
Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

PROCESS DISCOVERY: A NEW METHOD FITTED TO BIG

EVENT LOGS
1
SOUHAIL BOUSHABA,

 2
MOHAMMAD ISSAM KABBAJ,

3
FATIMA-ZAHRA

BELOUADHA,
4
ZOHRA BAKKOURY,

1
Ph.D candidate,

2
Assistant Professor,

3
Habilitated Professor,

4
Full Professor

AMIPS Research Group, Ecole Mohammadia d’ingénieurs, Mohammed V
th

University, Rabat, Morocco

E-mail:
1
Souhailboushaba@research.emi.ac.ma,

2
kabbaj@emi.ac.ma,

3
belouadha@emi.ac.ma,

4
bakkoury@emi.ac.ma,

ABSTRACT

Business process discovery is a research field assembling techniques that allow representation of a business

process, taking as input an event log where process data are stored. Several advances have been made in

process discovery, but as data volume starts to weight considerably, improvement of discovery methods is

crucial to follow up. In this paper, we discuss our new method, inspired from image processing techniques.

Adapted to voluminous data logs, our method relies on generation of a Petri net using a matrix

representation of data. The principal idea behind our approach consists of using several concepts: partial &

feature blocks, filters as well as the adaptation of combinatory logic concepts to process mining in the

perspective of extracting a business process model from a big event log.

Keywords: Process Mining, Business Process Management, Process Discovery, Distributed Algorithm

1. INTRODUCTION

Numerous methods, relying on event log

exploration, have been elaborated in process

discovery. Among these methods, there is a branch

that puts more focus on activities’ ordering within a

process, for instance, Van der Aalst et. al

description of an α-algorithm[1], capable of

describing a large scope of process models. The

stated algorithm’s constraint in dealing with short

loops and noisy logs was overcome via Medeiros

et. al.’s extension of the algorithm to manage short

looping [2]. Noise and incompleteness have been

dealt with, on the other hand, through more recent

algorithms such as fuzzy mining [3] and genetic

process mining [4].

Although data quality have been addressed in the

algorithms previously mentioned, log volume was

poorly considered, which is a challenging obstacle

as data stores and therefore event logs tend to grow

sustainably. For the sake of quantified records, the

United States’ all-sectors confound volume of

corporate data averages nearly 200 terabytes per

company. On the algorithmic side, the previously

mentioned algorithms’ efficiency -when applied to

large event logs- was questioned and proved weak

by Van der Aalst [5].

Aren’t there any approaches to provide efficient

mining of highly voluminous logs?

We discuss in this paper a process discovery

algorithm trying to cope with this issue, by the use

of matrix representation in block-by-block

discovery.

In the remainder of this paper, we first state related

works in section 2 then specify the key concepts

used in our paper and our approach fundamentals in

section 3, the following section investigates block

detection, while the fifth section covers pattern type

detection. In section 6, we expose our mining

process then illustrate our method via a case study

in section 7. We conclude our paper and set

research perspectives in section 8.

2. RELATED WORKS

Among the discovery algorithms previously

written, we state first the α-algorithm [1], which

extracts a considerable set of process models

(structured workflow nets, or shortly SWF-nets).

Improvements to the algorithm have been made to

deal with noise [2] and to discover short loops. The

alpha-algorithm has been also conditioned to mine

specific Petri-net categories: invisible tasks and

non-free choice constraints.

To avoid the volumetric tackle, inductive miner

“IM” techniques [13] have been established and

lately extended to inductive miner-infrequent “IMi”

techniques [14] to cope with behavioral

infrequency. The general idea of IM is the

extraction of a set of blocks composing the process

model by extracting the most relevant design

pattern from the directly-follows graphs.

Comparing to the above-stated method whose

design pattern cut lacks falling into a set of

deterministic criteria, our method first introduced in

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

[8] and extended in [15] extracts a set of patterns

from the matrix representation rather than

extracting them from a specific (or even, namely

most relevant) pattern.

Other works in the field have involved matrix

algebra for process representation indeed, Medeiros

et. al represent the log of a process as a matrix[9].

This representation -which is not block-oriented-,

however, is made through creation of « causal

matrix » using the same basic successor operator -

direct succession- to inspect the relationship

between each pair of tasks in the process.

Matrices were also employed by Chen Li et. Al[10]

to represent processes. The authors describe a

method to discover a reference process model: from

a given set of process variants. Mathematical

intuition lacks however to this method as it

symbolizes loops by letter L and XOR operator by

– as matrix components. We also highlight Chen Li

et al.’s method’s input, as it does not operate on the

event log itself but on a set of process variants,

which induces to ranking the method as a post-

process-discovery method [11].

3. KEY CONCEPTS AND APPROACH

FUNDAMENTALS

3.1 Key concepts in data extraction

In order to clear our method’s structure in the

reader’s mind, we have to introduce the key

concepts that we use: indirect succession operator

and characteristic matrix.

Indirect Succession:

Even logs contain traces of successions between

tasks, Van der Aalst et. al[1]suggested a direct

succession operator, we complete the latter by

introducing indirect succession which relies onthe

following four basic ordering relations:

• Indirect succession, denoted ⋙�

• Causality, denoted ↠�

• No succession relationship ≢�

• Parallelism, denoted ∥∥�

Definition1.Let L be an event log over a set of

tasks T and a, b two tasks in T.

� a ⋙� b	(or a indirectly succeeds b) if and

only if there exists a trace σ
t�tt�. . . t� and i, j ∈ �1, . . . , n�such that σ ∈ L, 	t�
 a, t�
 b and i � �.
� a ↠� bif and only if a ⋙� b and b ⋙� a.

� a ≢� b	if and only if a ⋙� b and b ⋙� a.

� a ∥∥� b	if and only if a ⋙� b and b ⋙� a.

For illustration, consider a workflow

L=[(A,B,D,E,H), (A,D,C,E,G), (A,C,D,E,G),

(A,B,D,E,G), (A,D,B,E,H), (A,C,D,E,H),

(A,D,C,E,H)]. We note that:

• A ⋙� H Because there exists a trace

(A,B,D,E,H) such that A is indirectly

succeeded by H,

• B ≢� C As B is never succeeded by C and C

is never succeeded by B.

• D ∥∥� C Because there exists a trace

(A,D,C,E,G) where D⋙� C and there

exists a trace (A,C,D,E,G) where C ⋙� D.

The following subsection explains how we use only

the indirect succession operator to build the

characteristic matrix.

Characteristic matrix:

This is a binary matrix that is meant to describe

relationships between tasks belonging to a given

process, these relationships are detected in event

log analysis and the matrix values depend solely on

indirect succession between tasks.

Definition2.Let L be an event log composed of

traces referring to a set of n tasks

denoted#T�%�∈&�..�', the elements of the matrix are

then:

� M�,�
 1	if	T� ⋙� T�.
� 	M�,�
 0 otherwise

The characteristic matrix for the same event log L

as extended in the previous subsection is shown in

table 1:

Table 1: Example of characteristic matrix

⋙ A B D E H C G

A 0 1 1 1 1 1 1

B 0 0 1 1 1 0 1

D 0 1 0 1 1 1 1

E 0 0 0 0 1 0 1

H 0 0 0 0 0 0 0

C 0 0 1 1 1 0 1

G 0 0 0 0 0 0 0

3.2 Approach fundamentals

The analysis of the basic design pattern structure

leads to the following statement: a feature block

constitutes a block of tasks having the same

successors and the same predecessors among the

tasks that are outside its delimitation. Illustration is

in figure 1.

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

Figure 1:feature Block successors and predecessors

Partial blocks-illustration shown in figure 2-

constitute blocks of tasks having a group of

common successors and predecessors. We note that

each feature block is a partial block but the partial

is not necessary a feature block. In the remainder

we consider the workflow L = [(A,B,C,D),

(A,C,B,D), (A,E,D)] .

Besides, a partial block can be grouped with other

tasks to form a feature block. As shown in figures

3, on one hand, {B, E, C} is a feature block (and

subsequently, is also considered as partial block).

On the other hand, {B, E} and {E, C} are partial

blocks. However, grouping {B, E} and {C}

generates a parallel feature block. In addition,

grouping {A, D} and {B, C, E} generates also a

succession feature block that illustrates a complex

design pattern representing the global process.

 Feature block Partial block

Figure 3:Example of block aggregation

4. BLOCK DETECTION

The analysis of design pattern structures synthesis

of block detection allowed rules(and filtering).

Filters allow detection of both feature and partial

blocks and are based on the formalism of each

block type as well as the logical similarity operator

defined in the next subsection

4.1. Logical Similarity Operator

Once the characteristic matrix is obtained from a

set of tasks, the block detection phase is considered

to determine whether the selected tasks constitute a

feature or partial block. We introduce therefore an

operator of logical similarity.

In combinatory logic, the XOR operator results in

true whenever both inputs differ (one being true and

the other false). Not XOR (symbolized by ⊕)

allows then determining whether two Boolean

values are similar or different.

We explicit Not XOR’s formula and establish the

operator’s truth table below:

+	 ⊕ ,
 + - ,	#./0	2%2222222222222222222
Our logical similarity operator is to help us verify

whether a set of binary n-uples contains the same

values. This operator is defined as follows:

Definition3.Let3
 &1, 4' and 5	 ⊊ 3 with 	7890#5%
 .and let #:;%;∈<be m binary n-uples:

#⨁;∈<:;%>

?@
A
@B 1, CDE:;#./0	.%

;∈<

 0

0, CD	E:;#./0	.%
;∈<

F 0	∀C ∈ 3

We note that we consider m binary n-uples#:;%;∈<
as m n-uples having the same values if the value of #⨁;∈<:;%> is equal to 1 for any	C ∈ 3, according to

the following rule:

Theoreme1. ∀	#:;%;∈<m binary n-

uplesH⊕;∈< :;I
 #1, …1%if and only if all #:;%;∈<
have the same binary values.

We note that the logical similarity test can be

applied to either row or column sets from the

characteristic matrix. However, the formulation of

Common predecessors Partial block Common successors

Figure 2: Partial Block Common Successors And

Predecessors

Table 2: Not Xor Truth Table

A B +	 ⊕ ,

0 0 1

0 1 0

1 0 0

1 1 1

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

the similarity output differs slightly:

Definition4.

#⨁;K�L M;%>NOPQ

?@
A
@B1		if	ES>,;#./0	.%

L

;K�

 0

0		if	ES>,;#./0	.%
L

;K�
F 0

	∀	C	T	&1, 4'

#⨁;K�L M;%>UOVWLXQ

?@
A
@B1		if	ES;,>#./0	.%

L

;K�

 0

0		if	ES;,>#./0	.%
L

;K�
F 0

	∀	C	T	&1, 4'

We illustrate in Table 3 the results of the cross-

similarity test (applied to rows and columns of the

matrix described in Table 1)

Table 3: not xor operator applied to rows and columns

A B C D E , ⊕ Y ⊕Z

A 0 1 1 1 1 1

B 0 0 1 1 0 0

C 0 1 0 1 0 0

D 0 0 0 0 0 1

E 0 0 0 1 0 1

, ⊕Y ⊕Z 1 0 0 1 1

Our first deduction is that the set {B, C, E} displays

a similar behavior to {A, D} blue columns.

4.2. Formalism for blocks

In the previous section, we provided definition to

each one of the block types that we encounter in

process design patterns. As a reminder, partial

blocks contain tasks possessing common successors

and predecessors, as per feature blocks; they

constitute task blocks having the same successors

and the same predecessors among the tasks that are

outside their perimeter.

The objective of this subsection is to present

formalism that allows clearer and reusable

mathematical description of partial & feature block.

Consider a set of tasks #T�%�∈[�,\] from a given

process model. If the set forms a partial block then

each task conserves the same behavior keeps

towards the remainder of tasks outside the set. In

terms of indirect succession, the corresponding

matrix elements (outputs of Not XOR cross

calculation between block tasks and the rest) must

have the same values in rows (respectively in

columns).

For the rest of the paper, we will assume that L is a

log of n tasks #T�%�^�^� and #M�,�%�^�,�^� the

corresponding characteristic matrix. Let also I
 &1, n'andJ ⊊ I.
We can formalize this criterion of feature blocks by

the following definition:

Definition5.The set of the tasks #T�%�∈a constitute a

feature block if and only if:

Have the same values in rows ∀	i, j	 ∈ J, i b �, ∀	c ∈ I\J	M�,\
 M�,\

Have the same values in columns ∀	i, j	 ∈ J, i b �, ∀	c ∈ I\J	M\,�
 M\,�
Direct application of the feature described above to

the matrix in Table3 leads to the following results:

A selection process applied to the matrix knots

must perform application of the property.

Let first consider a random selection of tasks from

the process.

The selection forms a feature block if and only if its

components display the same behavior towards the

non-selected tasks in terms of predecessors and

successors. Detection of feature blocks induces

therefore calculation of differences and similarities

between rows on one hand and columns on the

other one. Also, note that calculus can be performed

on a distributed grid for each candidate block.

We can fit the property mentioned above to our

indirect succession operator terminology by the

following equivalence:

Theoreme2.The set of the tasks #T�%�∈aconstitutes a

feature block if and only if: #⨁�∈aT�%�efgh
 1	∀	j	ϵ	I\J #⨁�∈aT�%�jfklm�h
 1	∀	j	ϵ	I\J
According to definition 1, the tasks {B,C,E}form a

feature block as they have the same behavior with

respect to the other tasks as shown in Table 3 and

Table 4 (the value of blue boxes is 1).The set{B,E}

is not a feature block because they do not have the

same behavior with respect to other tasks as shown

in Table 4 (the value of red box is 0).

Table 4:Example of feature blocks

A B C D E BE BCE

A 0 1 1 1 1 1 1

B 0 0 1 1 0 1 0

C 0 1 0 1 0 0 0

D 0 0 0 0 0 1 1

E 0 0 0 1 0 1 1

BCE 1 0 0 1 1

We denote by BE the calculus of logical similarity

operator:

,⨁Z

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

Besides, let’s define three functions SumR, SumC

and TotalS on the space of n-sized binary vectors

with values in n:

Definition6.Let #T�%�∈a the set of the tasks

� SumR calculates the number of successors

of a given task Ti(we simplify the notation

by SumR(i)). It is the sum of the values

corresponding to thei
th

 row in the

characteristic matrix.

∀	� ∈ J, op.q#C%
ES;,>
>∈<

� SumC calculates the number of

predecessors of a given task Ti (we simplify

the notation by SumC(i)). It is the sum of

the values corresponding to the i
th

 column

in the characteristic matrix.

∀	� ∈ J, op.Y#�%
ES>,;
>∈<

	
� TotalS returns the number of successors

and predecessors of the Crs task. In other

words, it sums both SumR and SumC of a

given Crsposition

Applying definitions given above, we deduce the

following lemma:

Lemma 1.If #M>%>∈<is a feature block then:

They have the same number of successors: ∀	C, �	 ∈ 5, C b �	op.q#C%
 op.q#�%
They have the same number of predecessors: ∀	C, �	 ∈ 5, C b �	op.Y#C%
 op.Y#�%
They have the same number of predecessors and

successors: ∀	C, �	 ∈ 5, C b �	M/t8uo#C%
 M/t8uo#�%
This is a necessary but not sufficient condition to

determine feature blocks. It allows, indeed, to select

candidate feature blocks based on the output of

calculus on rows and columns of a given block’s

matrix representation. Still, candidate blocks are

confirmed to be feature blocks only after applying

the logical similarity operator. The properties

shown in Lemma 1 are meant to simplify feature

block detection. Subsequently, we ought to seek a

rule to detect feature blocks. The rule is based on

the definition below:

Theoreme3.The set of the tasks #M>%>∈<constitutes a

feature block if and only if: ∀	C, �	 ∈ 5, C b �, M/t8uo#C%
 M/t8uo#�%
and#⨁>∈<M>%;NOPQ
 1	∀	�	T	3\5

Partial blocks, on the other hand, represent task

blocks with a group of common successors and

predecessors; the number of successors

&predecessors is not required to be equal for each

task from the partial block. It is also worth noting

that a feature block is a partial block itself while the

other way round is not necessarily true.

According to these findings mentioned above, we

define a partial block as follows:

Definition7.Let5 ⊊ 3, v ⊊ 3L and#T�%�∈a, #T�%�∈wtwo

sets of the tasks where 5 ∩ v
 	∅ and 5 ∪ v ⊊ 3.
The set of the tasks #M>%>∈<constitutes a partial

block relative to #M>%>∈{if and only if:

they have the same values in rows ∀	C, �	 ∈ 5 ∪ v, C b �, ∀	c ∈ 3#5 ∪ v%S>,|
 S;,|

they have the same values in columns ∀	C, �	 ∈ 5 ∪ v, C b �, ∀	c ∈ 3#5 ∪ v%S|,>
 S|,;
Taking account of the number of successors and the

predecessors, we can deduce the following lemma

if we consider an event log L composed of the set

of tasks#T�%�^�^�, and the three functions TotalS,

SumR and SumC:

Lemma2. Let 5 ⊊ 3, v ⊊ 3L and#T�%�∈a, #T�%�∈wtwo sets of the tasks where 5 ∩ v
 	∅
and 5 ∪ v ⊊ 3. The set of the tasks #M>%>∈<constitutes a partial block relative to #M>%>∈{then:
They have the same number of successors and
predecessors

∀	C, �	 ∈ 3 ∪ 5, C	 b �, M/t8uo#C%
 M/t8uo#�%.
Besides, the tasks composing a partial block have

the same behavior with respect to a group of tasks

in the log. Thus, calculating similarities and

differences between rows and columns for a set of

tasks in the characteristic matrix help detecting a

partial block.

5. PATTERN TYPE DETECTION

We saw previously that the number of successors

and predecessors of a block of tasks in a process are

properties that shape the block type and also the

corresponding design pattern.

In order to answer our main objective, which is

process discovery, there are properties to define in

the recognition of each one of the covered pattern

types.

The design patterns used (succession, XOR and

parallel feature patterns) rely here on a set of three

activities. Results are generalized to richer task sets

and demonstration by recursion is possible.

5.1. Succession Feature Pattern

In a succession feature pattern, process tasks are in

succession. Detection of such pattern will rely on

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

the adoption of linear functions used in the previous

section (SumR, SumC and TotalS) that operate on

the calculus of successors and predecessors. We

arrange the linear property in the lemma below:

Lemma 3. Let#M>%>∈<be a set of tasks (sorted by the

order of SumR) in a succession feature block with

cardinality n then: ∀	C ∈ 5, op.q#C% } 1
 op.q#C - 1% ∀	C ∈ 5, op.Y#C% - 1
 op.Y#C - 1% ∀	C ∈ 5, M/t8uo#C%
 4 } 1

Let’s consider a succession feature pattern of five

tasks represented on a Petri net in Figure 4. Let us

first consider three tasks out of the set: B, C and D.

The characteristic matrix and the

successor/predecessor calculus of our sub block

BCD are given in Table 5 and Table 6

Figure 4: Example of succession feature pattern

Table 5:Characteristic matrix corresponding to a

succession pattern

⋙ B C D SumR

B 0 1 1 2

C 0 0 1 1

D 0 0 0 0

SumC 0 1 2

Table 6: Number of successors and predecessors

corresponding to an example ofsuccession feature

pattern

 SumR SumC TotalS

B 2 0 2

C 1 1 2

D 0 2 2

The results of applying of the logical similarity

operator to the characteristic matrix (Table 4) are

shown in Table 7. Green-colored boxes show a

similar behavior of block BCD with regard to the

remnant tasks. Thus, we can say that B, C & D

form a feature block.

Table 7:logical similarity operator applied to succession

pattern

⋙ A B C D E , ⊕ Y ⊕~

A 0 1 1 1 1 1

B 0 0 1 1 1 0

C 0 0 0 1 1 0

D 0 0 0 0 1 1

E 0 0 0 0 0 1 , ⊕Y ⊕~ 1 1 0 0 1

Tasks B, C and D form succession feature block

because:

• They have the same behavior towards

tasks A and E (note the 1 value in the

green cells);

• And the lemma 3 is verified:

o SumR (B) -1 = SumR (C)

o SumC(B)+1 = SumC (C)

o TotalS = 3 - 1 ;

N.B: The verification of SumR and SumC can be

verified of each couple of tasks, we take B and C

just as an example.

5.2. XOR Feature Pattern

The XOR feature pattern represents a set of tasks

running in mutual exclusion.

We set a lemma that allows detection of XOR

feature blocks in our approach based on the number

of successors and predecessors.

Lemma 4.#M>%>∈<is a set of tasks in a XOR feature

block with card(Ti) = n then: ∀	C ∈ 5, op.q#C%
 0 ∀	C ∈ 5, op.Y#C%
 0 ∀	C ∈ 5, M/t8uo#C%
 0

Figure 5 illustrates an example of XOR feature

pattern presented as a Petri net. The feature block

contains tasks B, C and D in mutual exclusion

XOR. Its corresponding characteristic matrix and

number of successors and predecessors (sum of

values of each row and column of its matrix) are

respectively given in tables Table 8and Table

9below.

Figure 5: Example of XOR feature pattern

Table 8:characteristic matrix of an example of the

XOR feature pattern

⋙	 B C D SumR

B 0 0 0 0

C 0 0 0 0

D 0 0 0 0

SumC 0 0 0

A B C D E

A

B

C

D

E

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

Table 9:Number of successors and predecessors

corresponding to an example of XOR feature pattern

 SumR SumC TotalS

A 0 0 0

B 0 0 0

C 0 0 0

We register the results of applying similarity

operator to the characteristic matrix in Table 10.

Table 10:Application of similarity operator to XOR

feature pattern

⋙ A B C D E , ⊕ Y ⊕~

A 0 1 1 1 1 1

B 0 0 0 0 1 1

C 0 0 0 0 1 1

D 0 0 0 0 1 1

E 0 0 0 0 0 1 , ⊕Y ⊕~ 1 1 1 1 1

Tasks B, C and D form an Xor feature block

because:

• They have the same behavior towards

tasks A and E (note the 1 value in the

green bocks);

• And the SumR, SumC & TotalS have the

value of 0 (see Table 10);

5.3. Parallel Feature Pattern

Parallel feature pattern regroups tasks running in

concurrence. We exploit the same functions

operating on successors/predecessors with a

specific definition in the lemma below in order to

sort a detection criterion to this type of patterns.

Lemma 5.#M>%>∈<is a set of tasks in a parallel

feature block with n being the set’s cardinal then: ∀	C ∈ 5, op.q#C%
 4 } 1 ∀	C ∈ 5, op.Y#C%
 4 } 1 ∀	C ∈ 5, M/t8uo#C%
 2 ∗ #4 } 1%
Figure 6illustrates an example of parallel feature

pattern shown as a Petri net. The feature block is

composed of three parallel tasks B, C and D. Its

corresponding characteristic matrix and number of

successors and predecessors are respectively given

in tables Table 11and Table 12.

Figure 6: Example of the parallel feature pattern

Table 11:characteristic matrix for the example of parallel

feature pattern
 ⋙ B C D SumR

B 0 1 1 2

C 1 0 1 2

D 1 1 0 2

SumC 2 2 2

Table 12: Number of successors and predecessors

corresponding to the parallel feature pattern

 SumR SumC TotalS

B 2 2 4

C 2 2 4

D 2 2 4

Table 13contains results of our sole operator

applied to the matrix.

Table 13: logical similarity operator applied to parallel

feature pattern

⋙ A B C D E , ⊕ Y ⊕~

A 0 1 1 1 1 1

B 0 0 1 1 1 0

C 0 1 0 1 1 0

D 0 1 1 0 1 0

E 0 0 0 0 0 1 , ⊕ Y ⊕~ 1 0 0 0 1

Tasks B, C & D form parallel feature block as:

• They have the same behavior regarding

tasks A and E (note the 1 value in the

green boxes);

• And the:

o SumR = 3-1 = 2

o SumC = 3- 1= 2

o TotalS= 2* (3-1) = 4

6. MINING PROCESS

We define a process model as a set of tasks that

respect a design pattern structure. Design patterns

can be either basic or complex. The design pattern

structure we saw in section 3 contains both partial

and feature blocks. By our idea of process mining,

we intend to extract these blocks by following

mining steps; the proposed method detects start and

end blocks of tasks and performs.

The purpose of this section is to present the filters

that form the core of our method.

A

B

C

D

E

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

6.1. Filter of First and Last Task Detection

To detect the first task, we use a filter based on the

following theorems:

Theorem4.The task Tj is the first task if and only if

the sum of the corresponding column values of the

characteristic matrix equals to minimum of op.Y#�%
 min>∈� 	#op.Y#C%%
Detection of the last task requires usage of a filter

based on the following theorem with proof below:

Theorem5. The task Tj is the last task if and only if

the sum of the corresponding row values of the

characteristic matrix equals to min of this value. op.q#�%
 min>∈� 	#op.q#C%%
6.2. Mining Algorithm

The input of the mining algorithm is a process

event log of a. It extracts the corresponding process

model through recursive extractions of feature

blocks composing the Petri net representing the

process. It is worth noting that the detection of the

blocks can be executed on different nodes (the

following calculus can be parallelized).

The main steps of the algorithm are the following:

first, a characteristic matrix is generated from the

event log. Identification of the first and last sets of

tasks in the process follows then filters (operating

on rows and columns of the matrix) are activated to

detect candidate feature and partial blocks. The next

step is selection of feature (then partial) blocks

using the appropriate filter and testing by logical

similarity operator. Discovered feature blocks are

masked and replaced by one task in the

characteristic matrix. The same iterations are

performed considering the new characteristic

matrix until a single block is obtained. Note that the

detection of a partial block requires detecting the

feature blocks composing it (tasks having the same

row’s and column’s values), then replacing each

one of feature blocks by a unique activity. So, a

new candidate feature block is created.

The algorithm is illustrated clearly in the following

pseudo-code:

/* Declaration of some used functions

Int SumVector (int V[])

{ int S=0

 inti=0

 Fori=1 to N

 S=S+V[i]

 EndFor

 Return S

}

Int[][]ChMatrixBuilder (int V[])

{ int M[][]
/* Application of indirect succession operator to task

set

 Return M

}

Dictionary GroupSelector (intT[],S[])

{
/* Groups tasks by their sum values, returns a dictionary of

/* arrays indexed by the distinct values in S.

}

/* Main discovery procedure:

Main()

{
/* n is the cardinal of the task set

Const int n
/* i-th task

inti

IntSumR[n],sumCols[n],TotSum[n]
/* These are the row and column vectors

intRi[n], Ci[n]
/* The characteristic matrix.

int M[n][n]

Dictionary Groups, FeatureGroups, FirstTasks,

LastTasks

Read T[n]

M=ChMatrixBuilder(T)

For i=1 to n

Ri=M.Row(i)

Ci=M.Column(i)

/* Calculating and storing the sum of row values for

task i

SumR(i)=SumVector(Ri)

/* Calculating and storing the sum of column values

for task i

SumCols(i)=SumVector(Ci)

TotSum(i)=SumR(i)+SumCols(i)

If SumR(i)=0 then

/* We identify first tasks

 FirstTasks.Add(T(i))

EndIf

If SumCols(i)=0 then

/* We identify last tasks

 LastTasks.Add(T(i))

EndIf

EndFor

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

/* building a dictionary containing lists of tasks grouped

/* by SumRow, SumCol & TotSum

Groups=GroupSelector(T,Distinct(TotSum))

Fori=1 toGroups.Count

CallComputeSimilarityGroups.key(i)
/* We detect & store feature blocks

FeatureGroups=FeatureGroupDetector(Groups.key

(i))
/* We detect & store partial blocks

PartialGroups=PartialGroupDetector(Groups.key(i)

)

EndFor

For i=1 to PartialGoup.Count

For i=1 to FeatureGroups.Count

Call XOR DetectionFeatureGroups.key(i)

Call ParallelDetectionFeatureGroups.key(i)

 Call SuccessionDetection(FeatureGroups.key(i)

EndFor

EndFor

start: Fori=1 toFeatureGroups.Count

Call XORDetectionFeatureGroups.key(i)

Call ParallelDetectionFeatureGroups.key(i)

Call SuccessionDetection(FeatureGroups.key(i)

EndFor
/* A procedure that takes the feature

/* block as input and prints its graphical notation

Call Create Petri Net Frame

Goto Start
/* A procedure that takes a set of

/* Petri frames and generates graphical aggregation

Call Generate Final Petri Net

}

7. CASE STUDY:

As a case study, we picked a real process event log

[12] as presented in the table below:

Table 14: process event log

Case id Trace

1 (a, b,de,h)

2 (a,d,c,e,g)

3 (a,d,b,e,h)

4 (a,c,d,e,g)

Where:

a = register request, e = decide

b=examine thoroughly g= pay compensation

c = examine casually, h = reject request

d = check ticket,

We can also denote the log by:

L=[(a,b,d,e,h),(a,d,c,e,g), (a,d,b,e,h), (a,c,d,e,g)]

In the reminder of this section, we will present each

step performed by our algorithm and its output,

when the algorithm is applied to the proposed case

study.

Read:

L=[(a,b,d,e,h),(a,d,c,e,g), (a,d,b,e,h), (a,c,d,e,g)]

Construct the characteristic matrix:

ComputeSumR and SumC:

Table 15: First characteristic matrix corresponding to L

 a b d e h c g SumR

a 0 1 1 1 1 1 1 6

b 0 0 1 1 1 0 1 4

d 0 1 0 1 1 1 1 5

e 0 0 0 0 1 0 1 2

h 0 0 0 0 0 0 0 0

c 0 0 1 1 1 0 1 4

g 0 0 0 0 0 0 0 0

SumC 0 2 3 4 5 2 5

Add to First Tasks:{a} because(SumC= min

SumC)

Add to Last Tasks: {g , h} because (SumR= min

SumR)

ComputeTotalS = SumC +SumR

Table 16: First row and column sums

 SumR SumC TotalS

a 6 0 6

b 4 2 6

d 5 3 8

e 2 4 6

h 0 5 5

c 4 2 6

g 0 5 5

Group tasks: {{a,b,e,c},{h,g},{d}}

Compute logical similarity operator to the selected

groups

Table17 First logical similarity operator calculus

a b d e h c g

8 ⊕ �⊕ 7⊕ �

�⊕ �

a 0 1 1 1 1 1 1 0 1

b 0 0 1 1 1 0 1 0 1

d 0 1 0 1 1 1 1 0 1

e 0 0 0 0 1 0 1 1 1

h 0 0 0 0 0 0 0 1 1

c 0 0 1 1 1 0 1 0 1

g 0 0 0 0 0 0 0 1 1 8 ⊕ �⊕ 7⊕ �

1 0 0 0 1 0 1

g⨁h222222 1 1 1 1 1 1 1

Output:

• The tasks a,b,c, e form a partial block(they

have the same behavior only with tasks g and

h and not with d “red cells”)

• g,h are in a feature block (they have the same

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

behavior with all other tasks), so it can be

substituted with a unique activity denoted gh

Select the tasks having the same row’s value in the

partial block {a,b,c,e} which are b and c

Compute logical similarity operator to the tasks b

and c

Table18First logical similarity operator calculus

a b d e c gh �⊕ 7

a 0 1 1 1 1 1 1

b 0 0 1 1 0 1 1

d 0 1 0 1 1 1 1

e 0 0 0 0 0 1 1

c 0 0 1 1 0 1 1

gh 0 0 0 0 0 0 1

�⊕ 7 1 1 1 1 1 1

Output:

• The tasks b and c constitute an Xor Partial

block

Reduce the characteristic matrix by replacing the

feature block with a unique significant activity
Table19 Characteristic matrix after substitution

a bc d e gh SumR

a 0 1 1 1 1 4

bc 0 0 1 1 1 3

d 0 1 0 1 1 3

e 0 0 0 0 1 1

gh 0 0 0 0 0 0

SumC 0 2 2 3 4

Compute TotalS = SumC +SumR

TABLE 20: FIRST ROW AND COLUMN SUMS

 SumR SumC TotalS

a 4 0 4

bc 3 2 5

d 3 2 5

e 1 0 1

gh 0 4 4

Group tasks: {{bc,d},{a,gh},{e}}

Compute logical similarity operator to the selected

groups

Table 21 Characteristic matrix after substitution

a bc d e gh ��⊕ 8 �7 ⊕ 0

a 0 1 1 1 1 0 1

bc 0 0 1 1 1 0 0

d 0 1 0 1 1 0 0

e 0 0 0 0 1 0 1

gh 0 0 0 0 0 1 1 ��⊕ 8 0 0 0 0 0 �7 ⊕ 0 1 0 0 1 1

Output:

• The tasks bc and d form an parallel feature

block (blue colored).

• The tasks gh and a are not in block as they

don’t have different behavior with all tasks

(blue cells)

Reduce the characteristic matrix by replacing the

feature block {bc,d} by a unique significant activity

denoted bcd:
Table22 Characteristic matrix after substitution

a bcd e gh

a 0 1 1 1

bcd 0 0 1 1

e 0 0 0 1

gh 0 0 0 0

This result represents a succession pattern

Generate a frame of the corresponding process

model:

Figure 7: Process model of the case study

Recapitulation:

Table 23: recapitulative table

Block Content Nature

a a The first task

bcd (b,c),d
(b,c) is a parallel block and

(b,c),d is a xor block

e e Normal succession task

gh g,h The final (Xor block)

Split the petri net (by replacing each feature block

by its components).

Figure 8: Petri net representing the log L

8. CONCLUSION:

In this paper, we presented an algorithmic approach

to discover business processes given their event

logs. We proceeded first by stating works related to

process model discovery notably the α-algorithm

and its adaptations to different constraints as loops,

data volume. Previous approaches including use of

matrix algebra in mining and adaptation of

succession operator are discussed. We introduced

the key concepts of indirect succession operator and

characteristic matrix and explained the fundamentals

a bcd e gh

Journal of Theoretical and Applied Information Technology
 10

th
 July 2015. Vol.77. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

of our approach of “process models” and “design

pattern structures”. In the following section, we

introduced logical similarity operator, explained and

illustrated feature and partial block types as well as

their mathematical formalism. In pattern type

detection we covered XOR, succession and parallel

patterns and finally exposed our mining algorithm

followed by the case study in the previous section.

This work meant to lay the ground to a much

complete improvement; In guise of perspectives, we

intend to extend pattern discovery to handle loops,

we also consider discussion of on-the-fly discovery

as data are to be analyzed and process-discovered

even before storing in event logs to deal with

volume constraint.

We also intend to test our approach using industrial

process event logs and to develop a software

application to support the algorithm and to provide a

quantitative estimation of its performance as

compared to other algorithms.

REFRENCES:

[1] W.M.P. van der Aalst, A.J.M.M. Weijters, and L.

Maruster “Workflow Mining: Discovering Process

Models from Event Logs” IEEE Transactions on

Knowledge and Data Engineering,2004

16(9):1128–1142. (IEEE Transactions)

[2] A.K.A. de Medeiros, W.M.P. van der Aalst, and

A.J.M.M. Weijters “Workflow Mining: Current

Status and Future Directions” In R. Meersman, Z.

Tari, and D.C. Schmidt, editors, On the Move to

Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, volume 2888 of Lecture Notes in

Computer Science,2003,pages 389–406. Springer,

Berlin.

[3] C.W. Günther and W.M.P. van der Aalst. Fuzzy

Mining: Adaptive Process Simplification Based on

Multi-Perspective Metrics. In G. Alonso, P. Dadam,

and M. Rosemann, editors, International Conference

on Business Process Management (BPM 2007),

volume 4714 of Lecture Notes in Computer

Science2007, pages 328–343. Springer, Berlin.

[4] A.K.A de Medeiros, A.J.M.M. Weijters, and

W.M.P. van der Aalst. Genetic Process Mining: An

Experimental Evaluation. Data Mining and

Knowledge Discovery, 2007 14(2):245–304.

[5] Wil M.P. van der Aalst, Desire Lines in Big Data. In

J. Becker and M. Matzner, editors, Promoting

Business Process Management Excellence in Russia

(PropelleR 2012), 2013pages 23-30. European

Research Center for Information Systems,.

[6] Michael Schroeck, Rebecca Shockley, Janet Smart,

Dolores Romero-Morales and Peter Tufano.

Analytics: The real-world use of big data 2012 ,IBM

Corporation.

[7] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible

Heuristics Miner (FHM). BETA Working Paper

Series, WP 334, Eindhoven University of

Technology,2010, Eindhoven.

[8] Boushaba, S., Kabbaj, M.I., Bakkoury, Z. Process

mining: Matrix representation for bloc discovery,

Intelligent Systems: Theories and Applications

(SITA), 2013 IEEE.

[9] De Medeiros, A.K.A., Weijters, A.J.M.M., and Van

Der Aalst, W.M.P, Using Genetic Algorithms to

Mine Process Models: Representation, Operators

and Results, 2004, Eindhoven University of

Technology, Eindhoven.

[10] Chen, Li. , Manfred, R., and Wombacher, A.,

Springer Berlin Heidelberg, Discovering Reference

Models by Mining Process Variants Using a

Heuristic Approach, 2009.

[11] Chen Li, Manfred Reichert, Andreas Wombacher,

2011, Mining Business Process Variants:

Challenges, Scenarios, Algorithms, Data &

Knowledge Engineering Elsevier,

[12] W.M.P. van der Aalst. Process Mining: Discovery,

Conformance and Enhancement of Business

Processes,2011 Springer-Verlag, Berlin.

[13] Leemans, S.J.J., Fahland, D., van der Aalst,

W.M.P,Discovering block-structured process

models from event logs - a constructive approach.

In: Petri Nets. Lecture Notes in

ComputerScience2013, vol. 7927, pp. 311–329.

Springer

[14] Sander J.J. Leemans, Dirk Fahland, and Wil M.P.

van der Aalst Discovering Block-Structured Process

Models FromEvent Logs Containing Infrequent

Behaviour2013. fluxicon.com.

[15] Boushaba, S., Kabbaj, M.I., and Bakkoury, Z.

Process discovery: automated approach block

discovery, Evavluation of novel approaches in

software engineering (ENASE), 2014.

