PROCESS DISCOVERY: A NEW METHOD FITTED TO BIG EVENT LOGS

1SOUHAIL BOUSHABA,2MOHAMMAD ISSAM KABB AJ, 3FATIMA-ZAHRA B ELOUADHA,4ZOHRA BAKKOURY,

1Ph.D candidate, 2Assistant Professor, 1Habilitated Professor, 4Full Professor
AMIPS Research Group, Ecole Mohammadia d’ingénieurs, Mohammed Vth University, Rabat, Morocco
E-mail: 1Souhailboushaba@research.emi.ac.ma, 2kabbaj@emi.ac.ma, 3belouadha@emi.ac.ma, 4bakkoury@emi.ac.ma,

ABSTRACT
Business process discovery is a research field assembling techniques that allow representation of a business process, taking as input an event log where process data are stored. Several advances have been made in process discovery, but as data volume starts to weight considerably, improvement of discovery methods is crucial to follow up. In this paper, we discuss our new method, inspired from image processing techniques. Adapted to voluminous data logs, our method relies on generation of a Petri net using a matrix representation of data. The principal idea behind our approach consists of using several concepts: partial & feature blocks, filters as well as the adaptation of combinatory logic concepts to process mining in the perspective of extracting a business process model from a big event log.

Keywords: Process Mining, Business Process Management, Process Discovery, Distributed Algorithm

1. INTRODUCTION
Numerous methods, relying on event log exploration, have been elaborated in process discovery. Among these methods, there is a branch that puts more focus on activities’ ordering within a process, for instance, Van der Aalst et. al description of an α-algorithm[1], capable of describing a large scope of process models. The stated algorithm’s constraint in dealing with short loops and noisy logs was overcome via Medeiros et. al’s extension of the algorithm to manage short looping [2]. Noise and incompleteness have been dealt with, on the other hand, through more recent algorithms such as fuzzy mining [3] and genetic process mining [4].

Although data quality have been addressed in the algorithms previously mentioned, log volume was poorly considered, which is a challenging obstacle as data stores and therefore event logs tend to grow sustainably. For the sake of quantified records, the United States’ all-sectors confound volume of corporate data averages nearly 200 terabytes per company. On the algorithmic side, the previously mentioned algorithms’ efficiency -when applied to large event logs- was questioned and proved weak by Van der Aalst [5].
Aren’t there any approaches to provide efficient mining of highly voluminous logs?
We discuss in this paper a process discovery algorithm trying to cope with this issue, by the use of matrix representation in block-by-block discovery.

In the remainder of this paper, we first state related works in section 2 then specify the key concepts used in our paper and our approach fundamentals in section 3, the following section investigates block detection, while the fifth section covers pattern type detection. In section 6, we expose our mining process then illustrate our method via a case study in section 7. We conclude our paper and set research perspectives in section 8.

2. RELATED WORKS
Among the discovery algorithms previously written, we state first the α-algorithm [1], which extracts a considerable set of process models (structured workflow nets, or shortly SWF-nets). Improvements to the algorithm have been made to deal with noise [2] and to discover short loops. The alpha-algorithm has been also conditioned to mine specific Petri-net categories: invisible tasks and non-free choice constraints. To avoid the volumetric tackle, inductive miner “IM” techniques [13] have been established and lately extended to inductive miner-infrequent “IMi” techniques [14] to cope with behavioral infrequency. The general idea of IM is the extraction of a set of blocks composing the process model by extracting the most relevant design pattern from the directly-follows graphs. Comparing to the above-stated method whose design pattern cut lacks falling into a set of deterministic criteria, our method first introduced in
[8] and extended in [15] extracts a set of patterns from the matrix representation rather than extracting them from a specific (or even, namely most relevant) pattern.

Other works in the field have involved matrix algebra for process representation indeed, Medeiros et. al represent the log of a process as a matrix[9]. This representation -which is not block-oriented-, however, is made through creation of « causal matrix » using the same basic successor operator - direct succession- to inspect the relationship between each pair of tasks in the process.

Matrices were also employed by Chen Li et al.'s method's input, as it does not operate on the event log itself but on a set of process variants, which induces to ranking the method as a post-process-discovery method [11].

3. KEY CONCEPTS AND APPROACH FUNDAMENTALS

3.1 Key concepts in data extraction

In order to clear our method’s structure in the reader’s mind, we have to introduce the key concepts that we use: indirect succession operator and characteristic matrix.

Indirect Succession:

Even logs contain traces of successors between tasks, Van der Aalst et. al[1] suggested a direct succession operator, we complete the latter by introducing indirect succession which relies on the four basic ordering relations:

- Indirect succession, denoted \(\gg \)
- Causality, denoted \(\rightarrow \)
- No succession relationship \(\not\!
\rightarrow \)
- Parallelism, denoted \(\parallel \)

Definition 1. Let \(L \) be an event log over a set of tasks \(T \) and \(a, b \) two tasks in \(T \).

\[a \gg_l b \] (or \(a \) indirectly succeeds \(b \)) if and only if there exists a trace \(\sigma = t_1\sigma t_2\ldots t_n \) and \(i, j \in \{1, \ldots, n\} \) such that \(\sigma \in L \), \(t_i = a, t_j = b \) and \(i < j \).

\[a \rightarrow_l b \] if and only if \(a \gg_l b \) and \(b \gg_l a \).

\[a \not\!
\rightarrow_l b \] if and only if \(a \gg_l b \) and \(b \not\!
\rightarrow_l a \).

\[a \parallel_l b \] if and only if \(a \gg_l b \) and \(b \gg_l a \).

For illustration, consider a workflow \(L^* = [(A, B, D, E, H), (A, D, C, E, G), (A, D, E, G), (A, B, D, E, G), (A, D, B, E, H), (A, C, D, E, H), (A, D, C, E, H)] \). We note that:

- \(A \gg_l H \) Because there exists a trace \((A, B, D, E, H) \) such that \(A \) is indirectly succeeded by \(H \),
- \(B \not\!
\rightarrow_l C \) As \(B \) is never succeeded by \(C \) and \(C \) is never succeeded by \(B \).
- \(D \parallel_l C \) Because there exists a trace \((A, D, C, E, G) \) where \(D \gg_l C \) and there exists a trace \((A, C, D, E, G) \) where \(C \gg_l D \).

The following subsection explains how we use only the indirect succession operator to build the characteristic matrix.

Characteristic matrix:

This is a binary matrix that is meant to describe relationships between tasks belonging to a given process, these relationships are detected in event log analysis and the matrix values depend solely on indirect succession between tasks.

Definition 2. Let \(L \) be an event log composed of traces referring to a set of \(n \) tasks denoted \(T = \{1, \ldots, n\} \), the elements of the matrix are then:

- \(M_{ij} = 1 \) if \(T_i \gg_l T_j \).
- \(M_{ij} = 0 \) otherwise

The characteristic matrix for the same event log \(L \) as extended in the previous subsection is shown in table 1:

<table>
<thead>
<tr>
<th>(\gg)</th>
<th>(A)</th>
<th>(B)</th>
<th>(D)</th>
<th>(E)</th>
<th>(H)</th>
<th>(C)</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(B)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(D)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(E)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(C)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(G)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2 Approach fundamentals

The analysis of the basic design pattern structure leads to the following statement: a feature block constitutes a block of tasks having the same successors and the same predecessors among the tasks that are outside its delimitation. Illustration is in figure 1.
Partial blocks—illustration shown in Figure 2—constitute blocks of tasks having a group of common successors and predecessors. We note that each feature block is a partial block but the partial is not necessary a feature block. In the remainder we consider the workflow $L = [(A, B, C, D), (A, C, B, D), (A, E, D)]$.

Besides, a partial block can be grouped with other tasks to form a feature block. As shown in Figures 3, on one hand, $\{B, E, C\}$ is a feature block (and subsequently, is also considered as partial block). On the other hand, $\{B, E\}$ and $\{E, C\}$ are partial blocks. However, grouping $\{B, E\}$ and $\{C\}$ generates a parallel feature block. In addition, grouping $\{A, D\}$ and $\{B, C, E\}$ generates also a succession feature block that illustrates a complex design pattern representing the global process.

BLOCK DETECTION

The analysis of design pattern structures synthesis of block detection allowed rules (and filtering). Filters allow detection of both feature and partial blocks and are based on the formalism of each block type as well as the logical similarity operator defined in the next subsection.

4.1. Logical Similarity Operator

Once the characteristic matrix is obtained from a set of tasks, the block detection phase is considered to determine whether the selected tasks constitute a feature or partial block. We introduce therefore an operator of logical similarity.

In combinatory logic, the XOR operator results in true whenever both inputs differ (one being true and the other false). Not XOR (symbolized by \oplus) allows then determining whether two Boolean values are similar or different. We explicit Not XOR’s formula and establish the operator’s truth table below:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>$A \oplus B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Our logical similarity operator is to help us verify whether a set of binary n-uples contains the same values. This operator is defined as follows:

Definition 3. Let $l = [1, n]$ and $j \in I$ with $\text{card}(j) = m$ and let $(U_j)_{j \in I}$ be m binary n-uples:

$$
(\oplus_{j \in I} U_j)_i = \begin{cases}
1, & \text{if } \sum_{j \in I} U_j \text{ (mod m)} = 0 \\
0, & \text{if } \sum_{j \in I} U_j \text{ (mod m)} > 0
\end{cases} \forall i \in I
$$

We note that we consider m binary n-uples $(U_j)_{j \in I}$ as m n-uples having the same values if the value of $(\oplus_{j \in I} U_j)_i$ is equal to 1 for any $i \in I$, according to the following rule:

Theorem 1. \(\forall (U_j)_{j \in I} \text{ binary n-uples } (\oplus_{j \in I} U_j) = (1, ..., 1)\) if and only if all $(U_j)_{j \in I}$ have the same binary values.

We note that the logical similarity test can be applied to either row or column sets from the characteristic matrix. However, the formulation of
the similarity output differs slightly:

Definition 4.

\[
(\oplus_{i=1}^{m} T_{ij}\text{)}_{\text{rows}} = \begin{cases}
1 & \text{if } \sum_{j=1}^{n} M_{ij} \text{(mod } m) = 0 \\
0 & \text{if } \sum_{j=1}^{n} M_{ij} \text{(mod } m) > 0
\end{cases}
\forall i \in [1, n] \\
(\oplus_{i=1}^{m} T_{ij}\text{)}_{\text{columns}} = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} M_{ij} \text{(mod } m) = 0 \\
0 & \text{if } \sum_{i=1}^{n} M_{ij} \text{(mod } m) > 0
\end{cases}
\forall i \in [1, n]
\]

We illustrate in Table 3 the results of the cross-similarity test (applied to rows and columns of the matrix described in Table 1)

Table 3: not xor operator applied to rows and columns

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>B ⊕ C ⊕ E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Our first deduction is that the set \{B, C, E\} displays a similar behavior to \{A, D\} blue columns.

4.2. Formalism for blocks

In the previous section, we provided definition to each one of the block types that we encounter in process design patterns. As a reminder, partial blocks contain tasks possessing common successors and predecessors, as per feature blocks; they constitute task blocks having the same successors and the same predecessors among the tasks that are outside their perimeter.

The objective of this subsection is to present formalism that allows clearer and reusable mathematical description of partial & feature block. Consider a set of tasks \((T_{ij})_{i \in [1,k]} \) from a given process model. If the set forms a partial block then each task conserves the same behavior keeps towards the remainder of tasks outside the set. In terms of indirect succession, the corresponding matrix elements (outputs of Not XOR cross calculation between block tasks and the rest) must have the same values in rows (respectively in columns).

For the rest of the paper, we will assume that \(L \) is a log of \(n \) tasks \((T_{ij})_{i \in [1,n]} \) and \((M_{ij})_{i \in [1,n]} \) the corresponding characteristic matrix. Let also \(I = [1, n] \) and \(J \subseteq I \).

We can formalize this criterion of feature blocks by the following definition:

Definition 5.

The set of the tasks \((T_{ij})_{i \in [1,j]} \) constitute a feature block if and only if:

1. Have the same values in rows
 \(\forall i, j \in J, i \neq j, \forall k \in I \setminus J \) \(M_{ik} = M_{jk} \)
2. Have the same values in columns
 \(\forall i, j \in J, i \neq j, \forall k \in I \setminus J \) \(M_{ki} = M_{kj} \)

Direct application of the feature described above to the matrix in Table 3 leads to the following results:

A selection process applied to the matrix knots must perform application of the property. Let first consider a random selection of tasks from the process. The selection forms a feature block if and only if its components display the same behavior towards the non-selected tasks in terms of predecessors and successors. Detection of feature blocks induces therefore calculation of differences and similarities between rows on one hand and columns on the other one. Also, note that calculus can be performed on a distributed grid for each candidate block. We can fit the property mentioned above to our indirect succession operator terminology by the following equivalence:

Theoreme 2.

The set of the tasks \((T_{ij})_{i \in [1,j]} \) constitutes a feature block if and only if:

\[
(\oplus_{i \in J} T_{ij})_{\text{rows}} = 1 \forall j \in I \setminus J \\
(\oplus_{i \in J} T_{ij})_{\text{columns}} = 1 \forall j \in I \setminus J
\]

According to definition 1, the tasks \{B,C,E\} form a feature block as they have the same behavior with respect to the other tasks as shown in Table 3 and Table 4 (the value of red box is 1). The set \{B,E\} is not a feature block because they do not have the same behavior with respect to other tasks as shown in Table 4 (the value of blue boxes is 1).

Table 4: Example of feature blocks

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>BE</th>
<th>BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We denote by BE the calculus of logical similarity operator:

\(B \oplus E \)
Besides, let’s define three functions SumR, SumC and TotalS on the space of n-sized binary vectors with values in N:

Definition 6. Let \((T_i)_{i \in I}\) the set of the tasks

> SumR calculates the number of successors of a given task \(T_i\) (we simplify the notation by \(\text{SumR}(i)\)). It is the sum of the values corresponding to the \(i^{th}\) row in the characteristic matrix.

\[
\forall j \in J, \quad \text{SumR}(i) = \sum_{j \in I} M_{i,j}
\]

> SumC calculates the number of predecessors of a given task \(T_i\) (we simplify the notation by \(\text{SumC}(i)\)). It is the sum of the values corresponding to the \(i^{th}\) column in the characteristic matrix.

\[
\forall j \in J, \quad \text{SumC}(j) = \sum_{i \in I} M_{i,j}
\]

> TotalS returns the number of successors and predecessors of the \(i^{th}\) task. In other words, it sums both SumR and SumC of a given \(i^{th}\) position.

Applying definitions given above, we deduce the following lemma:

Lemma 1. If \((T_i)_{i \in I}\) is a feature block then:

- They have the same number of successors:
 \[
 \forall i, j \in J, i \neq j \quad \text{SumR}(i) = \text{SumR}(j)
 \]

- They have the same number of predecessors:
 \[
 \forall i, j \in J, i \neq j \quad \text{SumC}(i) = \text{SumC}(j)
 \]

> They have the same number of predecessors and successors:

\[
\forall i, j \in J, i \neq j \quad \text{TotalS}(i) = \text{TotalS}(j)
\]

This is a necessary but not sufficient condition to determine feature blocks. It allows, indeed, to select candidate feature blocks based on the output of calculus on rows and columns of a given block’s matrix representation. Still, candidate blocks are confirmed to be feature blocks only after applying the logical similarity operator. The properties shown in Lemma 1 are meant to simplify feature block detection. Subsequently, we ought to seek a rule to detect feature blocks. The rule is based on the definition below:

Theorem 3. The set of the tasks \((T_i)_{i \in I}\) constitutes a feature block if and only if:

\[
\forall i, j \in J, i \neq j \quad \text{TotalS}(i) = \text{TotalS}(j)
\]

and \((\Theta_{i \in I} T_i)^\text{rows} = 1 \forall j \in I \setminus J\)

Partial blocks, on the other hand, represent task blocks with a group of common successors and predecessors. The number of successors & predecessors is not required to be equal for each task from the partial block. It is also worth noting that a feature block is a partial block itself while the other way round is not necessarily true.

According to these findings mentioned above, we define a partial block as follows:

Definition 7. Let \(\emptyset \subseteq I, K \subseteq J\) and \((T_i)_{i \in I}\), \((T_j)_{j \in J}\) two sets of the tasks where \(J \cap K = \emptyset\) and \(J \cup K \subseteq I\).

The set of the tasks \((T_i)_{i \in I}\) constitutes a partial block relative to \((T_j)_{j \in J}\) if and only if:

- they have the same values in rows:
 \[
 \forall i, j \in J \cup K, i \neq j, \forall k \in I(J \cup K) M_{i,k} = M_{j,k}
 \]

- they have the same values in columns:
 \[
 \forall i, j \in J \cup K, i \neq j, \forall k \in I(J \cup K) M_{i,k} = M_{j,k}
 \]

Taking account of the number of successors and predecessors, we can deduce the following lemma if we consider an event log \(L\) composed of the set of tasks \((T_i)_{i \in I}\), and the three functions TotalS, SumR and SumC:

Lemma 2. Let \(\emptyset \subseteq I, K \subseteq J\) and \((T_i)_{i \in I}\), \((T_j)_{j \in J}\) two sets of the tasks where \(J \cap K = \emptyset\) and \(J \cup K \subseteq I\).

The set of the tasks \((T_i)_{i \in I}\) constitutes a partial block relative to \((T_j)_{j \in J}\) if and only if:

\[
\forall i, j \in I \cup J, i \neq j, \text{TotalS}(i) = \text{TotalS}(j).
\]

Besides, the tasks composing a partial block have the same behavior with respect to a group of tasks in the log. Thus, calculating similarities and differences between rows and columns for a set of tasks in the characteristic matrix help detecting a partial block.

5. **PATTERN TYPE DETECTION**

We saw previously that the number of successors and predecessors of a block of tasks in a process are properties that shape the block type and also the corresponding design pattern. In order to answer our main objective, which is process discovery, there are properties to define in the recognition of each one of the covered pattern types.

The design patterns used (succession, XOR and parallel feature patterns) rely here on a set of three activities. Results are generalized to richer task sets and demonstration by recursion is possible.

5.1. **Succession Feature Pattern**

In a succession feature pattern, process tasks are in succession. Detection of such pattern will rely on
the adoption of linear functions used in the previous section (SumR, SumC and TotalS) that operate on the calculus of successors and predecessors. We arrange the linear property in the lemma below:

Lemma 3. Let \((T_i)_{i \in J}\) be a set of tasks (sorted by the order of SumR) in a succession feature block with cardinality \(n\) then:

\[
\forall i \in J, SumR(i) - 1 = SumR(i + 1) \\
\forall i \in J, SumC(i) + 1 = SumC(i + 1) \\
\forall i \in J, TotalS(i) = n - 1
\]

Let’s consider a succession feature pattern of five tasks represented on a Petri net in Figure 4. Let us first consider three tasks out of the set: B, C and D. The characteristic matrix and the successor/predecessor calculus of our sub block BCD are given in Table 5 and Table 6.

![Figure 4: Example of succession feature pattern](image)

Table 5: Characteristic matrix corresponding to a succession pattern

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>SumR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SumC</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Number of successors and predecessors corresponding to an example of succession feature pattern

<table>
<thead>
<tr>
<th></th>
<th>SumR</th>
<th>SumC</th>
<th>TotalS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The results of applying the logical similarity operator to the characteristic matrix (Table 4) are shown in Table 7. Green-colored boxes show a similar behavior of block BCD with regard to the remnant tasks. Thus, we can say that B, C & D form a feature block.

Table 7: Logical similarity operator applied to succession pattern

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>B ⊕ C ⊕ D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tasks B, C and D form succession feature block because:

- They have the same behavior towards tasks A and E (note the 1 value in the green cells);
- And the lemma 3 is verified:
 - \(\text{SumR} (B) = \text{SumR} (C)\)
 - \(\text{SumC} (B) + 1 = \text{SumC} (C)\)
 - \(\text{TotalS} = 3 - 1\)

N.B: The verification of SumR and SumC can be verified of each couple of tasks, we take B and C just as an example.

5.2. XOR Feature Pattern

The XOR feature pattern represents a set of tasks running in mutual exclusion. We set a lemma that allows detection of XOR feature blocks in our approach based on the number of successors and predecessors.

Lemma 4. \((T_i)_{i \in J}\) is a set of tasks in a XOR feature block with \(\text{card}(T_i) = n\) then:

\[
\forall i \in J, SumR(i) = 0 \\
\forall i \in J, SumC(i) = 0 \\
\forall i \in J, TotalS(i) = 0
\]

Figure 5 illustrates an example of XOR feature pattern presented as a Petri net. The feature block contains tasks B, C and D in mutual exclusion XOR. Its corresponding characteristic matrix and number of successors and predecessors (sum of values of each row and column of its matrix) are respectively given in tables Table 8 and Table 9 below.

![Figure 5: Example of XOR feature pattern](image)

Table 8: Characteristic matrix of an example of the XOR feature pattern

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>SumR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SumC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 9: Number of successors and predecessors corresponding to an example of Xor feature pattern

<table>
<thead>
<tr>
<th></th>
<th>SumR</th>
<th>SumC</th>
<th>TotalS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We register the results of applying similarity operator to the characteristic matrix in Table 10.

Table 10: Application of similarity operator to Xor feature pattern

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B ⊕ C ⊕ D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tasks B, C and D form an Xor feature block because:

- They have the same behavior towards tasks A and E (note the 1 value in the green boxes);
- And the SumR, SumC & TotalS have the value of 0 (see Table 10);

5.3. Parallel Feature Pattern

Parallel feature pattern regroups tasks running in concurrence. We exploit the same functions operating on successors/predecessors with a specific definition in the lemma below in order to sort a detection criterion to this type of patterns.

Lemma 5. \((T_i)_{i∈j}\) is a set of tasks in a parallel feature block with \(n\) being the set’s cardinal then:

\[
\forall i \in J, SumR(i) = n - 1
\]

\[
\forall i \in J, SumC(i) = n - 1
\]

\[
\forall i \in J, TotalS(i) = 2 * (n - 1)
\]

Figure 6 illustrates an example of parallel feature pattern shown as a Petri net. The feature block is composed of three parallel tasks B, C and D. Its corresponding characteristic matrix and number of successors and predecessors are respectively given in tables Table 11 and Table 12.

Figure 6: Example of the parallel feature pattern

Table 11: Characteristic matrix for the example of parallel feature pattern

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>B ⊕ C ⊕ D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 12: Number of successors and predecessors corresponding to the parallel feature pattern

<table>
<thead>
<tr>
<th></th>
<th>SumR</th>
<th>SumC</th>
<th>TotalS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>SumC: 2 + 2 = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13 contains results of our sole operator applied to the matrix.

Table 13: Logical similarity operator applied to parallel feature pattern

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>B ⊕ C ⊕ D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B ⊕ C ⊕ D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tasks B, C & D form parallel feature block as:

- They have the same behavior regarding tasks A and E (note the 1 value in the green boxes);
- And the:
 - SumR = 3 - 1 = 2
 - SumC = 3 - 1 = 2
 - TotalS = 2 * (3 - 1) = 4

6. MINING PROCESS

We define a process model as a set of tasks that respect a design pattern structure. Design patterns can be either basic or complex. The design pattern structure we saw in section 3 contains both partial and feature blocks. By our idea of process mining, we intend to extract these blocks by following mining steps; the proposed method detects start and end blocks of tasks and performs.

The purpose of this section is to present the filters that form the core of our method.
6.1. Filter of First and Last Task Detection

To detect the first task, we use a filter based on the following theorem:

Theorem 4. The task T_j is the first task if and only if the sum of the corresponding column values of the characteristic matrix equals to minimum of $\min \{ \sum C(i) \}$

Detection of the last task requires usage of a filter based on the following theorem with proof below:

Theorem 5. The task T_j is the last task if and only if the sum of the corresponding row values of the characteristic matrix equals to min of this value. $\min \{ \sum R(j) \}$

6.2. Mining Algorithm

The input of the mining algorithm is a process event log of a. It extracts the corresponding process model through recursive extractions of feature blocks composing the Petri net representing the process. It is worth noting that the detection of the blocks can be executed on different nodes (the following calculus can be parallelized).

The main steps of the algorithm are the following: first, a characteristic matrix is generated from the event log. Identification of the first and last sets of tasks in the process follows then filters (operating on rows and columns of the matrix) are activated to detect candidate feature and partial blocks. The next step is selection of feature (then partial) blocks using the appropriate filter and testing by logical similarity operator. Discovered feature blocks are masked and replaced by one task in the characteristic matrix. The same iterations are performed considering the new characteristic matrix until a single block is obtained. Note that the detection of a partial block requires detecting the feature blocks composing it (tasks having the same row’s and column’s values), then replacing each one of feature blocks by a unique activity. So, a new candidate feature block is created.

The algorithm is illustrated clearly in the following pseudo-code:

```plaintext
/* Declaration of some used functions */
int SumVector (int V[])
{
    int S=0
    int i=0
    For i=1 to N
        S=S+V[i]
    EndFor
    Return S
}

int[][] ChMatrixBuilder ( int V[])
{
    int M[][]
    /* Application of indirect succession operator to task set */
    Return M
}

dictionary GroupSelector (int T[], S[])
{
    /* Groups tasks by their sum values, returns a dictionary of arrays indexed by the distinct values in S. */
}

/* Main discovery procedure: */
Main()
{
    /* n is the cardinal of the task set */
    const int n
    /* i-th task */
    int i
    int SumR[n], sumCols[n], TotSum[n]
    /* These are the row and column vectors */
    int Ri[n], Ci[n]
    /* The characteristic matrix. */
    int M[n][n]
    dictionary Groups, FeatureGroups, FirstTasks, LastTasks
    Read T[n]
    M=ChMatrixBuilder(T)
    For i=1 to n
        Ri=M.Row(i)
        Ci=M.Column(i)
        /* Calculating and storing the sum of row values for task i */
        SumR(i)=SumVector(Ri)
        /* Calculating and storing the sum of column values for task i */
        SumCols(i)=SumVector(Ci)
        TotSum(i)=SumR(i)+SumCols(i)
        If SumR(i)=0 then /* We identify first tasks */
            FirstTasks.Add(T(i))
        EndIf
        If SumCols(i)=0 then /* We identify last tasks */
            LastTasks.Add(T(i))
        EndIf
    EndFor
}
```
/
/* building a dictionary containing lists of tasks grouped */
/* by SumRow, SumCol & TotSum */
Groups = GroupSelector(T, Distinct(TotSum))
For i = 1 to Groups.Count
Call ComputeSimilarityGroups.key(i)
EndFor
/* We detect & store feature blocks */
FeatureGroups = FeatureGroupDetector(Groups.key(i))
/* We detect & store partial blocks */
PartialGroups = PartialGroupDetector(Groups.key(i))
EndFor
For i = 1 to PartialGoup.Count
For i = 1 to FeatureGroups.Count
Call XOR DetectionFeatureGroups.key(i)
Call ParallelDetectionFeatureGroups.key(i)
EndFor
EndFor
Start:
For i = 1 to FeatureGroups.Count
Call XOR DetectionFeatureGroups.key(i)
Call ParallelDetectionFeatureGroups.key(i)
EndFor
/* A procedure that takes the feature */
/* block as input and prints its graphical notation */
Call Create Petri Net Frame
Goto Start
/* Petri frames and generates graphical aggregation */
Call Generate Final Petri Net
}

7. CASE STUDY:
As a case study, we picked a real process event log [12] as presented in the table below:

Table 14: process event log

<table>
<thead>
<tr>
<th>Case id</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a, b, d, e, h)</td>
</tr>
<tr>
<td>2</td>
<td>(a, d, c, e, g)</td>
</tr>
<tr>
<td>3</td>
<td>(a, d, b, e, h)</td>
</tr>
<tr>
<td>4</td>
<td>(a, c, d, e, g)</td>
</tr>
</tbody>
</table>

Where:
- a = register request,
- e = decide
- b = examine thoroughly
- g = pay compensation
- c = examine casually
- h = reject request
- d = check ticket

We can also denote the log by:
L=[(a, b, d, e, h), (a, d, c, e, g), (a, d, b, e, h), (a, c, d, e, g)]

In the reminder of this section, we will present each step performed by our algorithm and its output, when the algorithm is applied to the proposed case study.

Read:
L=[(a, b, d, e, h), (a, d, c, e, g), (a, d, b, e, h), (a, c, d, e, g)]

Construct the characteristic matrix:

Table 15: First characteristic matrix corresponding to L

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>h</th>
<th>c</th>
<th>g</th>
<th>SumR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SumC</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Add to First Tasks: {a} because (SumC = min SumC)
Add to Last Tasks: {g, h} because (SumR = min SumR)

Compute TotalS = SumC + SumR

Table 16: First row and column sums

<table>
<thead>
<tr>
<th></th>
<th>SumR</th>
<th>SumC</th>
<th>TotalS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>h</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Group tasks: {{a,b,c,e}, {h,g}, {d}}

Compute logical similarity operator to the selected groups

Table 17 First logical similarity operator calculus

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>c</th>
<th>g</th>
<th>a ⊕ b</th>
<th>a ⊕ c</th>
<th>a ⊕ e</th>
<th>a ⊕ h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a ⊕ b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a ⊕ c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a ⊕ e</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a ⊕ h</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Output:
- The tasks a, b, c, e form a partial block (they have the same behavior only with tasks g and h and not with d “red cells”)
- g, h are in a feature block (they have the same
behavior with all other tasks), so it can be substituted with a unique activity denoted gh

Select the tasks having the same row’s value in the partial block {a,b,c,e} which are b and c

Compute logical similarity operator to the tasks b and c

Table 18: First logical similarity operator calculus

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>gh</th>
<th>b ⊕ e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>gh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b ⊕ e</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Output:
- The tasks b and c constitute an XOR Partial block

Reduce the characteristic matrix by replacing the feature block {b,c} by a unique significant activity denoted bcd:

Table 19: Characteristic matrix after substitution

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>bcd</th>
<th>e</th>
<th>gh</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bcd</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This result represents a succession pattern

Generate a frame of the corresponding process model:

Figure 7: Process model of the case study

Recapitulation:

Table 23: Recapitulative table

<table>
<thead>
<tr>
<th>Block</th>
<th>Content</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>The first task</td>
</tr>
<tr>
<td>bcd</td>
<td>(b,c),d</td>
<td>(b,c) is a parallel block and (b,c),d is a XOR block</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>Normal succession task</td>
</tr>
<tr>
<td>gh</td>
<td>gh</td>
<td>The final (XOR block)</td>
</tr>
</tbody>
</table>

Split the Petri net (by replacing each feature block by its components).

Figure 8: Petri net representing the log L

8. CONCLUSION:

In this paper, we presented an algorithmic approach to discover business processes given their event logs. We proceeded first by stating works related to process model discovery notably the α-algorithm and its adaptations to different constraints as loops, data volume. Previous approaches including use of matrix algebra in mining and adaptation of succession operator are discussed. We introduced the key concepts of indirect succession operator and characteristic matrix and explained the fundamentals.
of our approach of “process models” and “design pattern structures”. In the following section, we introduced logical similarity operator, explained and illustrated feature and partial block types as well as their mathematical formalism. In pattern type detection we covered XOR, succession and parallel patterns and finally exposed our mining algorithm followed by the case study in the previous section.

This work meant to lay the ground to a much complete improvement; In guise of perspectives, we intend to extend pattern discovery to handle loops, we also consider discussion of on-the-fly discovery as data are to be analyzed and process-discovered even before storing in event logs to deal with volume constraint.

We also intend to test our approach using industrial process event logs and to develop a software application to support the algorithm and to provide a quantitative estimation of its performance as compared to other algorithms.

REFERENCES:

