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ABSTRACT

Embedded systems (ES) are being used these days for monitoring and controlling Safety or mission critical
system. Mission and safety critical systems as such will not be shut down for the reasons of safety and also
due the cost of restarting. Changes are inevitable for any system either due to the reasons of updating the
modules contained in the ES software or addition of new modules for the reasons of adding new
functionality. The changes to the ES software required are to be undertaken online while the ES system is
up and running. Ability to make changes to the software while the system is running is called dynamic
semantic evolution. For any software architecture is the basis. Modules are to be reflected in the
architecture that support dynamic evolution of the embedded software. Many architectures have been
proposed in the literature that cater to the dynamic semantic evolution of loaded systems. Every
architecture proposed incorporated only one method of undertaking the dynamic evolution. Many methods
have been in existence for dynamically evolving the embedded systems but all the available methods have
not be brought under the same architecture. In this paper a comprehensive architecture is presented that
considers all available approaches that help implementing dynamic semantic evolution of the ES software.

Keywords: ES Architectures, Dynamic Semantic Evolution, Monitoring And Controlling Safety Critical
Systems, Software Evolution

1. INTRODUCTION

Semantic evolution of a running software is
dynamically updating a computer program, while it
is executing. Dynamic updating is crucial in
applications where the cost of stopping and
restarting the program makes doing so impractical.
Mission critical and safety critical systems such as
nuclear reactor systems cannot be stopped for
making changes and therefore the changes must be
made while the system is running. Computer
software changes constantly. Change may be
necessary because new features were to be added to
a program or because bugs were discovered in the
current version or improvements to the existing
program units are to be carried.

Sometimes the changes have to be carried while
the system is running as bring down the system for
want of making changes would be expensive.
Examples of such systems include a airline
reservation system or a telecommunications

switching system or a computer-controlled life-
support system or an air-traffic control system. The
ability to dynamically update a program, i.e., load a
new version of a program without stopping the
currently running version, could alleviate the costs
involved in making changes to a running program.

Prior approaches to the problem of replacing
portions of computer programs without stopping
them can be classified into three main categories
which include hardware-based, service- oriented,
and procedural based. Several strategies have been
presented in the past to undertake dynamic
evolution of the software. The techniques include
hardware based redundant systems, abstract data
type systems, client server based systems, Module
based systems, Architectural based systems etc.

The architecture level based systems deals with
dynamic evolution as the capability of modeling
architectures in which the number of components,
connectors, and bindings may vary when the
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software system is executed.  Dynamism has also
been defined as an aspect of configuring and
allowing replication, insertion and removal, and
reconnection of architectural elements either
statically and dynamically. Support for dynamic
reconfiguration at run-time is supported in terms of
reconfiguration manager . A supervisor can send
directives in a script language to the system that
invoke dynamic reconfiguration. Every element
can be either added, removed, or replaced
dynamically but from external tools only.  The
operations for describing change include adding
components, removing components, upgrading or
replacing components, changing the architecture
topology by adding or removing connections
between components, altering the mapping of
components to processing elements, querying
properties of architectural elements, obtain
versioning information and querying the current
architectural topology. A typical change will
require several modification operations.

Every system must be adaptable considering the
application architecture or in the way the data is
exchanged. The new software modules must be
able to interact with the old software module
considering the changes that might come up in the
very programming languages using which the
software is developed. When changes are made to
the software it is also necessary to consider other
issues that include fault tolerance, scalability and
performance. The scalability of the Hardware and
data must also be taken into account.

Specific architectures are required for
implementing dynamic evolution of the embedded
systems for that matter any type of a system. The
architectural models that evolve at run rime are
called dynamic and the models that do not get
changed after the software is implemented are
called static architectural models. Static
architectural modeling notations do not support
constructs that are required to express runtime
change. Notations and tools must be added to
describe run-time architectural changes. When the
notations and the tools are added to static
architectures they become dynamic architectures.

Dynamic architectures require formalisms and
tools beyond those of static architectures. Adequate
notational constructs are needed to describe runtime
change, analysis tools are needed to help verify
their unique properties, and runtime support
libraries are needed to reduce the costs associated
with their implementation.

The architectural modifications can occur  during
four periods of time which include design time, pre-
execution time, constrained run-time and run-time.
Changes made during constrained based run time
are safe and generally do not disturb the ongoing
process. When modifications are carried that cross
architectural boundaries, system integrity may be
lost. Mechanisms that maintain system integrity in
light of architectural modifications are needed.
Modification constraints provide a means to specify
limits on what aspects of an architecture may
change. They may restrict change based on
modification operation, particular components,
modification time, or a combination thereof. They
may also require that functional properties be
verified before a change is committed. Constraints
must be related to behavioral properties of the
system and must allow trade-offs if all constraints
cannot be met simultaneously.

Architectural languages are required to support
run time changes. The existing architectural
languages describe static architectures. Two
additional descriptions are required which include
modification language (AML) and constraint
language (ACL) are also required. Architecture
plays a vital role to define the way the dynamic
evolution of the ES software is to be undertaken.

Thus many methods  and several architectures
have been in existence for undertaking the dynamic
evolution of the loaded systems. But the limitation
is that every architecture just supported only one
method. Very few architectures and many methods
have been presented which are related to dynamic
evolution of embedded system. Every architecture
that suits embedded systems also have been
incorporated with just one method. Thus there is a
requirement of presenting a comprehensive
architecture that incorporates all the existing
methods into a single architecture so that all aspects
of dynamic evolution of embedded software can be
undertaken.

2. PROBLEM DEFINITION

Embedded systems are quite frequently used for
monitoring and controlling  Mission and safety
critical systems. The embedded systems are driven
by a HOST which is located at a long distance
connected through Internet. Embedded software
keep changing either to improve response time,
implement efficient sensing and actuating system,
add more tasks, delete the existing tasks, improve
the algorithm or processing implemented through
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existing tasks etc. The embedded systems which
monitor and control the mission or safety critical
system cannot be shut down for want of making
changes  due to the nature of criticality attached to
it. The changes to the ES software thus must be
undertaken while the system is up and running. Any
change required must be initiated from the remote
host and the same has to be effected within the ES
software without actually bringing the ES system
down

Very few architectural model exists and even
these few implements only one method of
dynamically evolving the ES software. Many
software components are to be added into the
architectural models which are all required to
support various methods. No architectures as such
has been recommended ever that considers dynamic
evolution under the ambit of an  RTOS.

The main problem thus is to find the architectural
models that can be implemented for the dynamic
evolution of ES software. The architectural models
should consider all the methods and the related
components, tasks, processes etc., which are
required to implement dynamic evolution of ES
software. It is also necessary to consider all those
components that are required for dynamic evolution
of ES system that runs under the control of a real
time operating system.

3. LITERATURE SURVEY

Lui Sha et. al., 1996][9] have presented a
Simplex Architecture that considers upgrades to
the existing systems using new technologies and
ensuring safe, reliable, with negligible down time.
The Simplex Architecture was originally developed
to support safe online upgrades to a feedback
control and radar systems regardless of the faults
that might exist in the modeling, designing and
implementation of the new software and hardware.
The simplex Architecture is considered the
evolution of the architecture itself while the system
which is developed using the very architecture is
evolved. The simplex architecture considered
dynamic evolution by incorporating independent
modules that ensures timing, fault tolerance through
handling exceptions, monitor system status,
configure the system as required and to provide the
interface for the users to manage changes online.
To manage the changes online, advanced real time
resources management technology has been
incorporated into the architecture. The simplex

architecture considers, real time process
management primitives.

Peyman Oreizy[4] presented that run-time
evolution of the software require dynamic
architectures that evolve as the system runs. The
evolution is done online. Most of the systems
require online updates without bringing down the
system which is already running. Static
architectures will not be  able to cater to incorporate
dynamic changes. End-user customizability and
extensibility also requires runtime evolution.

Huw evans [3] have presented an architecture
titled DRASTIC that supports run-time adaptability
through implementation of run-time type changes
and system configuration. The architecture uses a
kind of abstraction called “ZONE” for effecting the
evolution. DRASTIC divides the system into
smaller and more easily managed sub-domains
called zones. The change is encapsulated  into the
Zones and a change in one zone will not affect
another zone. Zones to start-with are recognized at
design stage and become explicit components at run
time. Software in one zone is evolved
autonomously from software in other zones, even
though the source code may originally been shared
by components in many zones. Peyman Oreizy[4]
have presented an architecture-based approach
based on which software evolution is undertaken
through use of software connectors.  The
implementation of the architecture is undertaken
through use of the tool called ArchStidio.

Software architectures D. E. Perr [8], M. Shaw
[10] can provide a foundation for systematic
runtime software evolution. An architecture-based
approach to runtime software evolution has been
proposed  that includes  an explicit architectural
model, which is deployed with the system and used
as a basis for change,  preservation of explicit
software connectors in the system implementation,
and an imperative language for modifying
architectures.  A tool suit has also been presented
that supports runtime software evolution at the
architectural level. The architecture proposed by
them considered various aspects related to change
management that include change policy, change
scope, separation of concerns, level of abstraction
at which change must be carried and the type of
change that must be made.

Peyman Oreizy [4] have presented an approach
which uses architecture of the software as a basis.
The architecture  as such describe and reason about
the systems behavior D. E. Perr[8], M. Shaw [10].
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Change can be effectively managed by exploring
the system level knowledge of the architect. Even
the off-the-shelf components can be accommodated
if no restrictions are imposed on the component
internals. The change application policies are
encapsulated into connectors which are independent
of the functional components making it possible to
separate change policy independent of the
functional support.

Peyman Oreizy [4] have presented,  the way
the architectures support different types of software
evolution and the circumstances which leads to
making changes to the software. As such they have
considered  three characteristic type of evolutions
that include corrective, perfective and adaptive.
Software faults are removed through corrective
evolution. Enhancement of the application
functionality can be achieved thorough perfective
evolution and adaptive evolution changes makes
the software adapt to a new environment.

Many design styles are in existence using which
components  can be added to the running system.
Observers design Pattern E. Gamma [5] allows
addition of more observers with minimal impact. In
the mediator design approach, new mediators can
be introduced that maintain relationships between
independent components.  Design approaches that
consider the implicit invocation methods D. Garlan
[6] are more effective to add components at run-
time. Invoking components are generally unaware
of the other components running at the time of
invoking. Methods have been added which help
new components  discover the state of the system
and perform necessary actions to synchronize the
new components with the ongoing state of the
system. When new components are to be added,
structural changes to be made to the architecture of
the software must be specified. The changes to the
structure some-times are implicit or derived from
externally visible properties of the components.

Another approach, exemplified by the Simplex
architectural style Gilsi Hjalmtysson [9],
incorporates an “operational model” in the
implementation. The model rejects upgraded
components when they do not satisfy explicit
performance and accuracy requirements. Many
systems cannot tolerate loss of system state. In such
cases the state of the system must be preserved
during the change. More of the considerations are
to be included in additions to those related to
addition and removal of the components. Several
methods have been proposed that preserve the state

and communication when run time changes are to
be undertaken.

Structural reconfiguration of the architecture
supports recombining existing functionality to
modify overall system behavior. Data-flow
architectures, such as UNIX’s pipe and filter style
and Weaves M. M. Gorlick[7], provide substantial
flexibility through static reconfiguration of existing
behaviors. Runtime reconfiguration can be
performed by altering connector bindings since
connectors mediate all component communication.

Lawrence Chung[11] have presented how
semantic evolution of a remotely controlled
embedded system can be carried. They have
presented a three tire architecture using which the
semantic evolution of the embedded systems can be
carried. The overall architecture proposed by them
contains syntax evolution block, sematic evolution
block and a communication interface. Run-time
module adaption is a very powerful technique that
allows the system to change its behavior in many
different ways. New modules are generated at run-
time to enable the system to adapt to the change in
environment. Code generation algorithms are
required in this case to generate code based on the
commands received. Based on the command
received, one of the module is linked. The module
generation could be undertaken by taking instance
of a template class or including the new class in the
class library or by loading the class using the class
loader.

A system is adaptable if an adaptation function
exists. Adaptability then refers to the ability of the
system to make adaptation. Adaptation involves
three tasks which include ability to recognize,
ability to determine the change to be made to a
system,  ability to effect the change in order to
generate the new system.  The adaption involves
verification and validation to ensure the correctness
of the modified system.

Dominic Duggan[12] has presented that hot
swapping of running modules as one of the most
important requirement to be supported for
achieving dynamic evolution essentially within
server based software based systems. Under such a
system a new module be able to change the types
exported by the original module while preserving
the type safety. Type based approach of swapping
running modules is the most important approach
that got evolved over the time.  Programmer
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defined version adapters  at run-time  adds type
sharing constraints to the type system.

Michael Hicks [13] has developed a dynamic
evolution system considering  flexibility that takes
into account the time at which the change is
effected, robustness considering type safety,
completeness, well-timed, simplicity, rollback
enabled, efficiency and ease-of-use. Dynamic
evolution has been presented as practical and
general purpose when compared to the other
solutions presented in the literature which are
specific purpose and application dependent.

Narayanan [14] have presented several
architectures that can be used for evolution of
vocabulary of the embedded system which is
nothing but evolution of command language which
is used to effect communication between the HOST
and the Embedded System. GARP [15] has
proposed an architecture that combines
configurable hardware with a standard MIPS
processor on the same die.  The architecture  can be
used for configuring the Hardware in microseconds.
The GARP compiler can implement instruction
level parallelism (ILP) from C code and directly
compile selected loops to the reconfigurable array.

M. Kau [20] proposed a SPARCS framework
includes a synthesis tool that estimates system
resources and latency. An Integer Linear
Programming(ILP) model is formulated to solve
spatial and temporal partitioning problems. This
flow is complete and well defined and mostly
dependent on traditional hardware. Sasi [19] have
presented a basic architectural model that caters for
syntax evolution of the embedded systems.

Many presentations have been made for dynamic
evolution of loaded systems. Few contributions
have been related to dynamic evolution of
embedded systems. An embedded system can be
evolved by using different methods which include,
invoking the tasks which are in dormant stage at the
run time, rule based self-adaptability, Online code
generation, online simple update and online update
considering the criticality of the update etc. Each
dynamic evolution method presented in the
literature looks into only one kind of dynamic
evolution. It is necessary to comprehend different
kind dynamic evolution methods that can be used
and come out with a comprehensive model into
which all kinds of dynamic evolution methods are
incorporated considering the embedded systems.

4. INVESTIGATIONS AND FINDINGS

Several kinds of archliberal models can be
designed which can be implemented for achieving
dynamic evolution of the embedded systems. The
architectural models that can be used include
Architecture based on stored data model.
Architecture based rule based model, Architecture
based on code generation, Architecture based on
code migration, architecture that considers code
updating considering both critical and non-critical
updates

4.1 Architecture Based on Stored Data Model

In the stored data technique all the code
components are pre-identified for each of the
change expected in the environment and
appropriate code is used based on the state of the
embedded system. The change in this case is to be
pre-identified and components are to be provided
and made available right in the beginning before
reset of the micro controller. A state machine keeps
track of current state of the system. The change in
the environment is recognized as change of state of
the embedded system. Every change is recognized
as the state of the machine.

An embedded system can be considered to be in a
state when a particular external or internal event is
being executed. The execution of  a Task which is a
unit of code will be based on the occurrence of an
event.  The code units which are future additions or
updates to the existing tasks are to be identified
with pre-defined units. The commands to activate
the new code units are pre-identified and when such
commands are received the relevant Tasks are
invoked. The tasks that are invoked will be made to
be waiting for the occurrence of its related event.
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Figure 1 Semantic Evolution Based Stored Data

Figure 1 shows the architecture for the stored
data model. In this architecture also all the
components required for catering to the changed
environment are to be identified and make available
right in the beginning of the development of the
system before the same are to be migrated to the
Target System.  The code elements that are not
required or in dormant state initially and they are
brought into the main stream based on the
command that it receives. When a code element is
initiated to be brought into the main stream, the
address of the code element, event that triggers the
Task is to be sent along with the command to
invoke. Invoking is like adding new task. Chaining
new task with other tasks is achieved through
making the task to wait for a particular event.

Stored data means, the code elements which
are pre-stored and made available in the address
space of the entire ES application. The pre-stored
code elements are only made to be active at run
time.  The stored data model is not a true dynamic
evolution model even though code elements which
are not active are activated at run time. A program
structure is required to be followed such that all
variables will be global variables.

4.2 Architecture Based on Rule Based Model
Rule based model recognizes a set of rules and

the rules recognizes the changes that should be
effected within the semantics of ES application.
The component dealing with the rules will parse the
rules set the environment data and invoke the set of
tasks that comply and fulfil the rule. This approach
is specifically suitable when control of the

production system must be done based on the
configuration data and the conditional logic. Fig 2
shows the architecture suitable for rule based
adoption.

The remote HOST shall provide the command
and associated rules to be adapted to syntax
evolution model and the rules are handed over to
the semantic evolution component. The semantic
evolution component hands over the rules to be
adapted to the rules manager. The rules manger will
process the rules, parses the same and generates
some internal events and the tasks that are waiting
for those events are executed. The rules manager
also sets the environmental data generally
maintained as global variables.  The rules are
maintained in a lookup table and the table which is
maintained dynamically through commands issued
by the remote HOST. If an existing rule is the one
to be adapted then the HOST just transmits the
command and the name of the rule to be adapted.
The control data required for the rules to be adapted
sometimes gets acquired automatically through the
sensors which triggers the interrupts required. In
this case also all the Tasks must have identified and
have been built along with ES application right in
the beginning. Rules implements dynamic
evolution to certain extent when overall functioning
of the embedded systems must be changed based on
rules fed from a remote location, the control data
for which is either obtained through the sensors or
transmitted from the remote HOST.

Sensor System

Actuator System

A/D Conversion

D/A Conversion

Interrupt
Service

Routines

Control Logic

ES Tasks

Rules manager

Synatx Evolution

Communication
interface

Semantic
Evolution

Additional
Tasks

RTOS

Figure 2 Rules Based Dynamic Adaption
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4.3 Architecture Based on Code Generation
Runtime module generation is a very powerful

technique that allows new modules to be generated
at run time to enable the system to be adapted at run
time. Generation of new modules is a complex
process. Code generation is a time taking process
and also it is difficult to generate efficient code
based on the inputs fed from a remote HOST about
the changed situation. Huge repository has to be
built within the embedded system which is required
for generating the code

Figure 3 shows the architecture for Run-Time
Module Generation Technique. The details required
for code generation are transmitted from the HOST
and the same is maintained within the embedded
system. Two processes are to be included into the
architecture one for maintaining Code generation
repository and the other for generating code. The
memory module will make available the address
space required for storing the code that is
generated. After creating the code, a task is created
along with the event for which the task must be
waiting. The tasks that are related to Repository
building, code generation and memory management
are invoked by the semantic evolution modules
triggering their related events.

4.4 Architecture Based on Moving Code from
HOST

Yet another important technique is to receive the
Task code through a command received form the
HOST and copy the code to the respective address
spaces and recognize the code separately identified
with the Real Time operating system. This kind of
method helps in dynamically creating new tasks
without the necessity of any code generation. As
such code developed at the HOST is migrated to the
ES system.

Sensor System

Actuator System

A/D Conversion

D/A Conversion

Interrupt
Service

Routines

Control Logic

Memory
Manager

RTOS

Code
Generator

Syntax
Evaluation

Communicat
ion System

Repository
Builder

Semantic
Evolution

ES
Application

Tasks

Other Tasks
Created

Figure 3 Semantic Evolution Based On Code Generation

Figure 4 shows the architecture for run rime
copying and reconfiguring of the Application code.
The remote interface receives the new code or
modified code developed on the HOST as an input
to a command and the copy component copies the
code to the address space specified by the
command. The location where the code must be
written is obtained by the memory manager through
calling the RTOS functions. The code may be sent
from the HOST either for the purposes of creating
new TASK in which case the code is copied and a
Task is created under RTOS and the TASK is made
to wait for an event to be initiated from the
Semantic Evolution Task.

Code also can be transmitted as data to the
Embedded system in respect of a TASK which
needs to be updated. This code also can be copied
to the address location returned by the memory
manager. After copying the code another task can
be created under the operating system. But the main
issue is that the old task which is already scheduled
and running must be deleted and the state
information of the old Task should be transferred.
The state information gets automatically transferred
to the new updated task as both share the same
global variables. If the code is modified the task is
killed and the task is created within the real time
operating system if the task does not deal with any
of the control function. The priorities with which
the code must be activated are set at the time of
creating the task under the control of the operating
system.
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4.5  Dynamic Task Updating
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Actuator System

A/D Conversion

D/A Conversion

Interrupt
Service
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Control Logic

ES
Application

Tasks
New tasks

Communication
Interface

Syntax
Evolution

RTOS

Semantic
Evolution

Copy Task
for Update

Copy for
new task

Update
Tasks

Figure 4 Run Time Module Copy And Reconfigure
Architecture

The main issue is to determine the time at which
the old task shall be deleted. If the tasks are
mundane tasks, the deletion of the old task is
straight forward. If the Task to be deleted is a Task
that undertakes an actuating / controlling function,
then there should be a guarantee that the new task
will do the actuating function exactly in the similar
manner as the old task or else addition of new task
and deletion of the existing  task will make the
entire system to get jeopardized. To avoid this a
check must be done by a different task  and the task
will have the logic which compares the output of
new task with old task over a predefined period of
time. If the output is same over a period of time, the
old task is deleted and the new task will take over
the new task using its output for handling the
control mechanism. If the output is not same, a
message is sent to the HOST and the new update
Task shall be deleted and the memory occupied by
it will be released.

[Sha et. al, 2001] have proposed an architecture
for online update of real time embedded system
which is termed as simplex architecture. The Figure
5 shows the simplex architecture for online update
of an ES Application.
In this architecture all critical tasks are performed

by simple and verifiable components and the output
of new components (Complex Components) which
are counter parts to the simple verifiable

components is fed as input to the simple
components.

Sensor System

Actuator System

A/D Conversion

D/A Conversion

Interrupt Service
Routines

Simple reliable
Componets

New
Componets

Decision  Logic

Control Logic

Figure 5 Simplex Architecture For Online Updates

The new components may not have been tested
fully. The input data is fed to the Micro Controller
by an A/D converter which communicates using a
specified communication protocol such as I2C. An
interrupt service routine is activated to read the data
and place in a shared memory. The memory is
accessed by the simple reliable task and the
Complex new task as soon as the data is placed in
the shared memory. The tasks shall be waiting for
the arrival of the data. The output generated by both
the tasks is fed to Decision logic. The architecture
includes a Decision and Logic Component that tests
the output from the complex component and also
checks whether the system shall be in the recovery
region once the output from the complex system is
released to the rest of the system. The Decision
logic components keep track of the recovery region
of the application in terms of the peripheral and
memory boundary values of various data elements,
the timing requirements, the sequencing
requirements etc. The output from the complex
components shall be verified with safety critical
region variable values. If the output produced by
the complex region is within the limits of the safety
of the systems, the output shall then be allowed to
be committed to the safety memory area of the
application. If the output of complex components
are not confirming to the safety region requirements
of the application then the output of the simple
component shall be considered and the output is
subjected to the critical region.

The decision and logic system sufficiently checks
the upgrade of the simple components and on
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ensuring the correctness and efficiency shall
configure the new component as the simple
components. The architecture includes a runtime
reconfiguration subsystem which shall have the
functions to carry the switching between the testing
mode and the normal operation mode and commit
the upgrade of sufficiently tested software.

[Kihwal Lee, 2005] has extended the simplex
Architecture to carry online upgrading of the
Embedded Application and proposed eSimplex
architecture. Lee proposed that the simplex
components and the Complex components be
resident in different address space. Soft real time
processes and non-critical processes also run in
different address space. The communication
between all the processes is achieved through
shared memory and communication wrapper where
necessary. Figure 6 shows the interaction of
components through shared memory to achieve
online upgrade of the system.

ESimplex uses the priority based scheduling of
the processes and helps the isolation of processes in
the timing domain. The process level isolation is
achieved through process level protection offered
by the operating system. The memory protection
and isolation is achieved through static compiler
checks. [Lee et. al., 2005] proposed code safety
without runtime checks for control system through
usage of operating feature of Process protection.
The replacing of the simplex code with Complex
components and restarting of the application is
achieved through the concept called Process
Resurrection (PR). PR is a fast and efficient
mechanism for restarting and replacing a process.
PR mechanism is used to switch between the
production mode and testing mode.
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Interrupt
Service
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New
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Decision
Logic

Control
Logic
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Memory

Remote
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Figure 6 Online Upgrades Through Shared Memory

The new component image can replace the
simple component and the mode can be changed
from Testing to Production. In the production mode
only the verified and tested components will be
made to run. The runtime sub system must be able
to reconfigure the code and switch between the
production and testing in real time meaning the
activities related to reconfiguration and switching
must be predictable and schedulable. Figure. 7
illustrates the usage of the concept called process
Resurrection. Process resurrection is a feature
supported by most of the real time operating
systems. The mode switch is achieved through the
process Resurrection function which will map the
new code to the address space of the simple reliable
component address space and also setting the
control data a value realized by the control logic to
indicate that a mode switch has been effected.

The system runs in the normal operation mode
when there is no need for testing or upgrade. In this
mode only simple reliable functional modules shall
be running. The switching overhead is very
negligible and as such there is no CPU overhead
and little extra storage is used to store the data
related to changing the modes between productions
and testing & upgrading. When online testing of
new software is needed the PR feature converts the
regular processes into Esimplex enabled processes
and the new software modules can be uploaded for
testing. When the new software is unproven and its
features are needed then the system can be made to
run at the cost of reduced response time of non-real
time and non-critical tasks. When the new modules
are believed to be running then the system is
switched to normal mode of operation through the
Process Resurrection.

The updating methods considering the criticality
of the tasks, simple tasks and complex tasks
proposed by Lee, Sha and Kowshik are quite
complicated and does not fit into the overall
structure of dynamic semantic evolution of the
embedded system. The process of updating must be
event driven. Both the old process and the new
process must be made to be running and the new
task will be made to continue to run while old task
will be deleted when sufficient guarantee could be
achieved that the new and updated task will meet
all the criticality conditions.  Figure 8 show the new
architecture that deals with simple comparator that
runs under the control of a Real time operating
system. Both will share the same memory two sets
of global variables which will mirror each other.
Changeover of the tasks will only require swapping
of the variable. When the changeover is undertaken
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the original set of global variables will only be used
for undertaking all the control actions

Operating System

Standalone
Complex

Component

Operating System

Complex
Component

(under testing)

Switched by Process
Resurrection

Testing and Upgrade
Mode

Normal Operation
Mode

Figure 7 Process Resurrection For Mode Change Of The
Embedded Systems

Copy task for update component will trigger an
event for which the compare task will be waiting.
The compare Task will take the charge of making
the tasks (old and the modified ) run
simultaneously each writing the output to the mirror
set of variables. The verification is undertaken after
completion of each cycle of execution of the old
Task. A task is considered to complete a cycle of
execution when the task moves from Blocked state
to run sate and then to blocked state again.
4.6  Comprehensive Architecture

All the methods discussed above help in semantic
evolution of the Embedded Software in one way or
the other. The Application code changes when the
methods modify the existing code or when new
code is created due to the reasons of environment
changes and the reasons for adoptability. In the case
of mission critical and safety critical system the
production system cannot be shut down for want of
making changes to the embedded system which
helps in monitoring, and controlling of the
embedded system. It is necessary that changes by
way of modifications or additions must be done at
the runtime meaning that when the embedded
system is in ruining mode. The modified code and
the new code can be developed in the host machine
and then have to be moved to the target machine in
online mode while the embedded system is in
running mode.
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Figure 8 Architecture For Updating The Critical Tasks

The architectures presented above have merit in
each of them. It is necessary to consider all the
architectures  and provide a unified architecture and
the kind of dynamic evolution to be adapted should
be decided by the semantic evolution task. The
comprehensive architecture that caters for all types
of dynamic evolutions of embedded systems is
shown in the Figure 4.9. Dynamic semantic
evolution of the embedded system thus can be
achieved through Data Approach (Invoking and
deleting the existing Tasks as per the desired
functionality), Rule based Approach (Invoking the
task execution as per the rules for which a
repository can be maintained), Module generation
and invoking approach ( Generating new modules
based on HOST sent specification), Module copy
approach (Creation of the new modules as per the
code sent from the remote HOST), Module update
approach (Creation of update module and swapping
the old module with the Update module), Module
update with attached criticality assessment
Approach (Create update modules and subject the
module for criticality assessment).

The overall architecture is efficient that it
accommodates any kind of evolution both simple
and complex evolution systems. It implements all
kinds of approaches using which all possible types
of evolutions can be undertaken. The type of
evolution that must be taken up can be dictated
from the HOST through transmission of appropriate
command. Semantic Evolution block can
implement the kind of semantic evolution that
needs to be implemented as per the request initiated
from the HOST.
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Figure 4.9 Overall Semantic Evolution Architecture

5. COMPARATIVE ANALYSIS OF
ARCHITECTURAL MODEL

A comparison is made to show the  coverage of
dynamic evolution by different architecture
proposed by different authors. From the Table 5.1
it could be seen that the comprehensive model
presented by Sasi et. al., is most effective and
extremely suitable for dynamic semantic evolution
within an embedded system which is interfaced
with a remote HOST.

6. CONCLUSIONS

Embedded systems that are used for monitoring
and controlling safety or mission critical systems
must be evolved dynamically for incorporating the
changes to the running systems as it is not possible
to shut down the ES system for want of making
changes. Many architectural models have been
presented in the literature and most of them are not
quite suitable for implementing dynamic evolution
of embedded software and as such each
architectural model has been incorporated with just
one method while many methods have been in
existence for dynamically evolving the embedded
software. Few of the architectural models have
been presented that have incorporated just one
method for dynamically evolving the ES software.
A comprehensive architectural model that supports
different methods and runs under the ambit of an
RTOS that includes all components that are
required for dynamic semantic of the ES software
is needed and the same is presented in this paper.

Further research needs to be conducted for
dynamically semantic evolution of distributed
embedded systems.
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Table 5.1 Comparative Analysis Of Architectural Models Related To Dynamic Evolution

S
er

ia
l

N
um

be
r

Author Main theme
Code

Invocation
Rule Based

Code
gen

Copy
for

ADD

Copy
for

update

Copy for
Criticality

update

1. Lui Sha Adding Independent Modules √
2. Peyman Oreizy Online Update √
3. Huw evans System Configuration √
4. Peyman Oreizy Software Connectors √
5. D. E. Perr System Connectors √
6. M. Shaw System Connectors √
7. D. E. Perr System Level Knowledge √
8. M. Shaw System level Knowledge √
9. Peyman Oreizy Theoretical evolution
10. E. Gamma Mediators approach √
11. D. Garlan Adding Components at run-time √
12. Gilsi Hjalmtysson Addition of performance and optimization

methods into the new components
√

13. M. M. Gorlick Run time reconfiguration √
14. Lawrence Chung Run-Time module generation √
15. Dominic Duggan Hot swapping √
16. Michael Hicks General purpose dynamic update having many

features
√

17. Narayanan Vocabulary Evolution
18. J. R. Hause Configurable Hardware
19. M. Kau Spatial Portioning √
20. Lee, Sha and Kowshik Updating considering Criticality √
21. Sasi Basic Evolution Architecture √
22. Sasi Comprehensive Evolution √ √ √ √ √ √


