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ABSTRACT 

 

The problem of efficient designing of new traffic networks and operation of existing ones is an active topic 

of research. This problem is being solved in most countries by using Intelligent Transportation Systems and 

Decision Support Systems. The core of these systems is a mathematical model of processing the data of 

monitoring traffic flow parameters and road conditions. The efficiency of managerial decisions depends on 

minimizing the time interval from the moment of obtaining data till the moment of making a decision. We 

developed a mathematical model based on the Erlang time distribution which allowed us to deduce in 

explicit form a function of transportation costs for traffic network routes. Of great importance is the 

practical problem of determining the changes in the network traffic flows distribution with new flow-

forming objects being put into operation. This article provides and justifies a new method that helps solve 

the given problem. The algorithms developed are based on the theory of flow equilibrium. Their adequacy 

was proved in practice. 

Keywords: Traffic Flow, Statistical Distribution, Mathematical Model, Function of Transportation Costs, 

Origin/Destination Pair. 

 

1. INTRODUCTION  

 

Efficient designing of traffic networks as well as 

optimal operation of those existing is a topical 

problem nowadays. Around the world, this problem 

is being solved by applying Intelligent 

Transportation Systems (ITS) and Decision Support 

Systems (DSS). Originally, the basic idea of ITS 

was application of modern information technology 

to  the automated control of transportation systems 

and monitoring their condition. Progress in IT made 

it possible to carry out an automatic analysis of 

efficiency of various scenarios of control over 

transportation systems [1]. Systems which predict 

mean speed and travel time along the routes have 

been increasingly applying in recent years. Such 

systems obviously have a significant impact on 

traffic flow distribution. Unlike ITS, DSS do not 

make decisions automatically. The decision-making 

process involves experts who consider the obtained 

information. The initial data for DSS are mainly 

obtained with the help of ITS instrumental 

monitoring subsystems [2]. But the core of these 

systems is a mathematical model of processing the 

data of monitoring traffic flow parameters and road 

conditions which provide the validity of output 

data. 

Since the middle of the last century many 

researchers [3]-[8] have studied modelling and 

distribution of traffic flows in networks and 

developed methods of predicting the changes in the 

traffic intensity in particular sections of 

transportation network under various managerial 

actions. Mathematical models applied to the 

analysis of transportation networks are various due 

to the problems solved, the data, the mathematical 

tools, and the degree of specification in traffic 

description. Difficulties in modelling are caused by 

a plenty of parameters to be taken into account, the 

complicated process of collecting initial data and 

the ambiguity of optimization criteria as well as by 

the necessity of connecting the developed model 

with the particular transportation network.  

According to the specification of traffic flow 

mathematical models applied to the urban 

transportation network are classified as 

macroscopic, mesoscopic, microscopic and 

submicroscopic [2]. Each group has its own 

advantages and disadvantages. Macroscopic models 
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can help rather quickly solve the problems of urban 

transportation network globally and they do not 

require complex computer equipment. Calculation 

accuracy is, however, not very high. Microscopic 

and submicroscopic models, due to a higher degree 

of specification, allow us to solve local problems 

with high precision but at a low speed of 

calculation, and they need high-power computers.  

Mesoscopic models (CONTRAM, DynaMIT, 

MEZZO) can help solve both global and local 

problems [9]-[10]. Medium-scale specification 

results in more accurate calculations than in 

macroscopic models but much faster than in 

microscopic models. 

 

2. STATISTICAL DISTRIBUTIONS IN THE 

TRAFFIC FLOW THEORY  

 

Microscopic and mesoscopic models are based 

on the hypothesis of statistical distribution of 

vehicle arrivals at the given section of the urban 

transportation network (UTN). Methods of optimal 

control of traffic flows must be first and foremost 

based on a mathematical model which adequately 

describes a real traffic flow. Otherwise, the results 

will not provide accurate predictions. Besides, the 

choice of distribution of intervals between vehicles 

in a flow is critical for further methods of 

computing the efficiency parameters for traffic 

organization in the network. That is why a number 

of models exploit exponential distribution and 

shifted exponential distribution [11]-[13] to obtain 

in explicit form calculation formulas with a help of 

queuing theory. 

Owing to the Kimber and Hollis algorithm for 

computing an estimated queue length in the mass 

service network with random distribution of request 

arrivals and general form of service time, the 

spectrum of statistical distribution applied to traffic 

flow theory has broadened [14]. But some 

coefficients obtained by the transformation 

coordinates method are approximate. If we take into 

account the scale of real transportation networks, 

we realize that even minor computational errors for 

particular nodes accumulate and may result in 

serious mistakes in the network as a whole.  

We developed a mathematical model of traffic 

flow distribution in the transportation network on 

the basis of hypothesis of time intervals distribution 

between vehicles in lanes according to the general 

Erlang law. With a general Erlang distribution the 

time interval between two successive requests has 

k stages 110 −kT,...,T,T , the duration of these stages 

having  exponential distributions with 

110 −λλλ k,...,,
parameters correspondingly 

(Ventsel and Ovcharov, 2000.). The Laplace 

transform for the density function 
( )tfk  will hold: 
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We deduced and presented in our publications 

[16] the formulas to define the general Erlang 

parameters by the data of monitoring the traffic 

flow. Our experimental researches showed good 

consistency between the empirical and theoretical 

distribution at the flow density of up to 1,000 

vehicles in a lane per hour. 

 

Figure 1. Plots of Density Function of Theoretical Erlang 

Distribution And Histograms Of Empirical Relative 

Frequencies For Various Parameters Values 

 

The hypothesis about time intervals distribution 

between vehicles by Erlang let us, by means of 

differential and integral calculus by methods of 

function of complex variable and theory of random 

processes, deduce in explicit form the formulas for 

computing the delay value in the nods of 

transportation network, mean queue length at both 

simple intersections [17] and intersections with 

regulated traffic [16]. 

3. THE TRANSPORTATION COSTS 

FUNCTION IN THE NETWORK ROUTES 

 

Under the assumption that the hypothesis about 

time intervals distribution by Erlang is true, we 

deduced in analytical form a transportation costs 

function as a function of parameters of flows 

distribution in all directions at the network nodes. 
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All necessary initial data for calculations are given 

in the matrix presentation of network developed by 

us [18]  in 
STREETSA  and

ONINTERSECTIB  matrices. 

The transportation cost is assumed by us to 

coincide with the travel time on a section of the 

network. The supposition about additive 

dependence of cost function G(x)  on travel cost 

)( yτ on links of the network occurs to be the 

simplest and most accepted [19]. This means that 

the travel cost on a path is equal to the sum of the 

travel costs on the links which make up that path, 

that is, 

( )∑∑
∈∈

+==
Ll

zllp

Ll

lzlpp yyyxG )()()()( ττθτθ

,                                          (3) 

where pG  = travel cost function on path p , 

)(ylτ  = travel cost on a link between two adjacent 

nodes in the network (excluding the nodes), 

)( yzτ  = travel cost on passing the nodes in the 

network, 





=
otherwise

elinkcomprisesppath
ep

0

;,1
θ  

L = set of links of the network. 

Travel cost )(ylτ  on a link between two 

adjacent nodes in the network (excluding the nodes) 

is defined as:  

)(

)(
)(

yv

yl
уl =τ ,   (4) 

where )( yl  = link length , 

)( yv  mean velocity of travel on the link. 

Depending on the objectives of optimization, as 

travel cost function )( yzτ on passing the nodes we 

can choose: 

1) )( nzµ
r

 – the weight of node nz  (node-point) for 

the flow of the given direction, that is the mean 

delay time of all vehicles in the given direction per 

hour; 

2) )( nzµ  – the total weight of node nz  (node-

point), that is the mean delay time of all vehicles at 

the given node per hour; 

3) )( nM zω – the mean delay time (in seconds) of 

requests in the chosen directions. 

When computing the travel cost on the given 

route of the network we should take )( nM zω , 

which is the mean delay in the chosen direction, as 

a function. The key module (Module 1) for 

computing traffic flow distribution in the network 

by traffic equilibrium principle was adapted for our 

model of transportation network by employing 

Dijkstra’s algorithm which supposes, that each node 

can be adjacent to no more than four other nodes. 

Module1: 

Each link is assigned number 

( ) )()(, xylxyxl µµ +=
r

, which denotes the link 

length. If the nodes are not connected by a link, 

then l(x,y) = ∞.  In the case considered, travel cost 

function l(x, y) of flow of vehicles 

))(()( ppp NxGxG ≡  from the origin xi =  to 

destination yj = . In performing the algorithm we 

calculate values d(x) which are equal to the shortest 

path from node s= 0z  to node х:  

{ }),()(),(min)( yxlydxdxd += . 

Data which are necessary for the solution to the 

problem are stored in two arrays:  MPlus contains the 

data on the nodes with permanent marks; MMinus 

contains the data on the nodes with temporary marks. 

Each element of the arrays has the following 

structure: 



















=

Trassa

TimeCr

Str

Str

MPlusi

2

1

  and 



















=

Trassa

TimeCr

Str

Str

MMinusi

2

1

. 

We use the following notations: Str1 is the street 

along which  the travel to the given node is 

performed; Str2 is the street crossing Str1; TimeCr 

is travel time d(x) to the given node from the 

origin; Trassa  is the list of nodes passed. 

Step 1. We specify the origin and destination of 

travel. The node-point (ND) – the origin is entered 

in array MPlus under number n = 0 and in array 

MMinus under number 4n. 

Step 2. We define all the nodes adjacent to ND 1 

and enter the data on these under numbers (4n + 1), 

(4n + 2), (4n + 3) in array MMinus. If the nodes are 

not adjacent or the motion in this direction is not 

allowed, then l(x,y) = ∞. 

Step  3. We calculate the travel cost function 

from NP # n to all adjacent NPs which are not 

entered in array MPlus. 

Step 4. We choose the minimal element in field 

MMinus.TimeCr and enter the data on the 

corresponding NP in array MPlus under number 
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(n+1). We remove the data on this ND from array 

MMinus. 

Step 5. We repeat steps 2 – 4 until every NP 

receives its permanent mark in array MPlus. 

Step 6. In array MPlus , we choose element 



















=

Trassa

TimeCr

Str

Str

MPlus
i

2

1
, which denotes the end of the 

path. Field  

    
iTimeCrMPlus.  defines the travel cost function 

value on the shortest path 
Ор . Field 

i
TrassaMPlus.  defines the list of nodes passed on 

the shortest path 
Ор . 

Thus the travel cost function in the developed 

model of traffic flow distribution in the network 

takes into account the delays on intersections both 

simple and with regulated traffic. This favourably 

compares with a number of existing models which 

neglect these costs since such costs are time-

consuming to calculate. What is also important, we 

give a detailed description of intersections (nodes), 

considering all traffic flow directions, which makes 

it possible to predict congestion on any path. 

 

4. THE ALGORITHM OF COMPUTING 

THE TRAFFIC FLOW DENSITY 

DISTRIBUTION IN LANES OF 

TRANSPORTATION NETWORK WITH 

PUTTING INTO OPERATION AN 

“ORIGIN/DESTINATION” (O/D) PAIR 

 

The developed algorithm is based on the 

principle of traffic (flow) equilibrium which 

satisfies to the first Wardrop principle (Wardrop, 

1952) where every driver chooses a path with the 

least travel cost. Since each individual choice has 

impact on the network density, it, therefore, 

influences the other users’ choice for the same O/D 

pair. The proposed algorithm takes account of this 

fact. For defining the users’ travel costs in the 

network we used developed by us methods of 

computing the travel cost function. Besides, when 

developing the algorithm, we considered the fact 

that with putting into operation a new O/D pair the 

travel cost function is monotonous in relation to the 

density on links. 

 

 

Algotrithm 1: 

1) By employing the Dijksra-based 

algorithm (Module 1) design the optimal for 

user path
1Ор  from the origin to the destination 

for a particular request; calculate mean travel 

time 01t . 

2) Find the number of requests on 

path
1Ор  per time unit. 

3) Determine the estimated increase 

in density eN∆  on the links which is related to 

the given O/D pair: 

01t

y
N e

e =∆ , 

where ∑
∈
θ=

Pp
pepe xy , where 





=
otherwise

elinkcomprisesppath
ep

0

;,1
θ ; 

( )Ее:уу е ∈=  = vector describing the density 

on the links of network Г;  

px  = flow on path p ;  

{ }Pp,Ee:сp ∈∈θ=Θ  = links and paths 

incidence matrix. 

     4) Compile a new database А1, where 

increase in density on the links of path
1Ор is fully 

made by value 

01t

y
N e

e =∆ . 

5) Check whether path
1Ор remains equilibrium 

(optimal from a user’s perspective) for matrix А1. 

If it does, it is the end of the algorithm. 

Database А1 contains the desired changes in 

density distribution in the network; assume that 

А0= А1. If it does not, go to point 6. 

6) Reduce the estimated change in density 

on the links of the path by half: 
2

1
e

e
N

N
∆

=∆  

and compile database А2. 

7) Check whether path
1Ор remains equilibrium 

(optimal from a user’s perspective) for matrix А2. 

If it does, increase the density on the links of 

the path by value 
2

1

2

e

e

N
N

∆
=∆  and compile a 

new database А3 with new density on the links 
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of path
1Ор which equals to 

2

1
1

e
e

N
NN

∆
+∆= . 

If it does not, reduce the density on the links of 

the path by value 
2

1

2

e

e

N
N

∆
=∆  and compile a 

new database А3 with new density on the links 

of path
1Ор which equals to 

2

1
1

e
e

N
NN

∆
−∆= .   

8) Repeat point 7 until value 
ieN∆ is less 

than the givenε . Compile a new database А0.  

9) Compute the undistributed rest of 

requests flow 
eN

~
∆  for the given O/D pair. If 

ε<∆ eN
~

, then it is  the end of the algorithm. 

Otherwise repeat points 1-8 of the algorithm 

for a new path 
02p .   

 

5. THE ALGORITHM OF COMPUTING 

THE TRAFFIC FLOW DENSITY 

DISTRIBUTION IN LANES OF 

TRANSPORTATION NETWORK WITH 

PUTTING INTO OPERATION SEVERAL 

“ORIGIN/DESTINATION” (O/D) PAIRS 

 

Let ( )111 , ji=ω , { }ki ,...,2,1∈   be the O/D 

pairs put into operation. We use the given 

database А0, compiled in accordance with the 

requirements of our mathematical model of 

transportation network. We can predict certain 

changes in density due to introduction of a 

number of new origins or destinations. 

Therefore, we formulated a matrix of 

correspondences to reflect the probable 

changes. 

The idea of the algorithm is as follows: we 

find the optimal paths between O/d pairs under 

the existing density distribution. Then density 

increases by a small value in all optimal paths, 

and we again choose the optimal from a user’s 

perspective path. Thus, iteration by iteration we 

distribute correspondences in the network taking 

account of the user’s optimum. 

In the case under study the travel cost function 

is not monotonous in relation to the density on the 

links of the path. In calculations we used the 

algorithm of determining the optimal path for the 

given pair ( )111 , ji=ω as a separate module 

(Module 2) and the estimated increase in 

density on the links of the path.  

Module 2: 

Step 1. Design the optimal for user path
Ор  

from the origin to the destination for a 

particular request; calculate mean travel time 

0t . 

Step 2.  Find the number of requests on 

path
1Ор  per time unit (the data are taken from 

the correspondence matrix). 

Step 3. Determine the estimated increase in 

density eN∆  on the links which is related to 

the given O/D pair. 

Algorithm 2 of solution to the problem with 

putting into operation several O/D pairs:  

1) Design the optimal path for each O/D pair 

where ( )111 , ji=ω , { }ki ,...,2,1∈  (Module 2). 

2) Specify precision ε , determine value 

}max{max liNN ∆=∆ and compile a new 

database А0 where increase in density on the links 

of path
ilр  is made by value 

maxN

N li

∆

∆
⋅ε . 

3) Adjust the correspondence matrix for the 

distributed requests. 

4) Repeat points 1-3 until all the requests are 

distributed on the paths (with precisionε ).  

In the proposed algorithm, by analogy with point 

2.5, we take account of the fact that every driver 

chooses a path with the least travel cost. 

 

6. PRACTICAL APPLICATION OF THE 

ALGORITHMS 

 

The adequacy of the algorithms was proved 

experimentally on a particular section of the urban 

transportation network of the town of Krasnodar 

(Russia). 

Problem 1. There was a new residential 

community built in Krasnodar in the area on the 

corner of Sorok Let Pobedy Street and 

Rossiyskaya Street. We assume that from 7 am till 

8 am extra 500 vehicles will travel from the 

intersection of these streets to the intersection of 

Moskovskaya Street and Ostrovskogo Street 

where there is a campus of the Technological 

University. We are to determine how the density 

distribution on the lanes in this direction will 

change in this case. The solution of the problem 
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was divided into the following stages: 1) collecting 

the necessary for solving the problem information, 

compiling the database; 2) determining the optimal 

paths between the intersections by Algorithm 1; 3) 

compiling the database reflecting the probable 

changes. 

We solved the problem according to Algorithm 

1. The correspondence matrix of traditional form 

was used to obtain the data on the probable changes 

in flow density in the transportation network for the 

given O/D pair. The result of algorithm was not 

only the path itself as a list of street which it 

includes and the travel time but the changes in 

density on each section of the network. 

Figure 2 shows the paths on which the flow 

density distribution will change as a result of the 

problem solution. The path in red will have an 

increase in density by 313 vehicles per hour. The 

path in orange will have an increase in density by 

187 vehicles per hour. 

 
 

Figure 2. Paths On Which The Density Will change 

Subject To The Conditions Of Problem 1 

 

Task 2.  There was a new residential community 

built in Krasnodar in the area on the corner of 

Sorok Let Pobedy Street and Rossiyskaya Street. 

We assume that from 5 pm till 6 pm: 

1) there will be 300 correspondences travelling 

from the intersection of Ippodromnaya Street and 

Peredovaya Street to the intersection of Sorok Let 

Pobedy Street and Rossiyskaya Street;  

2) there will be 500 correspondences travelling 

from the intersection of Moskovskaya Street and 

Ostrovskogo Street to the intersection of Sorok 

Let Pobedy Street and Rossiyskaya Street. 

We are to determine how the density distribution 

on the lanes will change in this case. 

We solved the problem according to Algorithm 

2. The solution is shown in Figure 3.The streets on 

which an increase in the number of 

correspondences will lead to the density change 

from the intersection of Moskovskaya Street and 

Ostrovskogo Street to the intersection of Sorok 

Let Pobedy Street and Rossiyskaya Street are 

marked in red.  

The streets on which an increase in the number 

of correspondences will lead to the density change 

from the intersection of Ippodromnaya Street and 

Peredovaya Street to the intersection of Sorok Let 

Pobedy Street and Rossiyskaya Street  are 

marked in blue.  

 

 

Figure 3.  Paths On Which The Density Will Change 

Subject To The Conditions Of Problem 2 

 

7. CONCLUSIONS 

 

Modelling and research of traffic flows often 

employ the competitive noncomparative 

equilibrium theory which provides a fairly adequate 

description of transportation network operation 

mechanism [19]. 

The complexity of numerical method of solving 

the transportation networks-related problems 

mainly depend on analytical definition of travel 

cost function. In the developed mesoscopic model 

we deduced in explicit form travel cost functions 

for the network paths which take account of travel 

costs in the nodes. We solved all the problems 

considering the traffic flow distribution on all lanes 

and assuming that the general Erlang distribution of 

time intervals between vehicles is true. The general 

Erlang distribution allows us to approximate the 

traffic flows of high density (up to 1,000 vehicles 

per hour), and therefore, makes it possible to 

extend the applicability of the model. What is 

more, the minimal set of initial parameters used in 

our model will reduce the cost of compiling the 

databases for estimation of quality of 

reorganization in the network. The development of 

explicit analytical functions for determining the 

initial parameters without approximations and 
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rounding-off will increase the accuracy of 

calculations. Due to the scale of real transportation 

networks, even minor computational errors for a 

single section of the network may lead to serious 

mistakes in determining the total travel cost 

function for the path. The developed analytical 

apparatus was proved adequate by experiment for 

different levels of service (LOS) and types of 

intersections. 

The operational efficiency of managerial 

decisions depends on minimizing the time interval 

from the moment of obtaining data with the help of 

IT equipment till the moment of making a 

managerial decision. We used analytical methods 

of solving transportation problems which allowed 

us to obtain practically instant results. This 

contributes to the topicality of the conducted 

research. 

The research was carried out under support of 

the Russian Fund of Fundamental Research and the 

Administration of Krasnodar Krai: Project r-jug-a-

13-08-96502. 
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