
Journal of Theoretical and Applied Information Technology
 10

th
 August 2015. Vol.78. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

120

APPLYING CASE BASED REASONING IN AGILE

SOFTWARE DEVELOPMENT

AIMAN TURANI

Associate Prof., Faculty of computer science and Engineering, TAIBAH University, Medina, KSA

E-mail: aimanturani@hotmail.com

ABSTRACT

There is a common misconception among developers who follow Agile development methods, that

following formal processes and modeling are unnecessarily and perceived as a waste of effort [1]. The

initial intension of Agile was not an anti-methodology movement but rather a balance between processes

and production. Nevertheless, the main challenges facing software that are developed using Agile

development methods are the risk of higher architectural design mistakes, and the slower transfer rate of

knowledge especially when valuable developers and expertise tend to leave their organizations.

 Agile advocates itself as a framework based on engaging knowledge workers in affective way. It

focuses primary on transferring the tacit type of knowledge within production teams. Yet transferring the

explicit type of knowledge is important as well. Reusing past projects' artifacts will have a positive impact

on the reduction of costly architectural mistakes and the increasing of the overall learnability, productivity

and efficiency of the organization as a whole. Both tacit and explicit knowledge are needed. A hybrid

approach that combines both kinds of knowledge is vital and essential especially for teams with diversity

skills and knowledge working closely throughout project’s development life cycle.

 This paper focuses on two main Knowledge Based Management processes that should be applied

within Agile development methodologies. The first process focuses on the transformation of tacit

knowledge into explicit knowledge using the traditional design models techniques. The second process

focuses on usage of Case Based Reasoning systems for facilitating the retrieval and reuse of past projects'

solution artifacts. We have selected CBR over other Knowledge Base systems due to its effectiveness in

representing solutions for software development domain, which is considered a complex domain, without

the need of having a large set of training cases. In this paper we have proposed an ICBR (Product Backlog

Item Case Based Reasoning) that could be easily integrated within many Agile development

methodologies to effectively disseminate valuable knowledge among organizations’ teams and personals.

In this paper we have applied ICBR on the Scrum methodology as a proof o concept for facilitating the

dissemination of various software artifacts among team’s developers to maximize the use of cooperative

wisdom and experience found within organizational entity.
Keywords- Agile development, Knowledge based Management, Scrum, and Case Based Reasoning.

1. INTRODUCTION

Agile has gained an increasing popularity in

software development during last decade [2]. It

has increasingly used at various types of projects

such as e-commerce, e-services, e-government

etc. due to its quickness in responding to

unpredictability businesses changes.

 Agile is not a single methodology,

framework or process. It is a collection of core

value statements and principles [3]. Mainly

Agile emphasizes the following values:

individuals and interactions over processes and

tools, working software over comprehensive

documentation, customer collaboration over

contract negotiation, responding to change over

following a plan.

Critics of Agile consider it as an anti-

methodology movement where process and

documentation are not valued. The agile

manifesto values working software over

comprehensive documentation, but what if

developing team’s tacit knowledge is

insufficient. In addition, without a proper

modeling more projects' delays and reworks

could happen caused by critical architectural

mistakes. Architecture discontinuities for

instance, could lead to serious performance and

security problems. The amount of rework needed

to overcome these types of mistake is substantial

where no simple refactoring could fix [4].

Journal of Theoretical and Applied Information Technology
 10

th
 August 2015. Vol.78. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

Architectural mistakes usually happen when

teams’ main concern is on early working

product. Scaling that product in later stages

would usually uncover these mistakes.

 Adopting more inclusive knowledge

management processes and concepts can be used

to overcome some of Agile’s challenges. For

instance, producing explicit knowledge via

design models and diagrams would facilitate

both team communication and solution

reusability. A team member can communicate

his thoughts to others effectively by drawing

simple diagrams on a data show using, for

instance, UML notation. His colleagues can

understand his solution faster and elaborate more

effectively. Furthermore, other developers could

reuse that solution in successive projects. As

known, the similarity found between light weight

software products, such e-commerce and e-

service products, tends to be high. Many

functionalities are common across applications

within the same domain and reusing design

ideas, and software components would lead to a

higher efficiency and productivity.

 Case-based reasoning offers a considerable

potential mean of indexing and retrieving

previous project knowledge using simple natural

language descriptions.

2. SCRUM METHODOLOGY

In this study we have chosen Scrum

methodology as a representative of Agile

development methodologies. Scrum is a good

example of Agility due to its simplicity and

flexibility [5]. The Scrum emphasizes team

communication and collaboration, and rapid

response to business changes. Scrum software

development is mainly evolved via a series of

sprints. Each sprint represents a development

phase where its duration is from one to four

weeks. It usually begins with a concise planning

meeting and concludes with a review meeting.

Product items are designed, coded, and tested

during sprints.

 The main roles involved in Scrum are

Product Owner, Development Teams, and Scrum

Master. Product Owner determines what needs

to be built in each sprint. He represents

customer’s requirements and priorities.

Development Teams build what is needed in each

sprint. Scrum Masters ensure the sprint process

happens smoothly. He acts as a facilitator for

both the Product Owner and the Development

team.

 A list of all desired work on the project is

called Product Backlog. They represent all users’

requirements. Product Backlog consists of a list

of items. They are expressed in such way where

each item has value to the end users of the

product.

3. CASE-BASED REASONING IN

KNOWLEDGE MANAGEMENT

Case-Based Reasoning system is a part of

knowledge based systems. It is an artificial

intelligence based system designed to imitate

human problem solving. Usually, when a human

is faced with a new problem, he searches his

memory and looks for similar past problem and

applies its solution to the current problem. So

principally, it is reusing old experiences to

understand and solve new problems. We have

selected CBR over other Knowledge based

systems, such as rule based systems or machine

learning systems, due to the following key

points. Rule-based systems are based on set of

rules that need to be obtained by knowledge

engineer working with domain experts. These

rules are difficult to be formulated within

software development domain due to its

complexity. Knowledge based systems that are

based on artificial intelligent need a large set of

training cases, which are difficult to get, to form

generalization and identifying the commonalities

between a retrieved case and the target case. On

the other hand, CBR is effective in getting

solutions within rich complex domains with

relatively small size set of training cases.

Adapting Case-based reasoning CBR

usually consists of the following process [6]:

1. Development of CBR system to store

and retrieve cases.

2. Development of Case Library that

consists of large amount of cases to

enhance the set of retrieved possible

solutions.

3. System operation and deployment

process

4. Database mining process

5. Management and organizational support

process

6. Knowledge transfer process

Journal of Theoretical and Applied Information Technology
 10

th
 August 2015. Vol.78. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

4. ADOPTING CASE-BASED

REASONING WITHIN SCRUM

FRAMEWORK

In this research there are two main stages applied

as shown in Figure 1. The first stage focuses on

the transformation of tacit knowledge within the

organizational teams into explicit knowledge

using Knowledge based management mechanism

called Externalization. In this stage teams

attempt to rationalize their tacit knowledge and

express them into formal models such as UML

[7]. The second stage focuses on employing

Case Based Reasoning systems for retrieving and

reusing past project knowledge.

Figure 1: Adopting Case-based Reasoning process

5. EXTERNALIZATION KNOWLEDGE

WITH UML

As known, UML is based on well-defined

diagrammatic notations. In this paper we focus

on two primary benefits of using UML for

developing a software application based on

Scrum methodology. These benefits are

communication and reusability. The use of UML

to communicate design ideas within a

Developing Team during Scrum's sprint planning

meeting tends to enhance the flow of knowledge

between development team members. This can

increase the overall employee's learnability,

creativity, and reduces the architectural mistakes.

Modeling using UML allows for the production

of knowledge based documents that can be

reused over several other projects.

UML notations can clearly demonstrate

their conceptual contents in a well structured and

modular form more than code. In addition,

representing and communicating creative design

ideas can be instantly done using UML. UML

can also be useful in reducing architecture

mistakes. It allows a Developing Team to deal

smoothly with architectural complexity at

various levels of abstraction and provoke team's

input regarding architecture and design decisions

to resolve any potential architectural mistake.

 Reusability on the other hand, advocates

reusing software solution artifacts (such as UML

design diagrams, Use Cases, GUI designs,

Database schema, code, etc.) for more

productivity and efficiency. In rapid application

development methodologies reusing software

artifacts at early stage of the software production

could lead to faster design decisions with fewer

errors. Due to the similarity between same

domain projects, for instance e-flight reservation

projects, it is normal to find developing teams

making the same diagrams over and over again.

If these diagrams are stored in a repository, it is

most likely other team will reuse them. Reusing

software designs is more economic and intuitive

than building whole software from a scratch.

6. ITEMS CASE BASED REASONING

During the Sprint Planning meeting, a

Developing Team collaborates in selecting Sprint

backlog item that they intend to work at.

Traditionally, items are analyzed to estimate

tasks and efforts needed to develop them. In

order to promote knowledge externalization, a

new task (ICBR) should be carried out within the

development of each Product backlog for better

effort estimation and knowledge reusability. In

this paper, a proposed process of ICBR task

consists of the following steps:

1. Search the case library for similar

Product backlog item using a backlog

item text description.

2. Select and retrieve the most similar

past backlog item/s. This involves the

comparison of the current item with the

retrieved items and somehow ranking

them in an order.

3. Estimate the effort needed to develop

the current backlog item based on effort

made on the retrieved Item.

4. Adapt the design solution of the

retrieved item.

5. Add the newly solved backlog item

along with its actual effort duration to

the case library for future reuse.

Journal of Theoretical and Applied Information Technology
 10

th
 August 2015. Vol.78. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

Figure 2: Items Case Based Reasoning

7. SQL SERVER AND SEMANTIC

SEARCH

In this research we are using the Semantic Search

function within the SQL server [8] as our Case

Based Reasoning system due to its capability to

store large scale of document and its easiness to

use. Most modern search engines, such as

Google, are samples of accessing unstructured

data using semantic search. Semantic search in

SQL Server enables new capabilities that are

beyond typical keyword searches. Full-text

search enables querying words, while semantic

search enables querying the meaning of the

document. Semantic Search can enable a user to

perform a detailed search into unstructured

documents stored in the databases to find any

potential similarity with inquired text. It extracts

and indexes statistically relevant texts within a

document then it uses these texts to identify and

index documents that are related. Each

document has a vector with a vector component

of each keyword. The document similarity index

uses a cosine similarity algorithm to determine

the angle between two vectors. The smaller angle

between their keyword vectors indicates more

similarity between documents. Documents types

that are supported by search using SQL Server

can range of many types, including Word, Power

Point, PDF, Excel, HTML, and XML.

 In this research the main scenario of using

SQL server for Semantic Search function have

been done according to above listed four steps.

Firstly, all past backlog items artifacts are saved

in two file tables, the Description file table, and

the Solution file table. The Description file table

is used to store backlog items description

documents. The Solution file table is used to

store backlog items solution artifacts and effort

duration. Both tables are linked together using a

Backlog Item ID. SQL server enables Team

Developers to search through the Description file

table using full-text search and semantic search

based on the investigated Backlog Item

description. The SQL server then returns all

similar items. Secondly, a Team Developer

browses the retrieved solution of each backlog

item. Thirdly, the Team Developer can reuse and

adapt the design solution of the most similar

Backlog Item. Finally, the Team Developer adds

the newly/updated solved Backlog Item to both

file tables.

8. EVALUATION AND FUTURE WORK

A simple evaluation based on a basic

questionnaire has been conducted on 27

developing teams’ members working on two

separate development companies shows

encouraging results on using ICBR process in

their work over the last 5 months. As table 1

shows that 58% thinks that ICBR has helped

them in learning new knowledge from past

project.
Table 1: ICBR Usage Questioner Results

 Stro.

Agree

Agree Un

Decided

 Disagr.

Using ICBR

have helped me

in learning new

knowledge

from past

project

5 10 7 5

Using ICBR

had reduce

architectural

mistakes

3 9 14 1

Using ICBR

had reduced

development

time

4 9 11 3

These preliminary results are promising and we

think the results will show further satisfactory in

the future when teams get more used to this new

approach. Other quantities assessments are

currently used based on a measurement

technique, Net hours saved metric, and we are

looking toward using other techniques for more

comprehensive evaluation. Finally, this works

might gain additional importance within virtual

developing teams where virtual distant will

further weaken the flow of tacit knowledge

within these disperse teams.

Journal of Theoretical and Applied Information Technology
 10

th
 August 2015. Vol.78. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

9. CONCLUSION

The main objective behind this paper was to

investigate the use of two essential processes

within knowledge base management to overcome

the limitation and challenges found within the

Agile Development Framework. The

Externalization process has been used to transfer

tacit knowledge into explicit knowledge by using

UML. The other knowledge based management

process was using Case Based Reasoning for

retrieving and reusing past project solutions. We

have proposed ICBR process within Scrum

methodology for reusing software artifacts and

more accurate effort estimation.

 Semantic search feature within SQL server

has been used as the implementation medium

due to its scalability and efficiency. In this

paper we have also proposed a general process of

using Semantic Search function within SQL to

facilitate the transfer of past projects' knowledge

based on the description text of the investigated

Product Backlog Item.

 Adapting ICBR process within Agile

methodology would have a positive impact on

the Knowledge transfer which maximize the use

of wisdom and minimize the mistakes within

organizational entity.

ACKNOWLEDGEMENT

We would like to owe thanks to TAIBAH

University, College of Computer Science and

Engineering (CCSE), KSA for supporting this

research

REFERENCES

[1] A. Qumer, B. Henderson-Sellers, "A

framework to support the evaluation,

adoption and improvement of agile

methods in practice", Journal of Systems

and Software, Vol 81, No 11, 2008, pp.

1899–1919.

[2] Torgeir Dingsøyra, Sridhar Nerurc,

VenuGopal Balijepallyd, and Nils Brede

Moe, "A decade of agile methodologies:

Towards explaining agile software

development", Journal of Systems and

Software, Vo 85, No 6, 2012, pp. 1213–

1221.

[3] Boehm, B., & Turner, R., Balancing agility

and discipline: A guide for the perplexed.

2003, Addison-Wesley Professional.

[4] Lan Cao, Kannan Mohan, Peng X, and

Balasubramaniam Ramesh,"A framework

for adapting agile development

methodologies", European Journal of

Information Systems, Vol 18, 2009, pp.

332–343.

[5] Cardozo, E., Neto, J. B. F. A., Barza, A.,

França, A., & da Silva, F. SCRUM and

productivity in software projects: a

systematic literature review. In 14th

International Conference on Evaluation

and Assessment in Software Engineering

(EASE), 2010.

[6] Montani, S., & Jain, L. C., Case-Based

Reasoning Systems. In Successful Case-

based Reasoning Applications-2, Springer

Berlin Heidelberg., pp. 1-6, 2012.

[7] Fritz Solms, Dawid Loubser " URDAD as a

semi-formal approach to analysis and

design," Innovations in Systems and

Software Engineering, Vol 6, No 1-2, 2010,

pp. 155-162.

[8] Microsoft MSDN, Semantic Search (SQL

 Server),

 https://msdn.microsoft.com/en-

 us/library/gg492075.aspx (retrieved at

 2015).

