of Computer Science and Applications
(IJCSA), 2012, Vol.9, No.2, pp.32-41.

[21] Alessandro, Antonucci, Giorgio Corani, Denis
Mauá, and Sandra Gabaglio, “An ensemble of
Bayesian networks for multilabel
classification”, ACM Proceedings of the
Twenty-Third international joint conference on
Artificial Intelligence, pp.1220-1225, AAAI
Press

Journal of Theoretical and Applied Information Technology
20th August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

180

Figure 1: Ontology-Assisted Semi-Supervised Bug Report Classification

Data set

MLNB

Stretched
testing data

Extended
technique

Unlabeled Clusters
with ID

Stretched
training data

ClusteringExtensionClassification

Data set with
meta-

Features

Bug Ontology

BEME

Labeled
Data

Semantic-HAC

Stretched testing
data classes

Labeled Bugs

Unlabeled
Data

Parsed
data

Bug
reports

Text
Preprocessing

