
Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

236

CADSSO: A DEVELOPMENT APPROACH FOR CONTEXT-

AWARE SERVICE ORIENTED SYSTEMS

1
M. LETHRECH,

 2
A. KENZI,

3
I. ELMAGROUNI,

4
M. NASSAR,

5
A. KRIOUILE

1,3,4,5
SIME Laboratory, ENSIAS, Mohammed V University, Rabat - Morocco

2
Sidi Mohamed Ben Abdellah University, Fes - Morocco

E-mail:
1, 3

{mohammed.lethrech, issam.elmagrouni}@um5s.net.ma,
2
adil.kenzi@gmail.com

4, 5
{nassar, kriouile}@ensias.ma

ABSTRACT

In this paper, we present our development approach named CADSSO (Context-Aware, Domain Specific

and Service Oriented) for Context aware Service oriented Systems. CADSSO is organized in two stages:

the modeling stage and the code generation stage. It is essentially based on the Domain Specific Modeling

(DSM) approach. Indeed, the creation of the five models of the modeling stage is done using Domain

Specific Languages (DSLs). The first model is Domain Specific Context Model, it represents the service

execution context. The second is Domain Specific Service Model, it allows the services modeling. We also

have the Service Variability Model which is used in the service variability modeling. The bond between

Service Variability Model and Domain Specific Service Model is provided by Adaptation rules model.

Finally, specific domain business modeling is done via domain specific business model. At code generation

stage, a specific code generator transform all these models to final source code using a framework

specifically designed for a given target platform.

Keywords: Domain Specific Modeling (DSM), Domain Specific Language (DSL), Service Oriented

Computing (SOC), Context-Aware Computing (CAC), Adaptation

1. INTRODUCTION

Since the recognition of software development as

an engineering discipline at the 1968 NATO

Conference [1], the history of software engineering

is essentially summarized in levels of abstraction

rising, said Grady Booch in his 2002 talk “The

Limits of Software”. Raising the level of abstraction

is a necessary condition for improving productivity.

For example, the passage from assembler to third

generation languages allowed increasing

productivity by more than 400% according to [2].

The Domain Specific Modeling (DSM) approach is

the main actor of another revolution on raising the

level of abstraction [3][4]. DSM is characterized by,

1- the use of a Domain Specific Languages (DSLs)

for modeling the solution of a narrow field, 2- full

automatic generation of final solution from the high

level specifications. A DSL is by nature

semantically rich, since it uses directly the concepts

and business rules of a specific domain. In addition

to production increase, estimated between 300%

and 1000% [5], adoption of DSM approach in

software engineering provides a lot of advantages

essentially a better quality of generated code and a

better reactivity to business rules and technological

changes [3].

On the other hand, the issue of “context” now

becomes a hot topic in human computer interaction

research and development especially with the

pervasive use of mobile devices and the need for

ubiquitous computing [6]. In these settings,

adaptability becomes a key feature of services as it

provides a way for an application to continuously

change itself in order to satisfy new contextual

requirements [7]. Responsiveness to business rules

changes is also treated by the Context-Aware

Computing (CAC) paradigm [8]. This last, mainly

deals with the development of adaptive systems,

that is to say, which can discover and take

advantage of contextual information [9].

Other important quest in software engineering is

to find a solution that simplifies development and

implementation, supports effective reuse of

software assets and facilitates the communication

and integration of distributed systems. Service

Oriented Computing (SOC) is the latest fad in this

elusive quest [10]. SOC has eliminated huge

amounts of redundant software automated manual

process and increased productivity [11]. SOC uses

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

Service Oriented Architecture (SOA) which is an

architectural style of building software applications

that promotes loose coupling of independent

services, allowing linking resources on demand

[12].

The adoption of SOC and CAC for the

development of adaptable service oriented systems

encounters several problems, essentially the lack of

modeling approaches, processes, techniques and

tools to facilitate construction of these systems [13]

along with time and cost optimization.

In this paper we present our development

approach for adaptable service oriented systems.

We can organize our approach in two stages:

modeling stage and code generation stage.

Modeling stage requires the creation of five models.

The first model is the Domain Specific Context

model, which is responsible for modeling the

system context of use. Context model is conforms

to our proposed context meta-model. The second

model takes care of service modeling is the domain

specific services model. This last is conforms to a

service meta-model which must be an extension to

our generic service meta-model. The third model is

service variability model. It formulates services

forms of adaptations. This model is conforms to our

service variability meta-model. The fourth model is

adaptation rules model. It makes the join between

service variability model and domain specific

context model. The last one is domain specific

business model, which is in charge of the domain

specific business modeling. The domain developer

must produce the domain specific business meta-

model which is the abstract syntax of the domain

specific business language. In the code generation

stage the domain developer must produce modeling

tools and code generator. This last converts the

models produced during the modeling stage to final

source code.

To sum up, the domain developer must produce

the service meta-model (abstract syntax) as an

extension of our generic service meta-model and the

domain specific business meta-model. He must also

produce the concrete syntax of modeling languages

and related tools as well as the code generator.

The remainder of the paper is organized as

follows: the second section describes the case

study; the third introduces our CADSSO approach.

The modeling stage and the code generation stage

are respectively illustrated in the fourth and fifth

sections. Our approach is evaluated in the sixth

section. The related work is presented in the

seventh section. Finally, the article ends with a

conclusion and outlook.

2. A CADSSO SCENARIO

Our approach can be illustrated by a domain

specific case study which presents a great

adaptation potential. Our choice was fixed on tax

domain. It should be noted that a tax information

system is supposed to be updated for each finance

law publication. Therefore, tax information system

must be flexible, scalable and customizable as much

as possible. This business change (functional

dynamic) represents, according to Kelly [3], one of

the essential points justifying the adoption of the

DSM approach. We focused only on the calculation

and restitution of corporation tax. The main services

of our validation scenario are “TaxCalculation” and

“TaxRestitution”. The former is a generic service

which will be specialized by the

“CTCalculationService” (corporation tax

calculation service), specific for calculating the

value of corporation tax. The latter is a business

process composed of several services. It allows a

restitution of the corporation tax. Based on our Tax

meta-model (see section 6) we can generate models

for each tax (corporation tax, income tax…).

The business logic of these services depends on

several parameters, for example: ratepayer

exemption, ratepayer category, ratepayer regime….

These parameters change from year to year. For

example “CTCalculationService” service has four

logical variabilities (see figure 7). In addition to this

business variability it is possible to imagine other

technical variabilities, for example the device used

by the ratepayer, the ratepayer's position….These

motivating scenario provides a good illustration of

context awareness.

3. CADSSO APPROACH SYNOPTIC

Our CADSSO approach adopts the concepts and

principles of Model Driven Software Development

(MDSD). It aims to facilitate modeling and

development of adaptable service oriented systems,

using DSM approach. In order to have adaptable

services, service variability should be modeled and

designed at the first stages of a modeling approach.

Also, separation of concerns is the cornerstone of

system flexibility. In fact, our modeling approach

ensures a separation between service variability,

context and service adaptation rules.

Our CADSSO approach is divided into two

stages: Modeling stage and code generation stage.

The modeling stage is based on five models:

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

• (a) Domain specific services model: is a

representation of the domain specific

services. We have defined a generic

abstract syntax which can be extended by a

specific abstract syntax to produce a

domain specific abstract syntax [14];

• (b) Service variability model: represents

service variabilities. Each service is

adaptable based on its variation points;

• (c) Domain specific context model: models

the context elements, which influence the

services adaptation;

• (d) Adaptation rules model: provides

answer to the following question: when

each service variation point must be used

related to the context variation? In other

words it represents the relation between

service variability model and context

model;

• (e) Domain specific business model: used

to model the domain specific business. The

domain specific business model is modeled

by Domain specific language (see section

6.1.2.5).

In the code generation stage the language

developer must produce the domain specific

business meta-model, the specific service meta-

model (abstract language) as an extension of our

generic service meta-model, the language (concrete

syntax), the domain framework and the code

generator.

The domain specific code generator uses the

domain specific framework to transform models

into full source code. The domain framework

essentially removes duplication from the generated

code, hides the target environment and facilitates

integration with existing code [3]. The figure 1

illustrates our CADSSO approach.

Domain Specific

Services Model

Domain Specific

Context Model

Services Variability

Model

Source Code

Code
Generator

Adaptation Rules

Model

Domain Specific

Framework

Domain Specific

Business Model

(a)

(b) (c)

(d) (e)

Domain Specific
Services Meta-Model

Services Variability
Meta-Model

Context Meta-Model

conformsTo

conformsTo

conformsTo

MOF

conformsTo

Decision table
Mata-Model

Domain Specific

Business
Mata-Model

conformsToconformsTo

Figure 1: CADSSO approach Synoptic

4. CADSSO MODELING STAGE

In this section, we have been focusing on the

modeling side of our approach [15]: context

modeling, service modeling, service variability

modeling, adaptation rules modeling and domain

specific business modeling.

4.1 Context Modeling

A lot of context definitions are found in literature

[16][17]. A comparison of these definitions is out of

the scope of this paper. The most appropriate and

the most referred [18][19] context definition is

given by Dey [16].

“Any information that can be used to

characterize the situation of an entity. An entity is a

person, place or object that is considered relevant

to the interaction between a user and an

application, including the user and the application

themselves.”

There is a growing body of research on context

meta-models [20][21][22][23][24][18][25]. Our

proposed context meta-model is directly joined to

the service variabilities. Each service is adaptable

based on its service variation points.

For us a Context is composed of

ContextElements and a ContextElement is

composed of ContextParameters. We have also

defined the ServiceContextElement entity which is

a ContextElement specific to one Service. The

ServiceContextElement can contain

ContextParameters from different ContextElements,

it can also contain its own ContextParameters

which is specific to the service. Each

ServiceVariationPoint (from service variability

meta-model) is joined to one instance of

ServiceContextElement.

The context can be divided into a lot of sub-

contexts. This division can be based on the source

of sub-context elements, such as: environment

(temperature, position, battery level…), user (user

profile), computational, sensed …etc [26][21][20].

We have left the context meta-model open to

support any type of sub-context. Our context meta-

model is illustrated in the figure 2.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

Sub-Context

1..*

ContextParameterType
1

ServiceContextElement

ServiceParameterType

ServiceVariationPoint

1
AdaptationRule

1..*

(from service meta-model)

(from service variability
meta-model)

ContextElement

name : String
description : String

Context

name : String
description : String

ContextParameter

name : String

*

*

Figure 2: Context meta-model

4.2 Service Modeling: Generic Service Meta-

Model

The service is the central element of a service-

oriented information system. The urbanization of

the latter passes, inevitably, by a service modeling

stage.

We have categorized the service entity into three

categories: Business service, Utility service and

Scheduling service. The latter simply uses the

already implemented BusinessServices through

ShedulingStrategies (see CTRestitutionProcess in

the section 6.1.2.1). The BusinessServices (see

CTCalculationService in the section 6.1.2.1)

implement business activities and the

UtilityServices constitute non functional activities.

The ShedulingStrategy identifies the services

variabilities and their orchestration strategy used by

a SchedulingService.

Each Service has at least one

ServiceVariationPoint which represents a variability

of the adaptable service. A service has one or more

ServiceOperations and a ServiceOperation has

ServiceParameters; a Service also has one or more

Service Level Agreements (SLA). According to

service attribute “type”, the implementation will

change (big web service, restful web service…etc).

Each SLA has conditions which are a boolean

expressions. Each condition has Reactions (e-mail,

sms …etc) and a Reaction is an UtilityService. The

requester -which represents a service user-, uses a

service through a SLA. A ServicePackage groups

one or more services. The ServiceInterface make it

possible to explicitly model the operations provided

by a service using this interface. A service has just

one BaseServiceInterface which groups operations

provided for all service users. A ServiceOperation

has a set of ServiceParameters. A Process is a

“ShedulingService”. We use the “process-as-a-

service” approach in all the life-cycle of a process.

Finally, BusinessServices can use UtilityServices.

The relation “uses” (from service A to service B)

means that the service A can call the service B. Our

generic service meta-model is represented in the

figure 3.

The language developer adds his domain

elements to our generic service meta-model [14] to

have his domain specific meta-model. Our

extension mechanism is based on specialization

relation (see section 6.1.1.1). All our meta-models

are in conformity with the MOF (Meta-Object

Facility) model [27].

SchedulingService UtilityServiceBusinessService

ServiceParameterType

Reaction

1

1..*
ServiceVariationPoint

1..*
1..*

(from service variability
meta-model)

use
*

*

out

*

SchedulingStrategy
(from service variability

meta-model)

Process

Service

name : String
version : String
description : String
type : String

ServicePackage

name : String

ServiceOperation

name : String

ServiceInterface

name : String

ServiceParameter

name : String

1..*

1..*

BaseServiceInterface

name : String

1 1..* Requester

use

1

1..* 0..1

1

1..*

Condition

Boolean Expression

1..*

*

SLA

category : String

InServiceParameter

OutServiceParameter

Figure 3: Generic service meta-model

4.3 Service Variability Modeling

Adaptation in software engineering received a lot

of research attention these last years. Several

categorizations of adaptation exist in the literature.

Raman and al. [7] proposed a goal-oriented

categorization. They distinguish, in his adaptation

taxonomy, between corrective, adaptive, perfective,

extending and preventive adaptation. In addition,

they divided adaptive adaptation into context-

aware, customization/personnalization and

mediation adaptation. Bucchiarone [28] and al.

differ between at run-time adaptation and designed

adaptation. The first one for on-the-fly adaptation,

the second, requires analyzing all the possible

adaptation case at design time. Khouloud [20] listed

three types of adaptation: reflexive adaptation,

adaptation controlled by policies and adaptation by

weaving aspects. The first is the ability of a system

to observe and act on itself during its execution.

Using these categorizations we can classify the

adaptation treated in our approach as designed and

adaptive adaptation. To model adaptation we opted

for modeling service variabilities through a

dedicated model.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

Service Variability is a characteristic (logic,

graphical presentation, persistence … etc) which

may vary within a service, according to service

context of use. The service variability is represented

with variation points. A variation point is a place in

service where the difference occurs.

Each service has a lot of variation points

[29][30][31]. We have categorized these variation

points into two categories: FunctionalVariation and

TechnicalVariation. The former is divided into three

classes: Logic, for the business logic variation;

Interface, for methods signature and methods

offered -by the service- variation and

SchedulingStrategy, for the variation of the

sequence of invocation of services used by a

process. TechnicalVariation is divided into three

classes: Locality, for the machine which hosts the

service; GraphicalPresentation, which means that

the graphical interface is adaptable according to the

device used by the service requester and

Persistence, for variation of Scheme or physical

representation of persistent data. The persistence

attribute “type” specifies the way in which the data

will be persisted (relational, XML …etc). Also,

SchedulingStrategy is specialized into two sub-

strategies: SequentialSchedulingStrategy and

ParallelSchedulingStrategy.

A service has a lot of ServiceVariationPoints and

each ServiceVariationPoint is matched to a

ServiceContextElement instance. Our service

variability meta-model is illustrated in the figure 4.

Figure 4: Service variability meta-model

To conclude, we have proposed a MOF [27]

meta-model [14] (generic service meta-model and

service variability meta-model) for modeling

adaptable services using DSM approach. To support

service adaptation modeling, we have integrated the

service variability notion to our generic service

meta-model. It allows modeling the various variants

of a service. It should be noted that addition of new

context elements or new service variability must be

done in a transparent manner and without

jeopardizing the service running and availability. In

addition, all common concepts of studied service

meta-models [20][22][23][32][24][25] are used in

our generic service meta-model in order to facilitate

the integration of service variability notion to

extents service oriented systems.

4.4 Adaptation Rules Modeling

In this section we treat the relation between

service variability model and the context model.

This connection is ensured by the Adaptation Rules

Model. This latter is modeled using complete

decision tables with mixed-entries [33].

The concept of decision table is derived from the

classical approach based on the data and treatment

separation paradigm. Decision tables have been

used extensively and successfully to produce

specifications for complex systems, they offer the

following benefits [33]:

- Easier to understand and review than code,

even with many conditions, actions and

rules;

- An accurate representation of the internal

logic of the function;

- Thanks to the completeness mechanism, it

is possible to ensure the completeness of

rules for all received input data;

A decision table exhaustively expresses the

relationship between the internal logic of a function,

input data and output data:

- The provided input data represent the

conditions of the decision table: in our

case they are in the form of

ServiceContextElement parameters; which

includes ContextParameters from different

ContextElements;

- The output data emanate from the actions

triggered by the decision table: in our case

the actions are in the form of

ServiceVariationPoints ;

- The couples (ServiceContextElement

parameters, service variation points)

represent the rules of our decision table.

This adaptation logic will be industrialized

using a rule engine.

We have one adaptation decision table by

service. The same is for processes adaptation rules,

each process (service) has an adaptation decision

table; the conditions represent

ServiceContextElement parameters and the actions

are in the form of process SchedulingStrategies.

Service

FunctionalVariation TechnicalVariation

Interface

1..* ServiceContextElement1

AdaptationRule

(from service
meta-model)

(from context meta-model)

Process

1

(from service meta-model)

SequentialSchedulingStrategy

ParallelSchedulingStrategy

SchedulingStrategy

name : String
services : List

Persistence

bdName : String
type : String

Locality

URL : String

ServiceVariationPoint

version : String

GraphicalPresentation

category : String

Logic

name : String

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

Decision tables excel at unitary treatment of

rules, on the other hand they do not guarantee the

exhaustiveness of the treatments of a function. This

is where Domain Specific Business Model comes

in. This latter allows modeling the internal behavior

of methods. For domain specific business modeling,

our fifth modeling step, the domain developer must

produce a DSL (see section 6.1.2.5).

5. CODE GENERATION STAGE

In the code generation stage the language

developer must produce the domain specific

business meta-model, the specific service meta-

model (abstract syntax) as an extension of our

generic service meta-model, the language (concrete

syntax), the domain framework and the code

generator.

The domain specific code generator uses the

domain specific framework to transform models

into full source code. The domain framework

essentially removes duplication from the generated

code, hides the target environment and facilitates

integration with existing code [3].

6. APPROACH EVALUATION: TAX

CALCULATION AND RESTITUTION

In this paper, we have chosen the tax domain to

illustrate our approach. The remainder of this

section is divided into two parts: modeling stage

and code generation stage.

6.1 Modeling Stage

We can divide the modeling stage into two steps:

1- Meta-models definition (abstract syntax): domain

specific service meta-model as an extension of our

generic service meta-model and domain specific

business meta-model. 2- Models specification:

modeling of our five models.

6.1.1 Meta-models definition

6.1.1.1 Domain specific service meta-model

definition

For a specific domain, the language developer

must produce his domain specific service meta-

model as an extension of our generic service meta-

model (defined in the section 4.2). Thus, we have to

add our tax elements to our generic service meta-

model to produce our tax calculation and restitution

service meta-model. This latter is divided into

Domain Specific Meta-Services and Domain

Specific Meta-Elements (see figure 5).

6.1.1.1.1 Domain specific meta-services

6.1.1.1.1.1 Tax calculation meta-services

The main business service is “TaxCalculation”; it

allows the calculation of the tax value. Their utility

services are: “GetTaxRate”, “GetRatePayerInfo”

and “GetRatePayerExemption” they allow getting,

respectively, tax rate, information of the ratepayer

and ratepayer exemption.

6.1.1.1.1.2 Tax restitution meta-services

For tax restitution we have the following

BusinessServices: DemandDeposit,

AdvanceRestitution, RestitutionRecordVerification

and TaxRestitution. The DemandDeposit service

allows deposit of restitution demand;

AdvanceRestitution handles an automatic restitution

based on the ratepayer category (A, B or C). The

RestitutionFolderVerification service performs

verifications of the restitution folder (invoices

…etc); TaxRestitution service performs the final tax

restitution.

In addition to the BusinessServices we have three

UtilityServices: GetDeficit, GetExcess, and

GetMinimumContributionCredit which allow

getting, respectively, deficit, excess and Minimum

Contribution Credit of the ratepayer.

6.1.1.1.2 Domain specific meta-elements

A Tax can have a lot of TaxDeclarations

(Declaration and Bundle for corporation tax); a

Ratepayer can file a lot of TaxDeclarations and a

RatePayer can have a lot of Exemptions.

Also, we have the TaxCalculationSLA which is a

SLA of the tax calculation business service.

TaxRestitutionSLA represents the SLA of tax

restitution. The figure 5 represents our tax

calculation and restitution service meta-model.

According to our tax meta-model, we can create

as much models as taxes. The example illustrated in

the figure 6 represents the service model of

Corporation Tax (CT) Calculation and Restitution.

Figure 5: Tax calculation and restitution service meta-

model

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

6.1.1.2 Domain specific business meta-model

definition

For domain specific business meta-model we

have used Business Process Model and Notation

(BPMN) Object Management Group (OMG)

standard [34] and mathematical formulas.

6.1.2 Models specification

6.1.2.1 Corporation tax calculation and

restitution service model (conforms to

our domain specific meta-model)

The CTCalculationService handles the

calculation of corporation tax. It uses the

GetCTRate, GetRatePayerProfile,

GetRatePayerExemption, GetCTDeficit,

GetCTExcess and

GetCTMinimumContributionCredit UtilityServices.

They allow getting respectively the corporation tax

rate, ratepayer profile, the ratepayer exemptions,

corporation tax deficit, excess and minimum

contribution credit. CTCalculationService takes an

in CTDeclaration parameter and has a

CTCalculationSLA. This latter is specialized into

two sub-SLAs, one for administrators and the other

for ratepayers. The response time of

CTCalculationService for an administrator must be

lower than three seconds; otherwise an e-mail and a

SMS must be sent to the exploitation service

manager.

The restitution of corporation tax is a

SchedulingService named CTRestitutionProcess. It

uses four business services: CTRestitutionDemand,

CTAdvanceRestitution,

CTRestitutionFolderVerification and

CTRestitution. They have the same role like

described in the meta-model but specific to

corporation tax. CTRestitutionProcess has its

specific SLA called CTRestitutionSLA. Our

corporation tax calculation and restitution service

model is illustrated in the figure 6.

Figure 6: Corporation Tax calculation and restitution

service model

6.1.2.2 Corporation tax service variability

model (conforms to our service

variability meta-model)

In this section we will identify the variation

points of each service. Each service has at least one

service variation point. For a client service request,

just one service variation point is used.

CTCalculationService: has four logical

variation points:

• CTCalculationWithExemption: is a

corporation tax calculation which takes into

account the ratepayer exemptions;

• CTCalculationWithoutExemption: is the

basic corporation tax calculation;

• CTCalculationNotResident: is a corporation

tax calculation for not resident ratepayers;

• CTAutomaticTaxation: is based on the

corporation tax paid for the last four years.

GetCTRate: has three logical variation points:

• GetCTRateNormal: is used to retrieve the

corporation tax rate for not financial resident

ratepayers;

• GetCTRateFinancial: is used to retrieve the

corporation tax rate for banks, insurance and

resident ratepayers;

• GetCTRateNotResident: is used for not

resident ratepayers.

CTAdvanceRestitution: has two logical

variation points:

• CTAdvanceRestitutionCatA: is used for

taxpayers whose category is “A”. Allows

80% of advance restitution;

• CTAdvanceRestitutionCatB: is used for

taxpayers whose category is “B”. Allows

50% of advance restitution.

CTRestitutionProcess: has three sequential

scheduling strategies. The three strategies are

differentiated by the use of CTAdvanceRestitution

service:

• CategoryAStrategy: uses the

CTAdvanceRestitutionCatA variation point

of the CTAdvanceRestitution service;

• CategoryBStrategy: uses the

CTAdvanceRestitutionCatB variation point

of the CTAdvanceRestitution service;

• CategoryCStrategy: doesn’t have advance

restitution.

The figure 7 gathers all corporation tax service

variabilities.

<<TaxCalculation>>
CTCalculationService

<<GetTaxRate>>
GetCTRate

<<TaxDeclaration>>
CTDeclaration

CTAdministratorSLA

CTRatePayerSLA
<<TaxCalculationSLA>>

CTCalculationSLA

use

in

<<GetRatePayerProfile>>
GetRatePayerProfile

use

<<TaxRestitutionProcess>>
CTRestitutionProcess

<<RestitutionFolderVerification>>
CTRestitutionFolderVerification

<<TaxRestitution>>
CTRestitution

<<DemandDeposit>>
CTRestitutionDemand

use

use

use

<<TaxRestitutionSLA>>
CTRestitutionSLA

<<AdvanceRestitution>>
CTAdvanceRestitution

use

<<GetRatePayerExemption>>
GetCTRatePayerExemption

use

<<GetExcess>>
GetCTExcess

<<GetDeficit>>
GetCTDeficit

<<GetMinimumContributionCredit>>
GetCTMinimumContributionCredit

use useuse

<<Tax>>
CT

<<Condition>>
ResponseTime

response time < 3s

<<Reaction>>
SMS

message : String
destination : String

<<Reaction>>
E-mail

message : String
subject : String
destination : String

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

Figure 7: Corporation tax service variability model

6.1.2.3 Corporation tax context model

(conforms to our context meta-model)

Our TaxContext model is composed of one

subContext: CTContext for corporation tax.

Obviously we can add other sub-context for other

taxes.

The CTContext is composed of two

ContextElements, RatePayer and CTDeclaration.

The former is composed of four ContextParameters:

Resident, Exemption, TaxRegim and Category. The

latter contains just one ContextParameter named

WithAnnex. The corporation tax context model is

represented in the figure 8.

< < C o n te x tE le m e n t> >

R a te P a y e r

R e s id e n t : b o o le a n

E x e m p t io n : b o o le a n

T a x R e g im e : s t r in g

C a te g o r y : { A , B , C }

< < C o n te x tE le m e n t> >

C T D e c la r a t io n

W ith A n n e x : b o o le a n

< < C o n te x t> >

T a x C o n te x t

< < S u b C o n te x t> >

C T C o n te x t

< < S u b C o n te x t> >

O th e r T a x C o n te x t

Figure 8: Tax context model

From the above model, and for corporation tax,

we have identified for each adaptable service a

ServiceContextElement: CTCalculationServiceSC,

GetCTRateSC, CTAdvanceRestitutionSC and

CTRestitutionProcessSC. Each

ServiceContextElement is responsible, respectively,

of variations of CTCalculationService, GetCTRate,

CTAdvanceRestitution and CTRestitutionProcess

services. Our ServiceContextElements are

illustrated in the figure 9.

6.1.2.4 Adaptation rules model

In this section we will model services adaptation

rules.

< < S e r v ic e C o n te x tE le m e n t> >

C T C a lc u la t io n S e r v ic e S C

R a te P a y e r .R e s id e n t

R a te P a y e r .E x e m p tio n

C T D e c la r a tio n .W i th A n n e x

< < S e r v ic e C o n te x tE le m e n t> >

G e tC T R a te S C

R a te P a y e r .T a x R e g im e

R a te P a y e r .R e s id e n t

< < S e r v ic e C o n te x tE le m e n t> >

C T A d v a n c e R e s ti tu tio n S C

R a te P a y e r .C a te g o r y

< < S e r v ic e C o n te x tE le m e n t> >

C T R e s ti tu t io n P r o c e s s S C

R a te P a y e r .C a te g o r y

Figure 9: Corporation Tax ServiceContextElements

“CTCalculationService” adaptation rules:

Adaptation of this service depends on two

context elements, RatePayer and CTDeclaration.

We have four logical service variation points: with

exemption, without exemption, for non-resident and

automatic taxation (see table 1). The conditions

possible values are (Yes,No). The indifferent value

(-) mean that the condition value can take one of the

condition possible values.

Table 1: “CTCalculationService” Decision Table.

CTCalculationService R1 R2 R3 R4 ELSE

C1

C2

C3

C4

An Exempt Ratepayer Y N N -

A Resident Ratepayer - Y N -

Is Declaration Deposited N Y Y N

Is Annex deposited N - - -

A1

A2

A3

A4

A5

CTCalculationWithExemption X

CTCalculationWithoutExemption X

CTCalculationNotResident X

CTAutomaticTaxation X

ERROR X

“GetCTRate” adaptation rules:

If the ratepayer is resident and the context

parameter “RatePayer.TaxRegime” equals to

“Bank” the “GetCTRateFinancial” variation point

will be used. If it is a not resident ratepayer, the

requester will use the GetCTRateNotResident (see

table 2).

Table 2: “GetCTRate” Decision Table.

GetCTRate R1 R2 R3

C1

C2

Ratepayer’s Regime Other Bank -

A Resident Ratepayer Y Y N

A1

A2

A3

GetCTRateNormal X

GetCTRateFinancial X

GetCTRateNotResident X

<<TaxCalculation>>
CTCalculationService

<<Logical variability>>
CTCalculationWithoutExemption

<<Logical variability>>
CTCalculationWithExemption

<<Logical variability>>
CTCalculationNotResident

<<GetTaxRate>>
GetCTRate

<<Logical variability>>
GetCTRateFinancial

<<Logical variability>>
GetCTRateNormal

<<Logical variability>>
CTAdvanceRestitutionCatB

<<Logical variability>>
CTAdvanceRestitutionCatA

<<AdvanceRestitution>>
CTAdvanceRestitution

<<Logical variability>>
CTAutomaticTaxation

<<Logical variability>>
GetCTRateNotResident

<<TaxRestitutionProcess>>
CTRestitutionProcess

<<SequentialSchedulingStrategy
variability>>

CategoryBStrategy

CTRestitutionDemand
CTAdvanceRestitutionCatB
CTRestitutionRecordVerification
CTRestitution

<<SequentialSchedulingStrategy
variability>>

CategoryCStrategy

CTRestitutionDemand
CTRestitutionRecordVerification
CTRestitution

<<SequentialSchedulingStrategy
 variability>>

CategoryAStrategy

CTRestitutionDemand
CTAdvanceRestitutionCatA
CTRestitutionRecordVerification
CTRestitution

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

“CTAdvanceRestitution” adaptation Rules:

For corporation tax restitution we have two

different treatments, one for ratepayer A category

and the other for B category (see table 3).

Table 3: “CTAdvanceRestitution” Decision Table.

CTAdvanceRestitution R1 R2 ELSE

C1 Rate payer category A B

A1

A2

A3

CTAdvanceRestitutionCatA X

CTAdvanceRestitutionCatB X

NoRestitution X

“CTRestitutionProcess” adaptation Rules:

Also restitution process has three

SchedulingStrategies, one for each ratepayer

category (A, B or C) (see table 4).

Table 4: “CTRestitutionProcess” Decision Table.

CTRestitutionProcess R1 R2 R3

C1 Rate payer category A B C

A1

A2

A3

Category A strategy X

Category B strategy X

Category C strategy X

6.1.2.5 Tax calculation business model:

corporation Tax

For domain specific business modeling, the

domain developer must produce a domain specific

language. In our case we have used Business

Process Model and Notation (BPMN) Object

Management Group (OMG) standard [34] and

mathematical formulas.

Corporation tax calculation business process:

The corporation tax calculation business process

shows, functionally, when each logical variation

point of CTCalculationService is used (see the

figure 10).

The activities Get Corporation Tax Excess, Get

Corporation Tax Deficit, Get Corporation Tax

Exemption and Get Corporation Tax Credit

Minimum Contribution use respectively the utility

services GetCTExcess, GetCTDeficit,

GetCTRatePayerExemption and

GetCTMinimumContributionCredit.

The “Get corporation tax Rate” sub-process (see

the figure 11) allows getting the corporation tax

rate. In other words it shows how to use the three

service variabilities of the GetCTRate service.

Figure 10: Corporation tax calculation business process

Figure 11: “Get corporation tax rate” sub-Process

CT calculation mathematical formula:

• CT Calculation without exemptions

(normal formula):

CT � MAX ��	E � D � CTR� � 	MCC � S,
TT � MCR � (1)

• CT Calculation with exemptions:

CT � MAX ��	E � E� � D � CTR� � 	MCC � S,
TT � MCR � 	2

E� � ��
�� � E 	3

• CT Calculation automatic taxation:

CT � ∑ ����� !��� "
# � CTR 	4

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

• CT Calculation for nonresident:

CT � E � CTR 	5
E = Earning E’ = Exempt Earning

N = Taxation year

CTR = Corporation Tax Rate

MCC = Minimum Contribution Credit (N-1)

MCR = Minimum Contribution Rate

TE = Exempt Turnover D = Deficit (N-1)

S = Surplus (N-1) TT = Total Turnover

6.2 Code Generation Stage

6.2.1 Graphical concrete syntax

To illustrate our code generator, we used in this

paper only two meta-models: domain specific

service meta-model and service variability meta-

model.

The abstract syntax of our domain specific

service and domain specific service variability

languages was done by the Eclipse Modeling

Framework (EMF) [35][36].

The model used to represent models in EMF is

called Ecore. Both EMF and MOF are conceptually

very similar and express in reality analogous meta-

modeling concepts [37]. More specifically, the

current version of the specification, that is MOF

2.4.2, introduces a subset of the MOF that is called

the Essential MOF (EMOF). The EMOF meta-

model is identical to the Ecore meta-model of the

EMF, whereas the differences are predominantly on

naming rather than conceptual. Therefore, the EMF

can effectively read and write serializations of the

EMOF meta-model [38].

We have chosen a graphical representation of our

DSLs concrete syntax (corporation tax service and

service variability modeling tools, figures 12 and

13), which is more comprehensible than the tree-

based view, as the saying goes: a graphical model is

worth a thousand words. We have used the

Graphical Modeling Framework (GMF) [39][40] to

create our DSLs concrete syntax.

Our Corporation Tax service Model designed by

our tax service modeling tool is illustrated in the

figure 12. The CTCalculationService has two

ServiceInterfaces: CTCalculationServiceInterface1

and CTCalculationServiceInterface2. The first

ServiceInterface has one ServiceOperation named

cTaxCalculation. This latter has two

inServiceParameters: ratePayer1 and

cTaxDeclaration1, it also has one

outServiceParameter named ctCalculationResult.

The same for our corporation Tax service

variability model designed by our tax service

variability modeling tool (see the figure 13). Our

CTCalculationService has four logical Service

VariationPoints. The figure 14 shows how to join a

service to its variation points.

6.2.2 Models to code transformation

DSM aims to generate code directly from the

models without having to modify generated models

or code. In other words, while creating a DSM

solution the objective is that after generation,

additional manual effort to modify or extend the

generated code is not needed [3]. With this in mind,

our code generator is performed by direct

transformation of the abstract domain models to the

corresponding source code without any model to

model transformation. The table 5 illustrates the

mappings between CADSSO approach models and

Java API for XML Web Services (JAX-WS) code

elements. This mapping is performed through a set

of transformation rules.

Table 5: CADSSO approach models and JAX-WS code

elements mappings

CADSSO Model elements Java

Package Package

ServiceInterface Interface (@WebService)

TaxCalculation Class (@WebService)

ServiceOperation Method (@Override)

OutServiceParameter method return value

InServiceParameter method parameter

RatePayer Class

TaxDeclaration Class

UtilityService Class (@WebService)

Process Class (@WebService)

ServiceVariationPoint Method

The first version of our code generator generates

only the class skeletons. The service operations

code will be generated in the next version based on

our domain specific business model, domain

specific context model and adaptation rules model.

We have chosen the Acceleo Model to Text

Language (MTL) to generate our source code.

Acceleo is a pragmatic implementation of

the OMG MOF MTL standard [41]. The target of

our code generator is a web service implementation

of JAX-WS.

We have used two Acceleo templates, one for

services implementations

(generateImplementations, see figure 15) and the

other for services interfaces (generateInterfaces, see

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

figure 16). The result of our code generator is

represented in the figures 17 and 18.

7. RELATED WORK

In our DSL and SOA explorative study [42], we

have studied a lot of DSLs for SOA concerning a

variety of specific domains: security, orchestration,

quality of service QoS, etc. The main conclusion of

our comparative study is that adaptation mechanism

is almost absent in all studied DSLs for SOA.

In [6] the context is modeled via an ontology-

based context model developed by using the Web

Ontology Language (OWL). In order to capture

vagueness (fuzzy information) in the context

representation, Madkour and al. propose an

extension of OWL by adding the concept “concept

property” which is a group of properties. The

concept property includes a specification of the

degree for each property. The context represents

situations. A situation is inferred using the semantic

Web Rule Language (SWRL). A task ontology

allows connecting a situation to specific task, and

then specific tasks to specific service to be

recommended. In addition, they propose a context-

aware service composition framework based on

Artificial Intelligent planning.

Heorhi and al. [43] and Bucchiarone and .al [28]

propose a comprehensive framework for adaptable

context-aware service-based business processes.

They represent the context in the form of state-

transition diagram of a set of entities. They defined

the concept of abstract activity, which is a goal to

achieve. This latter, is in the form of context

configuration to be reached. At runtime a specific

service composition will be generated to achieve

this goal. This work treats the composition of

services at run time and the adaption rules modeling

is out of its scope.

Hafiddi and al [24] defined a pattern for

modeling context-awareness of services, based on

an UML profile, AOP and a key value context

meta-model.

Also Bucchiarone and al. [44][45] defined a

context-driven adaptation modeling process for the

on-the-fly adaptation of the service-based

applications (SBA). The context modeling is done

by an XML representation of the context

components. This latter is refined by adding new

context dimensions if necessary. Then the

relationship (named adaptation triggers) between

SBA elements (service, process…) and context

dimensions has been done via a mapping table.

Then they have determined the adaptation strategies

(service substitution, re-execution, re-

composition…) and their mapping with the SBA

elements. These mapping is done via a

service/adaptation-strategy table. The design and

realization of monitors (able to detect changes in

the context dimension) and platform (responsible of

the context analysis and trigger the corresponding

adaptation action) have not been illustrated in this

paper.

Kazhamiakin and al. [7] Defined an adaptation

taxonomy with three dimensions: the “why”

dimension which define adaptations kinds, the

“what” dimension for subject and scope of

adaptation, and the “how” dimension for adaptation

strategy, decision mechanism and adaptation

implementation. We conclude that all studied

approaches do not focus on the specific role of

various contextual properties in the adaptation

process.

Yahyaoui [46] proposes context-aware service

policies to achieve adaptable web services. He

extends the WSPL language (Web Service Policy

Language) making the policies rules context-aware.

The context, as he has shown, is represented by a

single simple variable. Based on this last, the policy

rules change. In addition to a very simplified

representation of the context and the absence of

adaptation rules modeling, there is a strong

coupling between context and policy rules.

Kenzi and al [32] defined an UML profile

(VSoaML) for modeling adaptable service oriented

systems. They treat the service adaptation with

multiview service concept. Context modeling is out

of the scope of their work.

In [22], the authors present an interoperable

architecture for the development of context-aware

services based on Model Driven Engineering and

ontologies. Their context meta-model is based on

the OMG’s ODM (Ontology Definition

Metamodel) and supported by OMG’s MDA

(Model Driven Architecture). For them a specific

context owns its context-aware tasks which are in

relation with services. Adaptation rules are absent

in their work.

Achilleos [25][38] defined a model-driven petri

net based framework for pervasive service creation,

he deals essentially with the dynamic nature of

pervasive services (service behavior), in addition,

he treats only the service presentation variability.

Boukadi [20] uses Aspect Oriented Programming

(AOP), with an UML profile, for modeling services.

She uses an ontology for context modeling of inter-

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

enterprises cooperation domain. She did not deal

with service adaptation modeling.

In [23], the authors also defined an UML-

Based Modeling Language for Model-Driven

Development of Context-Aware Web Services.

They defined the element CAObject (Context

Aware Object) which is a generalization of service

and operation.

In [21], the authors specify a service adaptation

approach based on UML, AOP and MDA with a

context meta-model. They use context and aspect

techniques to achieve service adaptability using a

model driven approach. Through Model Driven

Development, context models are built as

independent pieces of application and at different

abstraction levels then attached by suitable

transformation techniques called parameterized

transformation. Context model specify contextual

entities that are involved in a given context aware

application. From a context model, an aspect model

is derived. This aspect model specifies the

behaviors linked to the context model.

Soo Ho Chang et al. [29][30][31] focused on

service variability modeling. Service and context

modeling are out of the scope of their work.

The current version of SOAML (1.0.1) [47] does

not support variability and context awareness.

8. CONCLUSION AND OUTLOOK

To facilitate the development of adaptable

service oriented systems for a specific domain, we

have proposed the CADSSO development

approach. To produce an adaptable system, the

variability must carefully be analyzed and designed

in the first stages of a modeling approach. Indeed,

our approach has planned a model specific to the

variability specification. To take advantage of

contextual information, the context of use was also

modeled via a context model. In addition and for

better concerns separation, adaptation rules have

been modeled separately with decision tables. The

domain business modeling aims to complete the

generation of the dynamic code, so allowing being

close to full code generation.

Our approach is divided into two stages. The first

one is modeling stage. Likewise, it is divided into

two steps: 1- Meta-medels definition: (abstract

syntax of the DSLs) for domain specific service (as

an extension of or generic service meta-model) and

for domain specific business. 2- Models

specification. The second stage consists of the

development of the modeling tools (graphical

modeling syntax) and code generator for a specific

target platform.

We are currently finalizing our modeling tool and

code generator by incorporating the domain specific

business model, domain specific context model and

adaptation rules model into our toolbox. Model

validation is also planned, which will help to avoid

semantic errors in the generated code.

REFRENCES:

[1] Bauer, F. L., Bolliet, L., & Helms, H. J. “Report

on a Conference Sponsored by the NATO

Science Committee”, In NATO Software

Engineering Conference 1968, 1968 (p. 8).

[2] Capers Jones, Software Productivity Research.

Available :

http://www.cs.bsu.edu/homepages/dmz/cs697/la

ngtbl.htm, 1997.

[3] Kelly, S., & Tolvanen, J. P. (2008). Domain-

specific modeling: enabling full code

generation. John Wiley & Sons.

[4] Steven Kelly, “Domain-Specific Modeling 76

cases of MDD that works,” MetaCase, 2009.

[5] MetaCase, “Domain-Specific Modeling with

MetaEdit+: 10 Times Faster than UML”, White

paper, 2012.

[6] Madkour, M., El Ghanami, D., Maach, A., &

Hasbi, A. “Context-Aware Service Adaptation:

An Approach Based on Fuzzy Sets and Service

Composition”, Journal of Information Science

and Engineering, 29(1), 2013, 1-16.

[7] Kazhamiakin, R., Benbernou, S., Baresi, L.,

Plebani, P., Uhlig, M., & Barais, O. “Adaptation

of service-based systems”, In Service research

challenges and solutions for the future

internet, 2010, (pp. 117-156), Springer Berlin

Heidelberg.

[8] Schilit, B., Adams, N., & Want, R. “Context-

aware computing applications”, In First

Workshop on Mobile Computing Systems and

Applications, 1994 December , pp. 85-90, IEEE.

[9] Chen, G., & Kotz, D. “A survey of context-

aware mobile computing research”, Technical

Report TR2000-381, Dept. of Computer

Science, Dartmouth College, Vol. 1, 2000, No.

2.1, pp. 2-1.

[10] Davis, J. Open source SOA. Manning

Publications Co., 2009.

[11] Ric Merrifield, Jack Calhoun and Dennis

Stevens, Harvard Business Review. Available :

https://hbr.org/2008/06/the-next-revolution-in-

productivity# , 2008.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

[12] Kumar, B. V., Narayan, P., & Ng, T.

Implementing SOA Using Java EE, Pearson

Education, 2009.

[13] Papazoglou, M. P., Traverso, P., Dustdar, S., &

Leymann, F. “Service-oriented computing: a

research roadmap”, International Journal of

Cooperative Information Systems, vol. 17, 2008,

no. 02, pp. 223-255.

[14] Lethrech, M., Elmagrouni, I., Kenzi, A., Nassar,

M. & Kriouile, A. “A generic metamodel for

adaptable service oriented systems modeling

using DSM approach”, In 3rd International

Symposium ISKO-Maghreb, Marrakech, 2013,

November, pp. 1-6, IEEE.

[15] Lethrech, M., Elmagrouni, I., Nassar, M.,

Kriouile, A., & Kenzi, A. “Domain Specific

Modeling approach for context-aware service

oriented systems”, In International Conference

on Multimedia Computing and Systems

(ICMCS), 2014 April, (pp. 575-581). IEEE.

[16] DEY, A. K. “Understanding and using context,”

Personal and Ubiquitous Computing, Special

issue on Situated Interaction and Ubiquitous

Computing, 2001, 5, 1.

[17] Strang, T., Linnhoff-Popien, C., & Frank, K.

“Cool: A context ontology language to enable

contextual interoperability”, In International

conference on Distributed applications and

interoperable systems. 2003, Springer, pp. 236-

247.

[18] Wada, H., Suzuki, J., Takada, S., & Doi, N.

“Leveraging metamodeling and attribute-

oriented programming to build a model-driven

framework for domain specific languages”, In

the 8th JSSST Conference on Systems

Programming and its Applications, 2005,

March.

[19] Oberortner, E., Zdun, U., & Dustdar, S.

“Tailoring a model-driven quality-of-service dsl

for various stakeholders”, In ICSE Workshop on

Modeling in Software Engineering. 2009, pp.

20-25, IEEE.

[20] Khouloud Boukadi , “On demand inter-

enterprises cooperation : A flexible approach

based on adaptable services”, ENSM Ecole

Nationale Superieure des Mines, 2009,

november.

[21] Valérie Monfort and Slimane Hammoudi,

“Towards Adaptable SOA: Model Driven

Development, Context and Aspect,” Proc

ICSOCServiceWave, 2009, pp. 175–189,

Springer.

[22] Samyr Vale, Slimane Hammoudi, “An

Architecture for the Development of Context-

aware Services based on MDA and Ontologies,”

Proc of the International MultiConference of

Engineers and Computer Scientists Vol I, 2009,

Hong Kong.

[23] Sheng, Q. Z., & Benatallah, B. “Contextuml: a

uml-based modeling language for model-driven

development of context-aware web services”, In

International Conference on Mobile Business.

2005, pp. 206-212, IEEE.

[24] Hafiddi, H., Baidouri, H., Nassar, M., &

Kriouile, A. “An aspect based pattern for

context-awareness of services”. International

Journal of Computer Science and Network

Security, vol. 12, no. 1, 2012, pp. 71-78.

[25] Achilleos, A., Yang, K., & Georgalas, N.

“Context modelling and a context-aware

framework for pervasive service creation: A

model-driven approach”, Pervasive and Mobile

Computing, vol. 6, no. 2, 2010, pp. 281-296

[26] Bettini, C., Brdiczka, O., Henricksen, K.,

Indulska, J., Nicklas, D., Ranganathan, A. &

Riboni, D. “A survey of context modelling and

reasoning techniques”, Pervasive and Mobile

Computing, vol. 6, no. 2, 2010, pp. 161-180

[27] OMG, MOF, Available :

http://www.omg.org/mof/, 2014.

[28] Bucchiarone, A., Marconi, A., Mezzina, C. A.,

Pistore, M., & Raik, H. “On-the-fly adaptation

of dynamic service-based systems:

incrementality, reduction and reuse”, In Service-

Oriented Computing, 2013, pp. 146-161,

Springer Berlin Heidelberg.

[29] Chang, S. H., & Kim, S. D. “A service-oriented

analysis and design approach to developing

adaptable services”, In IEEE International

Conference on Services Computing. 2007, pp.

204-211, IEEE.

[30] Chang, S. H., La, H. J., & Kim, S. D. “A

comprehensive approach to service adaptation”,

In IEEE International Conference on Service-

Oriented Computing and Applications. 2007,

pp. 191-198, IEEE.

[31] Kim, S. D., Her, J. S., & Chang, S. H. “A

theoretical foundation of variability in

component-based development”, Information

and Software Technology, vol. 47, no. 10, 2005,

pp. 663-673

[32] Kenzi, A., El Asri, B., Nassar, M., & Kriouile,

A. “Engineering adaptable service oriented

systems: A model driven approach”, In IEEE

International Conference on Service-Oriented

Computing and Applications. 2009, pp. 1-8,

IEEE.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

[33] Pooch, U. W. “Translation of decision tables”,

ACM Computing Surveys (CSUR), 6(2), 1974,

125-151.

[34] OMG, BPMN. Available :

http://www.omg.org/bpmn/, 2014.

[35] Eclipse EMF. Available:

http://www.eclipse.org/modeling/emf/, 2014.

[36] Steinberg, D., Budinsky, F., Paternostro, M., &

Merks, Ed. EMF: Eclipse Modeling

Framework. Addison-Wesley Professional,

2008.

[37] Mohamed, M., Romdhani M., & Ghedira, K.

“MOF-EMF Alignment”, in the International

Conference on Autonomic and Autonomous

Systems, Athens, Greece, 2007, June, pp. 1-7.

[38] Achilleos, A. “Model-Driven Petri Net based

Framework for Pervasive Service Creation”,

Unpublished doctoral dissertation, School of

Computer Science and Electronic Engineering,

University of Essex.

[39] Eclipse GMF. Available:

http://www.eclipse.org/modeling/gmp/, 2014.

[40] Richard C. Gronback. “Eclipse Modeling

Project: A Domain Specific Language (DSL)

Toolkit”, Addison-Wesley, 2009.

[41] Eclipse Acceleo. Avalable:

http://www.eclipse.org/acceleo/, 2014.

[42] Lethrech, M., Elmagrouni, I., Kenzi, A., Nassar,

M. & Kriouile, A. “Dsl and SOA: an

explorative study”, In JDTIC, Doctoral days in

information and communication technologies,

Casablanca, 2012.

[43] Raik, H., Bucchiarone, A., Khurshid, N.,

Marconi, A., & Pistore, M. “Astro-captevo:

Dynamic context-aware adaptation for service-

based systems”, In IEEE Eighth World

Congress on Services (SERVICES), 2012, June

pp. 385-392, IEEE.

[44] Bucchiarone, A., Kazhamiakin, R., Cappiello,

C., Di Nitto, E., & Mazza, V. “A context-driven

adaptation process for service-based

applications”, In Proceedings of the 2nd

International Workshop on Principles of

Engineering Service-Oriented Systems, 2010,

May, pp. 50-56. ACM.

[45] Bucchiarone, A., Cappiello, C., Di Nitto, E.,

Kazhamiakin, R., Mazza, V., & Pistore, M.

“Design for adaptation of service-based

applications: main issues and requirements”, In

Service-Oriented Computing

ICSOC/ServiceWave Workshops, 2010, January,

pp. 467-476. Springer Berlin Heidelberg.

[46] Yahyaoui, H., Wang, L., Mourad, A., Almullah,

M., & Sheng, Q. Z. “Towards context-adaptable

Web service policies”, Procedia Computer

Science, 5, 2011, 610-617.

[47] OMG, SoaML. Available:

http://www.omg.org/spec/SoaML/1.0.1/, 2014.

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

Figure 12: Corporation Tax Service Model Designed By The Tax Service Modeling Tool

Figure 13: Corporation Tax Service Variability Model Designed By The Tax Service Variability Modeling Tool

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

Figure 14: Ctcalculationservice Logical Service Variation Points

[template public generateImplementations(anAdaptableSOA : AdaptableSOA)]

[comment service implementations generation /]

[for (s: Service | anAdaptableSOA.services)]

 [file (s.name.toUpperFirst().concat('.java'), false)] …

public class [s.name.toUpperFirst()/] implements [for (si: ServiceInterface | s.serviceInterfaces) separator (',

')][si.name/] [/for]{

 [for (svp: ServiceVariationPoint | s.serviceVariationPoints)]

 [for (si: ServiceInterface | s.serviceInterfaces)]

 [for (so: ServiceOperation | si.serviceOperations)]

 @Override

 public [so.outServiceParameter -> at(1).type/] [so.name.concat(svp.name) /](

 [for (insp: InServiceParameter | so.inServiceParameter) separator (', ')] [insp.type/] [insp.name/] [/for]

){

 [so.outServiceParameter -> at(1).type/] [so.outServiceParameter -> at(1).name/] = 0;

 // business

 return [so.outServiceParameter -> at(1).name/];

 }

 [/for]

 [/for]

 [/for]
 } …

Figure 15: The “Generateimplementations” Acceleo Template

[template public generateInterfaces(anAdaptableSOA : AdaptableSOA)]

[comment service interfaces generation/]

[for (s: Service | anAdaptableSOA.services)]

 [for (si: ServiceInterface | s.serviceInterfaces)]

 [file (si.name.toUpperFirst().concat('.java'), false)]

package [s._package.name/]; …

public interface [si.name.toUpperFirst()/] {

 [for (svp: ServiceVariationPoint | s.serviceVariationPoints)]

 [for (si: ServiceInterface | s.serviceInterfaces)]

 [for (so: ServiceOperation | si.serviceOperations)]

 @WebMethod

 [so.outServiceParameter -> at(1).type/] [so.name.concat(svp.name) /](

 [for (insp: InServiceParameter | so.inServiceParameter) separator (', ')] [insp.type/] [insp.name/] [/for]);

 [/for]

 [/for]
 [/for] …

Journal of Theoretical and Applied Information Technology
 20

th
 August 2015. Vol.78. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

252

Figure 16: The “Generateinterfaces” Acceleo Template

package ctpackage;

import javax.jws.WebService;

@WebService(endpointInterface = "ctpackage.CTCalculationServiceInterface1")

public class CTCalculationService implements CTCalculationServiceInterface1 , CTCalculationServiceInterface2 {

 @Override

 public double cTaxCalculationAutomaticTaxation(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1){

double ctCalculationResult = 0;

 // business

 return ctCalculationResult;

 }

 @Override

 public double cTaxCalculationNotResident(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1){

 double ctCalculationResult = 0;

 // business

 return ctCalculationResult;

 }

 @Override

 public double cTaxCalculationWhithoutExemption(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1){

 double ctCalculationResult = 0;

 // business

 return ctCalculationResult;

 }

 @Override

 public double cTaxCalculationWithExemption(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1){

 double ctCalculationResult = 0;

 // business

 return ctCalculationResult;

 }

}

Figure 17: Code Generation Result Of The Acceleo Temple Generateimplementations

package ctpackage;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.Style;

@WebService

@SOAPBinding(style = Style.DOCUMENT)

public interface CTCalculationServiceInterface1 {

 @WebMethod

 double cTaxCalculationAutomaticTaxation(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1);

 @WebMethod

 double cTaxCalculationNotResident(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1);

 @WebMethod

 double cTaxCalculationWhithoutExemption(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1);

 @WebMethod

 double cTaxCalculationWithExemption(TaxDeclaration cTaxDeclaration1 , RatePayer ratePayer1);

}

Figure 18: Code Generation Result Of The Acceleo Temple Generateinterfaces

