
Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

ENHANCING AN END USER DEVELOPMENT IN
DATABASE DESIGN USING ENTITY RELATIONSHIP

DIAGRAM MAPPER

1MOHAMMED A. OTAIR, 2AHMAD M. ODAT
1Assoc. Prof., Faculty of Computer Sciences and Informatics, Amman Arab University, Amman-Jordan
2Assoc. Prof., Faculty of Science and Information Technology, Irbid National University, Irbid-Jordan

E-mail: 1otair@aau.edu.jo, 2aodat@yahoo.com

ABSTRACT

Today, Database systems plays a large part of our everyday lives –especially with the importance of the
growing concept of database and storing information and keeping the information in a way secured in the
database. Entity Relationship Diagram (ERD) is one of the popular and important concepts in database
modeling. The design of the correct database (or good design) depends on the correct ERD that presents the
requirements of the required system to the customer. In this paper, an Entity Relationship Diagram Mapper
(ERDM) is built to provide developers of database as an End User Development (EUD) tool that enables
them to draw any Entity Relationship Diagram then the system automatically map or translate these
diagrams into their corresponding relations (or tables). The constructed database by the system has a good
design or normalized relations. This system will be useful when the developer or user does not know many
things about the mapping process of an Entity Relationship Diagram into Database schemas (its logical
design).  In order to test the developed system, sample of 100 ERDs collected from different sources were
mapped using the system. The experiments showed that the accuracy of the system was 100%, without
even any single error.

KEYWORDS: Database Design, Normalization, Entity Relationship Diagram, End User Development,
Database Schema.

1. INTRODUCTION

Since last three decades, end-user development
(EUD) and outsourcing are the most growing and
common techniques that used as information
resources for organizations. End users are
collaborating in the tasks achieved normally by
developers actively and many of these tasks are
delivered to them [3]. In most researches, End User
Development (EUD) and End User Computing
(EUC) are considered as synonymous concepts,
because the roles of the users and developers are
being too closed. According to [5], End User
Development (EUD) can be defined as a set
application tools that assist software systems users
as amateurish developers without requiring them to
understand complicated of programming
languages. The impact of end user development on
organizations is ongoing. So, the researchers and
students in the domains of management should take
in their considerations to study of how EUD and
EUC influence the trends of their careers [7].

Spreadsheets as software tools are mostly used
by the developers or end users, despite many tools
are available such as marketing and accounting
applications [3].  Unfortunately, the difficulty task
of database design according to the casual database
developers or users prevents them to be active
player in the end user development field [2, 4, 6,
9].  However, more experienced end users seek to
gain benefits of sophisticated database products to
improve their databases, but many of them do not
capture the skills of data modeling. Hsiang et al. in
their research [3] developed EUD based on 5C
technique (Count, Comply, Compare, Consolidate,
and Convert), which is an easy normalization
algorithm for bottom-up database design.
The aim of this paper is to develop a computer aid
system called Entity Relationship Diagram
Mapper, which helps users who are working in the
field of the database design and they cannot or
make mistakes in the converting of the ERDs into
good logical design or tables stored in the database.
So, the system allows the user (as a Database
designer or even as an end-user) to draw the ERDs



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

then the system will automatically convert them
into tables stored in a database.
ERDM is a full package, started by drawing the
conceptual design and ended by design a relational
DB schema as code. This solution model generates
an SQL statements, especially DDL which related
to create statement, like create database and create
tables, with preserving the normalization. Other
tools isolated between conceptual design and
logical design. To convert manually the conceptual
design into logical design, you should to have a
good knowledge about normalization otherwise DB
design will be very poor.
ERDM is simple and easy to use, all users can use
this tool without needing to be professional in
normalization, ERDM also save time and effort,
once you finished correctly drawing ERD the
software will automatically generate a suitable
running code.
As a researchers, we know very well the
importance of previous works (studies) paragraph,
where this paragraph is considered one of the
important basic ingredients of scientific paper, this
paragraph absent because of the lack of scientific
papers talking about this topic. Researchers have
made a great effort to find the previous Studies, but
all attempts failed.
The objectives of ERDM is to facilitate design a
relational database schema for database designers
and other users. ERDM also will help the DB
designers to obtain correct SQL statement 100%
within a short time and a little efforts.

2. THE DATABASE DESIGN STEPS

Designing a database for any system is
achieved via a series of development steps as
follow:

2.1 Requirement Analysis
By user interview a user view can be defined

where the system can have more than user view.
By determining the user views of the major
database users, all the requirements for new system
will be considered. These views assist in construct
of sophisticated database system assisting
requirements to be divided into tractable
subsystems. The requirements of the users of the
new database system can be analyzed by the
gathered information during the interviews. The
gathered information could include a metadata and
how it can be used.

2.2 Drawing The ERD Diagram (Conceptual
Design)

After the requirements are collected, analyzed,
and determined, then the system should be
modelled using one of the most common used data
models which called an Entity Relationship
Diagram (ERD). It contains three main constructs:
Attribute (six types: single or multi-valued, simple
or composite, stored or derived), Entity (two types:
strong or weak), and Relationship (two types:
Identifying or relationship type). An ERD is a
standard data model to represent relational
databases via to design modes Conceptual and
Logical. In the conceptual design, the real world
can be represented by focusing on collecting the
system requirements and convert them into
diagram which represents the whole system.
Whereas, the logical design mode tries to transform
or map a conceptual ER diagram into a good
designed (normalized) relations or tables. The
transforming or mapping process is done using
very well seven rules (will be discussed in sub-
section 2.3).

2.3 Converting An ERD Into Logical Database

A relational database (tables) can be created
using the following mapping rules on the ERD [1]:

2.3.1 The Strong Entity
Every strong entity will be represented by a

new table in the database. The primary key of this
table is the indicated key in the ERD. The
simple/single/stored attributes of the entity will
form the columns (fields) of the table. At the other
hand, composite attributes by taking the leaves
(atomic) parts of the composite attributes. Multi-
valued attribute is mapped into separate table with
composite primary key consists of the multi-valued
attribute(s) and the primary key from the original
table.
2.3.2 The Weak Entity

As the strong entities, each weak entity is
mapped to new table. The attributes of the weak
entity treated exactly as the strong except that the
primary key in the weak table is always composite
primary key which relates the weak entity to its
owner via the partial key from the weak entity and
the primary key from the owner entity.
2.3.3 The Binary M:N Relationship

Many to many relationship maps to a new table
with composite primary key from the two primary
keys of the two owner entities that are being
participated in the M:N relationship. The attributes



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

of the M:N relationship will be added to the new
table of the relationship.
2.3.4 The Binary 1:N Relationship

This relationship is not represented as a new
table. However, a copy of the primary key
attribute(s) at the one side entity is placed into the
table at the many side entity to be as a foreign key.
2.3.5 The Binary 1:1 Relationship

A copy of the primary key attribute(s) at the
one side entity is placed into the table at the other
one side entity to be as a foreign key (or vice
versa).  However, it is better to choose the primary
key from the entity side that has partial
participation with the relationship.
2.3.6 The Recursive Relationship

Create a shadow entity and convert the
recursive relationship into a binary relationship.
After that, the rules of mapping binary
relationships can be applied. At the end, apply the
binary mapping rules, and then one of the
redundant tables (the table with lesser attributes)
will be removed.
2.3.7 The N-ARY Relationship

Create a new table to represent the n-ary
relationship. The primary key of the created table
will be composite of the primary keys of all entities
that participate in the relationship.

2.4 Creating The Database
After applying the converting rules on the

diagrams, then the database using several DBMSs
can be created by the system automatically. The
converting rules are listed in the next section in
details.

3. THE DESIGN OF ENTITY
RELATIONSHIP DIAGRAM MAPPER

The system developed in this paper is mainly
consists of three main parts or it works based on
three phases:

A. Create new ERD: that involves specifying
(drawing) the entities and its attributes
then make the appropriate relations
between these entities, or this phase may
be open an existing ERD that was saved
before.

B. Convert the ERD into Tables: the system
then automatically converts this ERD into
the equivalent logical design of the tables
using the well knows ERD mapping rules.

C. Create the database: involves creating the
suitable database and save the logical
designs of the tables. In other words, it

creates the corresponding physical design
of that mapped logical design.

The interfaces of an ERD Mapper is developed
using Adobe Flash Builder and Flex Builder. An
Adobe Flex Builder is an open source application
environment which assists the developers to
facilely build their applications as a SWF file using
an open source Flex framework and a scripting
language called ActionScript for browser. Adobe
Flash Builder offers built-in code editors for
MXML (Macromedia eXtensible Markup
Language) and ActionScript for modifying MXML
applications [adobe.com/products/flex.html].

The ERD Mapper is divided into three packages
as follow: blocks, converter, and db. The required
classes are distributed along the three packages to
achieve the objectives if the developed system.
The main package is the blocks which consists of
the following classes: Attributable, Attribute,
AttributeDomain, CompositeAttribute, Element,
Entity, ERDiagram, Relation, and
RelationConnection. The second important of the
system is converter with two classes:
QueryGenerator and TableGenerator. The db
package consists of DBColumn and DBTable
classes. The following figure show the class
diagram of the system.

Figure 1 Class Diagram Of ERD Mapper
(In Appendix A-2)

The fragment code in Appendix B-1 represents
the main important code of the system which
generates the create tables commands based on the
drawn EDR by the system.

4. THE IMPLEMENTATION OF ENTITY
RELATIONSHIP DIAGRAM MAPPER

The system consists of three main interfaces
which are as the following:
4.1 The main form: which provide the user an

option to navigate and use all the components
of the system. Figure 2 shows the start-up
window of the developed system.

Figure 2 Start-Up Page Of ERD Mapper
(In Appendix A-3)

The above numbers into the circles around the
above figure refer to the main functions of the
system:
1- Open the existing diagram.



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

2- Save the diagram for the first time or save any
changes on it.

3- Create the database schemas by mapping the
diagram in the panel based on the mapping
seven rules.

4- Reload or refresh any changes done on the
diagram.

5- Add a new entity to the diagram.
6- Add a new relationship to the diagram.
7- Edit the selected entity by add/delete

attributes(s)
8- Delete the selected entity.
9- Edit the selected relationship.
10- Delete the selected relationship.

4.2 Adding new entity: that allows the user to add
new entity and specify the attributes of that
entity. When the user click on the button
referenced by number 1 in figure 2, then the
create entity form will be opened as in figure
3. A user can type name the entity and then
the attributes one by one by typing its name,
type and domain

Figure 3 Add New Entity
(In Appendix A-4)

After the below add button will be clicked, then
the entity with its attributes will be created and it is
automatically drawn on the drawing panel as
shown the following figure.

Figure 4 Append the New Entity to the Drawing
Panel (in Appendix A-5)

The user can edit the name and attributes of an
existing entity by doing the following functions:
1- Click edit selected entity button.
2- Open the edit entity window.
3- The user can make the following:

 Change the name of the entity.
 Remove an existing attribute.
 Change the type and domain of an existing

attribute.
 Add new attributes.

4- Click the save button to submit changes.
5- Automatically make the equivalent changes for
the determined entity on the drawing panel

In addition to create and edit entities, the user
can delete an existing entity with its attributes and
it will be automatically deleted from the drawing
panel.

4.3 Adding new relation: that allows the user to
create a relationship between the chosen

entities (it could be unary, binary, ternary or
more). By this form shown in figure 5, the
user can do the following tasks:

1- Determine the relationship name and if it is
identifying (relates weak with strong entities) or
relationship type (relates strong with strong
entities).
2- Select the entities that will be connected to this
relationship, then the cardinalities of each entity
with its participation (total/partial participation) can
be determined.
3- Add the attributes one by one to the relationship
(if the relationship has attribute(s)).

Figure 5 Add New Relationship (In Appendix A-6)

4- When the user clicks on new relation button,
then the new relation and its attributes will
automatically be drawn on the drawing panel as
shown in the following figure.

Figure 6 Append The Relationship To The Panel
(In Appendix A-7)

The user can make an editing on existing
relations (edit the relationship name, entities and
attributes) by doing the following tasks:
1- Select the relationship needed to be edited.
2- Click the edit selected relationship button.
3- The edit relation form will open, and then the
user can make the following tasks:

 Change the relationship name.
 Remove an existing entity.
 Remove an existing attribute.
 Change the type and domain of an existing

attribute.
 Change the cardinality of an existing

entity.
 Add new attributes.

4- Click the save button to submit changes.
5- Automatically make the equivalent changes on
the drawing panel.

As the editing, the user can delete an existing
relationship and its attributes. Then, automatically
delete the selected relation from the drawing panel.

4.4 Create a database by mapping the drawn
diagram. When the user clicks on the create
database button, the form with drop-down list
is shown as in the following figure.



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

Figure 7 Converted Db Options

The system offers three options for the
converted database: SQLlite, T-SQL Script, and
MySQL. SQLite is a relational database
management system contained in a C programming
library [8],  Transact-SQL (T-SQL) is an expansion
to SQL owned by  Sybase and Microsoft to
generate data scripts in an executable and readable
T-SQL format, and   MySQL is a well-known open
source SQL relational database management
system used for the web. So, when the user select
the type of the database and clicks on the convert
button (as in figure 8), then the diagram in the
panel will be automatically converted to its
corresponding database schema.

Figure 8 Convert ERD Into DB Schema

5. CONCLUSIONS

This paper presents a system called ERD
Mapper which plays a role as a very effective tool
for End User Development. The system developed
in this paper achieves all the required steps for
database design which involves drawing Entity
Relational Diagrams, converting the ERDs to
logical design, create the database and store the
resulted tables in the database. So, it can support
expert developers or even naïve developers without
having to know much about the database design.
The ERD Mapper can be improved to encompass
an Enhanced ERD (E-ERD or E2RD). Finally, the
developed system could be embedded into any
database management system to enrich the use of
these systems.

REFERENCES:

[1] A. Silberschatz, H. Korth, and S. Sudarshan,
Database System Concepts, 6th ed., McGraw-
Hill, 2011.

[2] C. Govindarajulu,  "End users: Who are They",
Communications of the ACM, vol. 46, no. 9,
pp. 152-159., 2003.

[3] H. Kung, H. Tung, and A. Gardiner,
"Improving End-User Database Development
Quality: A 5C Data Modeling Method", Issues
in Information Systems, vol. IX, No. 2, pp.
305-312, 2008.

[4] M. Taylor, E. Moynihan, & A. Wood-Harper,
"End-user computing and information systems
methodologies". Information Systems Journal,
Vol. 8, No. 1, pp. 85-96, 1998.

[5] N. Sharma and N. Deswal, "Web Engineering:
End User Development (EUD) Of Web
Applications",  International Journal of
Innovative Research in Technology, vol. 1,
No. 5, pp. 725-730, 2014.

[6] R. Nelson, & P. Todd, "Strategies for
managing EUC on the Web", Journal of End
User Computing. Vo. 11, No. 1, pp. 24-31,
1999.

[7] S. Barker, "End User Computing and End User
Development: Exploring Definitions for the
21st Century", Managing Worldwide
Operations & Communications with
Information Technology, pp. 249-252, 2007.

[8] T. Dongare, A. Babar, & M. Nivangune,
"Android Application for Ticket Reservation
with GPS as Ticket Validation", International
Journal of Emerging Research in Management
&Technology, Vol. 3, No. 3, pp. 13-141, 2014.

[9] T. Ouellette, "Giving users the keys to their
Web content", Computerworld, pp. 66-67,
1999.



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

Appendix A-1 Class Diagram of ERD Mapper



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

Appendix A-2 Start-up Page of ERD Mapper

Appendix A-3 Add New entity



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

Appendix A-4 Append the New Entity to the Drawing Panel



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

226

Appendix A-5  Add New Relationship



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

Appendix A-6 Append the Relationship to the Panel

Appendix B-1 Query Converter Class

package org.e2rd.convertor
{

import org.e2rd.blocks.AttributeDomain;
import org.e2rd.db.DBColumn;
import org.e2rd.db.DBTable;
public class QueryGenerator
{

public static function getQuery(tables:Vector.<DBTable>) :
Vector.<String>

{ var q:Vector.<String> = new Vector.<String>();
tables = sortTables(tables);
for(var i:int = 0; i < tables.length; i++)

q.push(getTableQuery(tables[i]));
return q;

}
private static function sortTables(tables:Vector.<DBTable>)

:
Vector.<DBTable>

{ return tables; }

private static function getTableQuery(t:DBTable) : String
{ var q:String = "CREATE TABLE " + t.Name + " \n(\n";

var i:int;
 //get columns
for(i = 0; i < t.ColumnsCount; i++)



Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

q += getColumnQuery(t.getColumn(i));
 //get fk
for(i = 0; i < t.ColumnsCount; i++)

if(t.getColumn(i).FK)
q+= getForeignKey(t.getColumn(i))

 //get pk
var pkList:String = t.PK[0].Name;
for(i = 1; i < t.PK.length; i++)

pkList += "," + t.PK[i].Name;
q += "CONSTRAINT pk_"+ t.Name +

" PRIMARY KEY (" + pkList +
")\n"(

return q;
}

private static function getColumnQuery(c:DBColumn) : String
{ return c.Name + " " + mapType(c.Domain) +

(c.NotNull?" NOT NULL,\n":",\n(";
}
private static function getForeignKey(fk:DBColumn) : String
{ return "FOREIGN KEY (" + fk.Name + ") REFERENCES " +

fk.FkTable.Name + "(" + fk.FkColumn.Name +
"),\n";

}
private static function mapType(d:String):String
{ switch(d)

{ case AttributeDomain.ANY:
return "TEXT";

case AttributeDomain.STRING:
return "TEXT";

case AttributeDomain.DATETIME:
return "INTEGER";

case AttributeDomain.INTEGER:
return "INTEGER";

case AttributeDomain.FLOAT:
return "REAL";

}

return "Text";
}}}


