
Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

253

EFFICIENT LOAD BALANCING USING ANT COLONY
OPTIMIZATION

MOHAMMAD H. NADIMI-SHAHRAKI, ELNAZ SHAFIGH FARD, FARAMARZ SAFI

Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran
nadimi@iaun.ac.ir, shafighfard@azaruniv.edu, fsafi@iaun.ac.ir

ABSTRACT

Workload and resource management are two essential functions provided in the service level of a Grid
software infrastructure. Consistently, efficient load balancing algorithms are fundamentally important to
improve the global throughput of these environments. Although previous works show that, ant colony
algorithm works well for load balancing, the cost is a very important factor in this subject. In this paper, a
grid load balancing algorithm is proposed by using an ant colony optimization which is able to consider
shortest path, type of resource, and running speed of resource. The experimental results show that the
proposed algorithm by using this ant colony optimization can reduce the cost of load balancing in
comparison with standard algorithm DASUD.

Keywords: Grid computing, Load balancing, Ant colony.

1. INTRODUCTION

Although load balancing problem in conventional
distributed systems has been intensively studied,
new challenges in Grid computing still make it an
interesting topic, and many research projects [1-5]
are underway. This is due to the characteristics of
Grid computing and the complex nature of the
problem itself. Load balancing algorithms in
classical distributed systems, which usually run on
homogeneous and dedicated resources, cannot work
well in the Grid architectures. Grid has lots of
specific characteristics such as heterogeneity,
autonomy, scalability, adaptability and resources
computation-data separation, which make the load
balancing problem more difficult.
Ant Colony System (ACS) [6] is one the most
successful algorithms used in combinatorial
optimization problems such as the Traveling
Salesman Problem (TSP). The algorithm is inspired
by the foraging behavior of a colony of ants
communicating through chemical substances called
pheromones which act like a memory preservation
mechanism and provide guidance for ants in
searching for shortest paths. However, considering
only the shortest path can sometimes be useless,
especially for processors in which response time is
a very important factor. Instead, there have been
introduced some efficient Ant Colony
Optimizations (ACO), in which another type of

resources such as their running time and their
workload are considered to enhance efficiency [7-
9].
Balanced Ant Colony Optimization (BACO) was
proposed by Chang et al. (2007) [8] to minimize the
computation time of job executed in Taiwan in grid
environment. It focused on load balancing factors
of each resource. By considering the resource status
and the size of the given job, BACO algorithm
chose optimal resources to process the submitted
jobs. In this algorithm, finding a good resource
might be difficult due to the limited longevity of
ants, or the long delay in the response time. A
Multiple Ant Colony Optimization (MACO) is
proposed [9] for load balancing in circuit–switched
networks. MACO uses multiple ant colonies to
search for alternatives to an optimal path. Each
group of mobile agents corresponded to a colony of
ants, and the routing table of each group
corresponded to a pheromone table of each colony.
Although previous works show that, ant colony
algorithm works well for load balancing, the cost is
still a very important factor in this subject. In this
paper, a grid load balancing algorithm is proposed
by using an ant colony optimization which is able
to consider shortest path, type of resource, and
running speed of resource. It consists of 5 steps as
followed: obtaining job requirements, creating an
ant for a job, calculating the scale of every
workload of resource and depositing pheromone

Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

254

depending on its throughput of every resource's
path, assigning job to the resource with the highest
pheromone value, and performing global
pheromone update after completely processing the
job. The experimental results show that the
proposed algorithm by using this ant colony
optimization can reduce the cost of load balancing
in comparison with standard algorithm DASUD.
The rest of paper is organized as follows. In section
2, the background and related works are reviewed.
Then, the proposed algorithm is described in
section 3. Afterwards in section 4, the proposed
algorithm is experimentally evaluated. Finally,
section 5 concludes the contribution and introduces
some future research ideas.

2. BACKGROUND AND RELATED WORK

2.1. Load Balancing

The essential objective of a load balancing
primarily consists of optimizing the average
response time of applications, which often means
maintaining the equality of workload proportion in
all resources of a system. Conceptually, load
balancing algorithms can be classified into two
categories: static and dynamic [10, 11].
In static load balancing, a task is assigned to an

available resource when it is generated or admitted
to the system using a fixed schema. In contrast, the
dynamic load balancing allocates/reallocates tasks
to resources at runtime based on no priori task
information, which may determine when and which
tasks can be migrated. In this way, load imbalances
can be resolved by redistributing tasks in real-time,
solving the shortcoming of static load balancing.
However, network traffic for transmitting load
information to the load balancing system would
increase the due in the decision dynamicity.
Load balancing algorithms can be defined by their
implementation of the following policies: 1)
information policy specifies what load information
to be collected, when it is to be collected and from
where, 2) triggering policy determines the
appropriate moment to start a load balancing
operation 3) resource type policy classifies a
resource as server or receiver of tasks according to
its availability status and capabilities, 4) location
policy uses results of the resource type policy to
find a suitable partner for a server or receiver, and
5) selection policy defines tasks that should migrate
from overloaded resources to idlest ones.

2.2. LOAD BALANCING USING ANT
COLONY

Nature is a good source of inspiration to solve the
problems humans face. Ants provide a good
example for the case of transporting goods or
finding shortest paths. They are social insects which
cooperate through group communication, laying
down chemical substances called pheromones to
mark locations that have already been visited. The
pheromones also serve as a reference for the return
route back to their nest. These pheromones are then
used by other ants as an indicator of the best path
between the nest and food sources. The amount of
laid pheromone determines whether the path is
desirable to be taken by others; higher pheromone
levels indicate more desirable routes [12, 13].
ACO algorithms make use of simple agents called
ants which iteratively construct candidate solutions
to a combinatorial optimization problem [14]. The
ants’ solution construction is guided by (artificial)
pheromone trails and problem-dependent heuristic
information. In principle, ACO algorithms can be
applied to any combinatorial optimization problem
by defining solution components which the ants use
to iteratively construct candidate solutions, and on
which they may deposit pheromone. An individual
ant constructs candidate solutions by starting with
an empty solution and then iteratively adding
solution components until a complete candidate
solution is generated. We will call each point at
which an ant has to decide which solution
component to add to its current partial solution a
choice point. After the solution construction is
completed, the ants give feedback on the solutions
they have constructed by depositing pheromone on
solution components which they have used in the
process.
To avoid the search getting stuck, typically, before
the pheromone trails get reinforced, all pheromone
trails are decreased by a factor. The ants’ solutions
are not guaranteed to be optimal with respect to
local changes and hence may be further improved
using local search methods. Based on this
observation, the best performing ACO algorithms
for many NP-hard static combinatorial problems are
in fact hybrid algorithms combining probabilistic.
There have been introduced some efficient load
balancing algorithm by using ACO algorithms.
Moallem and Ludwig introduced two distributed
artificial life-inspired algorithms, ACO and Particle
Swarm Optimization (PSO) to solve the static grid
load balancing problem [15]. Distributed load
balancing was categorized as a robust algorithm
that could adapt to any topology changes in a
network. In the study, an ant acted as a broker to

Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

find the best node in terms of the pheromone value
stored in the pheromone table. The node with the
lightest load was selected as the best node. The
position of each node in the flock could be
determined by its load in PSO. The particle
compared the load of nodes with its neighbors and
moved towards the best neighbor by sending
assigned jobs to it. The proposed algorithm
performed better than ACO in job scheduling where
jobs were submitted from different sources and in
different time intervals. PSO showed better results
than ACO in terms of the makes pan. However,
PSO used more bandwidth and communication
compared to ACO. The main drawback of Ant
Colony was that jobs were not scheduled efficiently
and therefore load among the resources were not
balanced. This problem was fixed by increasing the
number of ants that could explore the entire grid
system to find resources with the lightest load.
Ali and Belal et al. proposed an ACO algorithm for
dynamic load balancing in distributed systems
through the use of multiple ant colonies [16]. In
their algorithm, information on resources is
dynamically updated at each ant movement. Load
balancing system is based on multiple ant colonies
information. Multiple ant colonies are adopted such
that each node sent a colored colony throughout the
network. The colored ant colonies are used to
prevent ants of the same nest from following the
same route and also force them to be distributed all
over the nodes in the system. Each ant acts like a
mobile agent which carried newly updated load
balancing information to the next node. The
algorithm is compared to the work-stealing
approach for its load balancing in grid computing.
Their experimental results show that multiple ant
colonies work better than work-stealing algorithm
in terms of the efficiency. However, the multiple
ant colonies do not consider resource capacity and
job characteristics. This can make matching the
jobs with the best resources a difficult task for the
scheduling algorithm. From the above research,
ACS is the most popular variant of ACO that has
been successfully used in grid load balancing.

3. PROPOSED ALGORITHM

The proposed algorithm consists of 5 steps which
are 1) obtaining job requirements, 2) creating an ant
for a job, 3) calculating the scale of every workload
of resource to running speed of it for all nodes, and
depositing pheromone depending on its throughput
of every resource's path, 4) assigning job to the
resource with the highest pheromone value, and 5)
performing global pheromone update after

completely processing the job to more information.
The proposed algorithm is shown in Fig. 1.

The proposed Algorithm

Input: Distance of local node to other neighbors,
Number of resources, Number of workload of every
node

Output:
Cost of load balancing

Initialization of parameters

1) For each num_resource,
1-1) Get cpu_time = getCPUTime ();
1-2) Calculate the probability of every node to be
chosen next time considering (cpu_time,
workload, and shortest path)
End for

2) Calculate initializing pheromone for every
node (num_resource, num_gridlet);
2-1) Load = get Load ();

3) Assign job to a node which has the highest
chance to select

4) Create Resource (id, cpu_time, load);

5) While (all nodes become balanced based on
default workload)

5-1) For (J = 0; J < num_gridlet; J++)
5-2) Process (R, J);
End while

6) Global update (evaporate, R, J);

7) Stopping criteria ?Yes go to Finish, No Go to 8;

8) Process iteration ++ Go to 1;

Figure 1: The proposed algorithm

In the proposed algorithm, each ant in a particular
node that has overloaded job starts to select the best
node by which the overload job can be done. For
doing this, the throughput of each node is computed
by simple Equation (1) using the count of idle
processes and CPU run time.

(1)

According to Equation (1), η is the heuristic
parameter which is computed by η=1/dij and thr is

Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

standing for the throughput. After computing of
thr by using Equation (1) chance of selecting of
every node as Equation (2) is computed.

(2)

We followed the MAX-MIN Ant System (MMAS)
for the update of pheromone trials. Regarding
pheromone trial limits, an estimate of the upper
bound is used to define max; where best is the best-
so-far solution, and is the evaporation rate of
pheromone trails.
After calculating pheromone rate for every path, an
amount of pheromone must be updated.
Cost function as shown by Equation (3) is a
function that calculates total length of the path
traced by an ant.

Ant.cost is a result of cost function based on which
costly paths are traced. Thus, as shown by Equation
(4) the paths that are more costly will have less
pheromone:

(4)

As time passes, as Equation (5) shows, the amount
of pheromone evaporates on the paths in distributed
system and evaporation will be happened after
finishing iteration.

  (5)

4. EXPERIMENTAL SETUP

Experiments were run on a Mini Laptop with
following properties: intel®Atom™ Cpu N270 @
1.60GHz with a memory of 1.00 GB.
Matlab is adaptive software for this kind of
algorithms which need lots of computing functions.
The algorithms have been implemented in such an
environment. Table 1 shows all parameters that
must be set in our evaluation.

Table 1. Evaluation setting

Ant population 40
Α 1
Β 1

numbers of node 20
 .05

Max iterations 30

In this experiment, nodes are completely
heterogeneous, and the workload and CPU running
time are selected randomly. Depending on the
workload in every node, 15 to 25 iterations are done
until the system is balanced.
This paper shows the differences of the two
algorithms in the following figures. As it is
indicated in Figure 2, the proposed algorithm gives
a better result than ACO. In Figure 2, total cost of
proposed algoritm shows 378.2318, but ACO
algorithm shows 388.4078. Thus, in our algorithm,
total cost of load balancing has been lessened in
comparison to standard ACO algorithm. We tried to
show that in the proposed algorithm, overhead in
the network is less than that of the ACO algorithm
because, as shown in Figure 3, compression of
circles that act like a pointer showing time load
balancing in a particular node is less than that of
Figure 4 which is based on DASUD algorithm.

Figure 2: Comparison Of Cost Of Load Balancing

Ant (i).cost =cost function (ant (i).tour).tour (3)

Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

Figure 3: Workload Of Nodes In ACO Algorithm Based On CPU Throughput

Figure 4: Workload Of Nodes In ACO Algorithm

5. CONCLUSION AND FUTURE WORK

In this paper, an efficient ACO approach to solve
load balancing problem for heterogonous grid
network had been proposed. It introduces a load
balancing strategy based on ACO which offered
enhancements by interfering in nodes throughput.
The experimental results showed that the proposed
approach had better performance than an ACO
heuristic, and experimental results showed the
reduction of cost. We try to work on projects based
on ACO so that the designed hardware as the work
station would like a shared local memory for
routing, and the communication of the ants about
balancing information could take place in these
work stations.

ACKNOWLEDGMENT:

The authors would like to thank Islamic Azad
University, Najafabad branch for supporting this
research.

REFERENCES:

[1] Ali, A., Belal, M., A., & Al-Zoubi, M., B.
(2010). Load balancing of distributed systems
based on multiple ant colonies optimization.
American Journal of Applied Sciences, 7(3),
433-438.

[2] Chang, R., Chang, J., & Lin, P. (2007).
Balanced job assignment based on an
algorithm for computing grids. Proceedings of
the 2nd IEEE Asia-Pacific Service Computing
Conference, 291-295.

[3] Nasir, H.J.A. & Ku-Mahamud, K.R. (2010).
Grid load balancing using ant colony
optimization. Proceeding of the2nd
International Conference on Computer and
Network Technology, 23-25April 2010,
Bangkok, Thailand, 207-211

.[4] Sathish, K., & Reddy, A. (2008). Enhanced ant
algorithm based load balanced task
schedulingin grid computing. International
Journal of Computer Science and Network
Security, 8(10), 219-223.

Journal of Theoretical and Applied Information Technology
20th July 2015. Vol.77. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

[5] Moallem, A., & Ludwig, S. (2009). Using
artificial life techniques for distributed grid
job scheduling. Proceedings of the 2009 ACM
Symposium on Applied Computing, 1091-
1097.

[6] M. Dorigo, Gambardella L.M.(1997) Ant
Colony system: A Cooperative learning
approach to the traveling salesman problem,
IEEE,Trans.on evolutionary computation,
1(1), 53-66.

[7] M. Dorigo and T. Stützle, Ant Colony
Optimization, MIT Press, 2004.

[8] Chang, R., Chang, J., & Lin, P. (2007).
Balanced job assignment based on ant
algorithm for computing grids. Proceedings of
the 2nd IEEE Asia-Pacific Service Computing
Conference, 291-295

[9] A. D. Ali, and M. A. Belal, “Multiple ant
colonies optimization for load balancing in
distributed systems,” in Proc. Inter. Conf,
ICTA’07, 2007.

[10] Ratnesh Kumar Nath, ”Efficient Load
Balancing Algorithm in Grid Environment”,
Thapar University, Patiala, May 2007.

[11] Douglas Thain and Miron Livny. “The ethernet
approach to grid computing”. In Proc. Of 12th
IEEE Symposium of High Performance
Distributed Computing, 2003.

[12] Nasir, H.J.A. & Ku-Mahamud, K.R. (2010).
Grid load balancing using ant colony
optimization. Proceeding of the2nd
International Conference on Computer and
Network Technology, 23-25April 2010,
Bangkok, Thailand, 207-211.

[13] Sathish, K., & Reddy, A. (2008). Enhanced ant
algorithm based load balanced task
schedulingin grid computing. International
Journal of Computer Science and Network
Security, 8(10), 219-223.

[14] M. Dorigo and T. Stützle, Ant Colony
Optimization, IT Press, 2004.

[15] Moallem, A., & Ludwig, S. (2009). Using
artificial life techniques for distributed grid
job scheduling. Proceedings of the 2009 ACM
Symposium on Applied Computing, 1091-
1097.

[16] Ali, A., Belal, M., A., & Al-Zoubi, M., B.
(2010). Load balancing of distributed systems
based on multiple ant colonies optimization.
American Journal of Applied Sciences, 7(3),
428-438.

