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ABSTRACT 

Business process discovery is a research field assembling techniques that allow representation of a business 

process, taking as input an event log where process data are stored. Several advances have been made in 

process discovery, but as data volume starts to weight considerably, improvement of discovery methods is 

crucial to follow up. In this paper, we discuss our new method, inspired from image processing techniques. 

Adapted to voluminous data logs, our method relies on generation of a Petri net using a matrix 

representation of data. The principal idea behind our approach consists of using several concepts: partial & 

feature blocks, filters as well as the adaptation of combinatory logic concepts to process mining in the 

perspective of extracting a business process model from a big event log. 
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1. INTRODUCTION 

Numerous methods, relying on event log 

exploration, have been elaborated in process 

discovery. Among these methods, there is a branch 

that puts more focus on activities’ ordering within a 

process, for instance, Van der Aalst et. al 

description of an α-algorithm[1], capable of 

describing a large scope of process models. The 

stated algorithm’s constraint in dealing with short 

loops and noisy logs was overcome via Medeiros 

et. al.’s extension of the algorithm to manage short 

looping [2]. Noise and incompleteness have been 

dealt with, on the other hand, through more recent 

algorithms such as fuzzy mining [3] and genetic 

process mining [4]. 

Although data quality have been addressed in the 

algorithms previously mentioned, log volume was 

poorly considered, which is a challenging obstacle 

as data stores and therefore event logs tend to grow 

sustainably. For the sake of quantified records, the 

United States’ all-sectors confound volume of 

corporate data averages nearly 200 terabytes per 

company. On the algorithmic side, the previously 

mentioned algorithms’ efficiency -when applied to 

large event logs- was questioned and proved weak 

by Van der Aalst [5]. 

Aren’t there any approaches to provide efficient 

mining of highly voluminous logs?  

We discuss in this paper a process discovery 

algorithm trying to cope with this issue, by the use 

of matrix representation in block-by-block 

discovery.  

In the remainder of this paper, we first state related 

works in section 2 then specify the key concepts 

used in our paper and our approach fundamentals in 

section 3, the following section investigates block 

detection, while the fifth section covers pattern type 

detection. In section 6, we expose our mining 

process then illustrate our method via a case study 

in section 7. We conclude our paper and set 

research perspectives in section 8. 

2. RELATED WORKS 

Among the discovery algorithms previously 

written, we state first the α-algorithm [1], which 

extracts a considerable set of process models 

(structured workflow nets, or shortly SWF-nets). 

Improvements to the algorithm have been made to 

deal with noise [2] and to discover short loops. The 

alpha-algorithm has been also conditioned to mine 

specific Petri-net categories: invisible tasks and 

non-free choice constraints. 

To avoid the volumetric tackle, inductive miner 

“IM” techniques [13] have been established and 

lately extended to inductive miner-infrequent “IMi” 

techniques [14] to cope with behavioral 

infrequency. The general idea of IM is the 

extraction of a set of blocks composing the process 

model by extracting the most relevant design 

pattern from the directly-follows graphs. 

Comparing to the above-stated method whose 

design pattern cut lacks falling into a set of 

deterministic criteria, our method first introduced in 



Journal of Theoretical and Applied Information Technology 
 10

th
 July 2015. Vol.77. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
9 

 

[8] and extended in [15] extracts a set of patterns 

from the matrix representation rather than 

extracting them from a specific (or even, namely 

most relevant) pattern. 

Other works in the field have involved matrix 

algebra for process representation indeed, Medeiros 

et. al represent the log of a process as a matrix[9]. 

This representation -which is not block-oriented-, 

however, is made through creation of « causal 

matrix » using the same basic successor operator -

direct succession- to inspect the relationship 

between each pair of tasks in the process.  

Matrices were also employed by Chen Li et. Al[10] 

to represent processes. The authors describe a 

method to discover a reference process model: from 

a given set of process variants. Mathematical 

intuition lacks however to this method as it 

symbolizes loops by letter L and XOR operator by 

– as matrix components. We also highlight Chen Li 

et al.’s method’s input, as it does not operate on the 

event log itself but on a set of process variants, 

which induces to ranking the method as a post-

process-discovery method [11]. 

3. KEY CONCEPTS AND APPROACH 

FUNDAMENTALS 

3.1 Key concepts in data extraction 

In order to clear our method’s structure in the 

reader’s mind, we have to introduce the key 

concepts that we use: indirect succession operator 

and characteristic matrix.  

Indirect Succession: 

Even logs contain traces of successions between 

tasks, Van der Aalst et. al[1]suggested a direct 

succession operator, we complete the latter by 

introducing indirect succession which relies onthe 

following four basic ordering relations: 

• Indirect succession, denoted ⋙� 

• Causality, denoted ↠� 

• No succession relationship ≢� 

• Parallelism, denoted ∥∥� 

Definition1.Let L be an event log over a set of 

tasks T and a, b two tasks in T. 

� a ⋙� b	(or a indirectly succeeds b) if and 

only if there exists a trace σ 
t�tt�. . . t� and i, j ∈ �1, . . . , n�such that σ ∈ L, 	t� 
 a, t� 
 b and i � �. 
� a ↠� bif and only if a ⋙� b and b ⋙� a. 

� a ≢� b	if and only if a ⋙� b and b ⋙� a. 

� a ∥∥� b	if and only if a ⋙� b and b ⋙� a. 

For illustration, consider a workflow 

L=[(A,B,D,E,H), (A,D,C,E,G), (A,C,D,E,G), 

(A,B,D,E,G), (A,D,B,E,H), (A,C,D,E,H), 

(A,D,C,E,H)]. We note that: 

• A ⋙� H Because there exists a trace 

(A,B,D,E,H) such that A is indirectly 

succeeded by H,  

• B ≢� C As B is never succeeded by C and C 

is never succeeded by B. 

• D ∥∥� C Because there exists a trace 

(A,D,C,E,G) where D⋙� C and there 

exists a trace (A,C,D,E,G) where C ⋙� D. 

The following subsection explains how we use only 

the indirect succession operator to build the 

characteristic matrix. 

Characteristic matrix: 

This is a binary matrix that is meant to describe 

relationships between tasks belonging to a given 

process, these relationships are detected in event 

log analysis and the matrix values depend solely on 

indirect succession between tasks.  

Definition2.Let L be an event log composed of 

traces referring to a set of n tasks 

denoted#T�%�∈&�..�', the elements of the matrix are 

then:  

� M�,� 
 1	if	T� ⋙� T�. 
� 	M�,� 
 0 otherwise 

The characteristic matrix for the same event log L 

as extended in the previous subsection is shown in 

table 1:  

Table 1: Example of characteristic matrix 

⋙ A B D E H C G 

A 0 1 1 1 1 1 1 

B 0 0 1 1 1 0 1 

D 0 1 0 1 1 1 1 

E 0 0 0 0 1 0 1 

H 0 0 0 0 0 0 0 

C 0 0 1 1 1 0 1 

G 0 0 0 0 0 0 0 
 

3.2 Approach fundamentals 

The analysis of the basic design pattern structure 

leads to the following statement: a feature block 

constitutes a block of tasks having the same 

successors and the same predecessors among the 

tasks that are outside its delimitation. Illustration is 

in figure 1. 
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Figure 1:feature Block successors and predecessors 

Partial blocks-illustration shown in figure 2- 

constitute blocks of tasks having a group of 

common successors and predecessors. We note that 

each feature block is a partial block but the partial 

is not necessary a feature block. In the remainder 

we consider the workflow L = [(A,B,C,D), 

(A,C,B,D), (A,E,D)] . 

Besides, a partial block can be grouped with other 

tasks to form a feature block. As shown in figures 

3, on one hand, {B, E, C} is a feature block (and 

subsequently, is also considered as partial block). 

On the other hand, {B, E} and {E, C} are partial 

blocks. However, grouping {B, E} and {C} 

generates a parallel feature block. In addition, 

grouping {A, D} and {B, C, E} generates also a 

succession feature block that illustrates a complex 

design pattern representing the global process. 

 
  Feature block               Partial block 

Figure 3:Example of block aggregation 

 
 
 

4. BLOCK DETECTION 

The analysis of design pattern structures synthesis 

of block detection allowed rules(and filtering). 

Filters allow detection of both feature and partial 

blocks and are based on the formalism of each 

block type as well as the logical similarity operator 

defined in the next subsection 

4.1. Logical Similarity Operator 

Once the characteristic matrix is obtained from a 

set of tasks, the block detection phase is considered 

to determine whether the selected tasks constitute a 

feature or partial block. We introduce therefore an 

operator of logical similarity. 

In combinatory logic, the XOR operator results in 

true whenever both inputs differ (one being true and 

the other false). Not XOR (symbolized by ⊕) 

allows then determining whether two Boolean 

values are similar or different.  

We explicit Not XOR’s formula and establish the 

operator’s truth table below: 

+	 ⊕ , 
 + - ,	#./0	2%2222222222222222222 
Our logical similarity operator is to help us verify 

whether a set of binary n-uples contains the same 

values. This operator is defined as follows: 

Definition3.Let3 
 &1, 4' and 5	 ⊊ 3 with 	7890#5% 
 .and let #:;%;∈<be m binary n-uples: 

#⨁;∈<:;%> 

?@
A
@B 1, CDE:;#./0	.%

;∈<

 0

0, CD	E:;#./0	.%
;∈<

F 0	∀C ∈ 3 

We note that we consider m binary n-uples#:;%;∈< 
as m n-uples having the same values if the value of #⨁;∈<:;%> is equal to 1 for any	C ∈ 3, according to 

the following rule: 

Theoreme1. ∀	#:;%;∈<m binary n-

uplesH⊕;∈< :;I 
 #1, …1%if and only if all #:;%;∈< 
have the same binary values. 

We note that the logical similarity test can be 

applied to either row or column sets from the 

characteristic matrix. However, the formulation of 

 

Common predecessors Partial block Common successors 

Figure 2: Partial Block Common Successors And 

Predecessors 

Table 2: Not Xor Truth Table 

A B +	 ⊕ , 

0 0 1 

0 1 0 

1 0 0 

1 1 1 
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the similarity output differs slightly: 

Definition4. 

#⨁;K�L M;%>NOPQ 

?@
A
@B1		if	ES>,;#./0	.%

L

;K�

 0

0		if	ES>,;#./0	.%
L

;K�
F 0

	∀	C	T	&1, 4' 

#⨁;K�L M;%>UOVWLXQ 

?@
A
@B1		if	ES;,>#./0	.%

L

;K�

 0

0		if	ES;,>#./0	.%
L

;K�
F 0

	∀	C	T	&1, 4' 

We illustrate in Table 3 the results of the cross-

similarity test (applied to rows and columns of the 

matrix described in Table 1) 

Table 3: not xor operator applied to rows and columns 

 

 
A B C D E , ⊕ Y ⊕Z 

A 0 1 1 1 1 1 

B 0 0 1 1 0 0 

C 0 1 0 1 0 0 

D 0 0 0 0 0 1 

E 0 0 0 1 0 1 

, ⊕Y ⊕Z 1 0 0 1 1 
 

Our first deduction is that the set {B, C, E} displays 

a similar behavior to {A, D} blue columns. 

4.2. Formalism for blocks 

In the previous section, we provided definition to 

each one of the block types that we encounter in 

process design patterns. As a reminder, partial 

blocks contain tasks possessing common successors 

and predecessors, as per feature blocks; they 

constitute task blocks having the same successors 

and the same predecessors among the tasks that are 

outside their perimeter. 

The objective of this subsection is to present 

formalism that allows clearer and reusable 

mathematical description of partial & feature block. 

Consider a set of tasks #T�%�∈[�,\] from a given 

process model. If the set forms a partial block then 

each task conserves the same behavior keeps 

towards the remainder of tasks outside the set. In 

terms of indirect succession, the corresponding 

matrix elements (outputs of Not XOR cross 

calculation between block tasks and the rest) must 

have the same values in rows (respectively in 

columns). 

For the rest of the paper, we will assume that L is a 

log of n tasks #T�%�^�^� and #M�,�%�^�,�^� the 

corresponding characteristic matrix. Let also I 
 &1, n'andJ ⊊ I. 
We can formalize this criterion of feature blocks by 

the following definition: 

Definition5.The set of the tasks #T�%�∈a constitute a 

feature block if and only if:  

Have the same values in rows ∀	i, j	 ∈ J, i b �, ∀	c ∈ I\J	M�,\ 
 M�,\ 

Have the same values in columns ∀	i, j	 ∈ J, i b �, ∀	c ∈ I\J	M\,� 
 M\,� 
Direct application of the feature described above to 

the matrix in Table3 leads to the following results: 

A selection process applied to the matrix knots 

must perform application of the property.  

Let first consider a random selection of tasks from 

the process. 

The selection forms a feature block if and only if its 

components display the same behavior towards the 

non-selected tasks in terms of predecessors and 

successors. Detection of feature blocks induces 

therefore calculation of differences and similarities 

between rows on one hand and columns on the 

other one. Also, note that calculus can be performed 

on a distributed grid for each candidate block.  

We can fit the property mentioned above to our 

indirect succession operator terminology by the 

following equivalence: 

Theoreme2.The set of the tasks #T�%�∈aconstitutes a 

feature block if and only if: #⨁�∈aT�%�efgh 
 1	∀	j	ϵ	I\J #⨁�∈aT�%�jfklm�h 
 1	∀	j	ϵ	I\J 
According to definition 1, the tasks {B,C,E}form a 

feature block as they have the same behavior with 

respect to the other tasks as shown in Table 3 and 

Table 4 (the value of blue boxes is 1).The set{B,E} 

is not a feature block because they do not have the 

same behavior with respect to other tasks as shown 

in Table 4 (the value of red box is 0). 

Table 4:Example of feature blocks 

 
A B C D E BE BCE 

A 0 1 1 1 1 1 1 

B 0 0 1 1 0 1 0 

C 0 1 0 1 0 0 0 

D 0 0 0 0 0 1 1 

E 0 0 0 1 0 1 1 

BCE 1 0 0 1 1 
  

We denote by BE the calculus of logical similarity 

operator:  

,⨁Z 



Journal of Theoretical and Applied Information Technology 
 10

th
 July 2015. Vol.77. No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
12 

 

Besides, let’s define three functions SumR, SumC 

and TotalS on the space of n-sized binary vectors 

with values in n: 

Definition6.Let #T�%�∈a the set of the tasks 

� SumR calculates the number of successors 

of a given task Ti(we simplify the notation 

by SumR(i) ). It is the sum of the values 

corresponding to thei
th

 row in the 

characteristic matrix. 

∀	� ∈ J, op.q#C% 
ES;,>
>∈<

 

� SumC calculates the number of 

predecessors of a given task Ti (we simplify 

the notation by SumC(i) ). It is the sum of 

the values corresponding to the i
th

 column 

in the characteristic matrix. 

∀	� ∈ J, op.Y#�% 
ES>,;
>∈<

	
� TotalS returns the number of successors 

and predecessors of the Crs task. In other 

words, it sums both SumR and SumC of a 

given Crsposition 

Applying definitions given above, we deduce the 

following lemma: 

Lemma 1.If #M>%>∈<is a feature block then:  

They have the same number of successors: ∀	C, �	 ∈ 5, C b �	op.q#C% 
 op.q#�% 
They have the same number of predecessors: ∀	C, �	 ∈ 5, C b �	op.Y#C% 
 op.Y#�% 
They have the same number of predecessors and 

successors: ∀	C, �	 ∈ 5, C b �	M/t8uo#C% 
 M/t8uo#�% 
This is a necessary but not sufficient condition to 

determine feature blocks. It allows, indeed, to select 

candidate feature blocks based on the output of 

calculus on rows and columns of a given block’s 

matrix representation. Still, candidate blocks are 

confirmed to be feature blocks only after applying 

the logical similarity operator. The properties 

shown in Lemma 1 are meant to simplify feature 

block detection. Subsequently, we ought to seek a 

rule to detect feature blocks. The rule is based on 

the definition below: 

Theoreme3.The set of the tasks #M>%>∈<constitutes a 

feature block if and only if: ∀	C, �	 ∈ 5, C b �, M/t8uo#C% 
 M/t8uo#�% 
and#⨁>∈<M>%;NOPQ 
 1	∀	�	T	3\5 

Partial blocks, on the other hand, represent task 

blocks with a group of common successors and 

predecessors; the number of successors 

&predecessors is not required to be equal for each 

task from the partial block. It is also worth noting 

that a feature block is a partial block itself while the 

other way round is not necessarily true. 

According to these findings mentioned above, we 

define a partial block as follows: 

Definition7.Let5 ⊊ 3, v ⊊ 3L and#T�%�∈a, #T�%�∈wtwo 

sets of the tasks where 5 ∩ v 
 	∅ and 5 ∪ v ⊊ 3. 
The set of the tasks #M>%>∈<constitutes a partial 

block relative to #M>%>∈{if and only if:  

they have the same values in rows ∀	C, �	 ∈ 5 ∪ v, C b �, ∀	c ∈ 3#5 ∪ v%S>,| 
 S;,| 

they have the same values in columns ∀	C, �	 ∈ 5 ∪ v, C b �, ∀	c ∈ 3#5 ∪ v%S|,> 
 S|,; 
Taking account of the number of successors and the 

predecessors, we can deduce the following lemma 

if we consider an event log L composed of the set 

of tasks#T�%�^�^�, and the three functions TotalS, 

SumR and SumC: 

Lemma2. Let 5 ⊊ 3, v ⊊ 3L and#T�%�∈a, #T�%�∈wtwo sets of the tasks where 5 ∩ v 
 	∅ 
and 5 ∪ v ⊊ 3. The set of the tasks #M>%>∈<constitutes a partial block relative to #M>%>∈{then: 
They have the same number of successors and 
predecessors 

∀	C, �	 ∈ 3 ∪ 5, C	 b �, M/t8uo#C% 
 M/t8uo#�%. 
Besides, the tasks composing a partial block have 

the same behavior with respect to a group of tasks 

in the log. Thus, calculating similarities and 

differences between rows and columns for a set of 

tasks in the characteristic matrix help detecting a 

partial block. 

5. PATTERN TYPE DETECTION 

We saw previously that the number of successors 

and predecessors of a block of tasks in a process are 

properties that shape the block type and also the 

corresponding design pattern. 

In order to answer our main objective, which is 

process discovery, there are properties to define in 

the recognition of each one of the covered pattern 

types. 

The design patterns used (succession, XOR and 

parallel feature patterns) rely here on a set of three 

activities. Results are generalized to richer task sets 

and demonstration by recursion is possible. 

5.1. Succession Feature Pattern 

In a succession feature pattern, process tasks are in 

succession. Detection of such pattern will rely on 
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the adoption of linear functions used in the previous 

section (SumR, SumC and TotalS) that operate on 

the calculus of successors and predecessors. We 

arrange the linear property in the lemma below: 

Lemma 3. Let#M>%>∈<be a set of tasks (sorted by the 

order of SumR) in a succession feature block with 

cardinality n then:  ∀	C ∈ 5, op.q#C% } 1 
 op.q#C - 1% ∀	C ∈ 5, op.Y#C% - 1 
 op.Y#C - 1% ∀	C ∈ 5, M/t8uo#C% 
 4 } 1 

Let’s consider a succession feature pattern of five 

tasks represented on a Petri net in Figure 4. Let us 

first consider three tasks out of the set: B, C and D.  

The characteristic matrix and the 

successor/predecessor calculus of our sub block 

BCD are given in Table 5 and Table 6 

 

Figure 4: Example of succession feature pattern 

 

Table 5:Characteristic matrix corresponding to a 

succession pattern 

⋙ B C D SumR 

B 0 1 1 2 

C 0 0 1 1 

D 0 0 0 0 

SumC 0 1 2  
 

 

Table 6: Number of successors and predecessors 

corresponding to an example ofsuccession feature 

pattern 
 

 SumR SumC TotalS 

B 2 0 2 

C 1 1 2 

D 0 2 2 

The results of applying of the logical similarity 

operator to the characteristic matrix (Table 4) are 

shown in Table 7. Green-colored boxes show a 

similar behavior of block BCD with regard to the 

remnant tasks. Thus, we can say that B, C & D 

form a feature block. 

Table 7:logical similarity operator applied to succession 

pattern 

⋙ A B C D E , ⊕ Y ⊕~ 

A 0 1 1 1 1 1 

B 0 0 1 1 1 0 

C 0 0 0 1 1 0 

D 0 0 0 0 1 1 

E 0 0 0 0 0 1 , ⊕Y ⊕~ 1 1 0 0 1  
 

Tasks B, C and D form succession feature block 

because: 

• They have the same behavior towards 

tasks A and E (note the 1 value in the 

green cells);  

• And the lemma 3 is verified: 

o SumR (B) -1 = SumR (C)  

o SumC(B)+1 = SumC (C) 

o TotalS = 3 - 1 ;  

N.B: The verification of SumR and SumC can be 

verified of each couple of tasks, we take B and C 

just as an example. 

5.2. XOR Feature Pattern 

The XOR feature pattern represents a set of tasks 

running in mutual exclusion. 

We set a lemma that allows detection of XOR 

feature blocks in our approach based on the number 

of successors and predecessors. 

Lemma 4.#M>%>∈<is a set of tasks in a XOR feature 

block with card(Ti) = n then:  ∀	C ∈ 5, op.q#C% 
 0 ∀	C ∈ 5, op.Y#C% 
 0 ∀	C ∈ 5, M/t8uo#C% 
 0 

Figure 5 illustrates an example of XOR feature 

pattern presented as a Petri net. The feature block 

contains tasks B, C and D in mutual exclusion 

XOR. Its corresponding characteristic matrix and 

number of successors and predecessors (sum of 

values of each row and column of its matrix) are 

respectively given in tables Table 8and Table 

9below. 

 

Figure 5: Example of XOR feature pattern 

 

Table 8:characteristic matrix of an example of the 

XOR feature pattern 

⋙	 B C D SumR 

B 0 0 0 0 

C 0 0 0 0 

D 0 0 0 0 

SumC 0 0 0  
 

 

A B C D E 

A 

B 

C 

D 

E 
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Table 9:Number of successors and predecessors 

corresponding to an example of XOR feature pattern 
 

 SumR SumC TotalS 

A 0 0 0 

B 0 0 0 

C 0 0 0 

We register the results of applying similarity 

operator to the characteristic matrix in Table 10. 

Table 10:Application of similarity operator to XOR 

feature pattern 

⋙ A B C D E , ⊕ Y ⊕~ 

A 0 1 1 1 1 1 

B 0 0 0 0 1 1 

C 0 0 0 0 1 1 

D 0 0 0 0 1 1 

E 0 0 0 0 0 1 , ⊕Y ⊕~ 1 1 1 1 1  
 

Tasks B, C and D form an Xor feature block 

because: 

• They have the same behavior towards 

tasks A and E (note the 1 value in the 

green bocks);  

• And the SumR, SumC & TotalS have the 

value of 0 (see Table 10);  

5.3. Parallel Feature Pattern 

Parallel feature pattern regroups tasks running in 

concurrence. We exploit the same functions 

operating on successors/predecessors with a 

specific definition in the lemma below in order to 

sort a detection criterion to this type of patterns. 

Lemma 5.#M>%>∈<is a set of tasks in a parallel 

feature block with n being the set’s cardinal then:  ∀	C ∈ 5, op.q#C% 
 4 } 1 ∀	C ∈ 5, op.Y#C% 
 4 } 1 ∀	C ∈ 5, M/t8uo#C% 
 2 ∗ #4 } 1% 
Figure 6illustrates an example of parallel feature 

pattern shown as a Petri net. The feature block is 

composed of three parallel tasks B, C and D. Its 

corresponding characteristic matrix and number of 

successors and predecessors are respectively given 

in tables Table 11and Table 12. 

 

Figure 6: Example of the parallel feature pattern 

Table 11:characteristic matrix for the example of parallel 

feature pattern 
 ⋙ B C D SumR 

B 0 1 1 2 

C 1 0 1 2 

D 1 1 0 2 

SumC 2 2 2  

 

Table 12: Number of successors and predecessors 

corresponding to the parallel feature pattern 
 

 SumR SumC TotalS 

B 2 2 4 

C 2 2 4 

D 2 2 4 

Table 13contains results of our sole operator 

applied to the matrix. 

Table 13: logical similarity operator applied to parallel 

feature pattern 

⋙ A B C D E , ⊕ Y ⊕~ 

A 0 1 1 1 1 1 

B 0 0 1 1 1 0 

C 0 1 0 1 1 0 

D 0 1 1 0 1 0 

E 0 0 0 0 0 1 , ⊕ Y ⊕~ 1 0 0 0 1  
 

Tasks B, C & D form parallel feature block as: 

• They have the same behavior regarding 

tasks A and E (note the 1 value in the 

green boxes);  

• And the: 

o SumR = 3-1 = 2  

o SumC = 3- 1= 2 

o TotalS= 2* (3-1) = 4 

6. MINING PROCESS 

We define a process model as a set of tasks that 

respect a design pattern structure. Design patterns 

can be either basic or complex. The design pattern 

structure we saw in section 3 contains both partial 

and feature blocks. By our idea of process mining, 

we intend to extract these blocks by following 

mining steps; the proposed method detects start and 

end blocks of tasks and performs.  

The purpose of this section is to present the filters 

that form the core of our method.  

 

A 

B 

C 

D 

E 
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6.1. Filter of First and Last Task Detection 

To detect the first task, we use a filter based on the 

following theorems: 

Theorem4.The task Tj is the first task if and only if 

the sum of the corresponding column values of the 

characteristic matrix equals to minimum of op.Y#�% 
 min>∈� 	#op.Y#C%% 
Detection of the last task requires usage of a filter 

based on the following theorem with proof below: 

Theorem5. The task Tj is the last task if and only if 

the sum of the corresponding row values of the 

characteristic matrix equals to min of this value. op.q#�% 
 min>∈� 	#op.q#C%% 
6.2. Mining Algorithm 

The input of the mining algorithm is a process 

event log of a. It extracts the corresponding process 

model through recursive extractions of feature 

blocks composing the Petri net representing the 

process. It is worth noting that the detection of the 

blocks can be executed on different nodes (the 

following calculus can be parallelized). 

The main steps of the algorithm are the following: 

first, a characteristic matrix is generated from the 

event log. Identification of the first and last sets of 

tasks in the process follows then filters (operating 

on rows and columns of the matrix) are activated to 

detect candidate feature and partial blocks. The next 

step is selection of feature (then partial) blocks 

using the appropriate filter and testing by logical 

similarity operator. Discovered feature blocks are 

masked and replaced by one task in the 

characteristic matrix. The same iterations are 

performed considering the new characteristic 

matrix until a single block is obtained. Note that the 

detection of a partial block requires detecting the 

feature blocks composing it (tasks having the same 

row’s and column’s values), then replacing each 

one of feature blocks by a unique activity. So, a 

new candidate feature block is created. 

The algorithm is illustrated clearly in the following 

pseudo-code: 

/* Declaration of some used functions  

Int SumVector (int V[]) 

{ int S=0 

 inti=0 

 Fori=1 to N 

  S=S+V[i] 

 EndFor 

 Return S 

} 

Int[][]ChMatrixBuilder ( int V[]) 

{ int M[][] 
/* Application of indirect succession operator to task 

set 

 Return M 

} 

Dictionary GroupSelector (intT[],S[]) 

{ 
/* Groups tasks by their sum values, returns a dictionary of  

/* arrays indexed by the distinct values in S.  

} 

/* Main discovery procedure: 

Main() 

{ 
/* n is the cardinal of the task set  

Const int n  
/* i-th task  

inti 

IntSumR[n],sumCols[n],TotSum[n]  
/* These are the row and column vectors  

intRi[n], Ci[n]  
/* The characteristic matrix. 

int M[n][n] 

Dictionary Groups, FeatureGroups, FirstTasks, 

LastTasks 

Read T[n] 

M=ChMatrixBuilder(T) 

For i=1 to n 

Ri=M.Row(i) 

Ci=M.Column(i) 

/* Calculating and storing the sum of row values for 

task i 

SumR(i)=SumVector(Ri) 

/* Calculating and storing the sum of column values 

for task i 

SumCols(i)=SumVector(Ci)  

TotSum(i)=SumR(i)+SumCols(i) 

If SumR(i)=0 then 

/* We identify first tasks 

 FirstTasks.Add(T(i))  

EndIf 

If SumCols(i)=0 then 

/* We identify last tasks 

 LastTasks.Add(T(i))  

EndIf 

EndFor 
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/* building a dictionary containing lists of tasks grouped 

/* by SumRow, SumCol & TotSum 

Groups=GroupSelector(T,Distinct(TotSum))  

Fori=1 toGroups.Count 

CallComputeSimilarityGroups.key(i) 
/* We detect & store feature blocks 

FeatureGroups=FeatureGroupDetector(Groups.key

(i))  
/* We detect & store partial blocks 

PartialGroups=PartialGroupDetector(Groups.key(i) 

) 

 

EndFor 

For i=1 to PartialGoup.Count 

For i=1 to FeatureGroups.Count 

Call XOR DetectionFeatureGroups.key(i)  

Call ParallelDetectionFeatureGroups.key(i) 

               Call SuccessionDetection(FeatureGroups.key(i) 

EndFor 

EndFor 

 

start: Fori=1 toFeatureGroups.Count 

Call XORDetectionFeatureGroups.key(i)  

Call ParallelDetectionFeatureGroups.key(i) 

Call SuccessionDetection(FeatureGroups.key(i) 

EndFor 
/* A procedure that takes the feature 

/* block as input and prints its graphical notation 

Call Create Petri Net Frame 

Goto Start 
/* A procedure that takes a set of  

/* Petri frames and generates graphical aggregation 

Call Generate Final Petri Net 

} 

7. CASE STUDY: 

As a case study, we picked a real process event log 

[12] as presented in the table below: 

Table 14: process event log 

Case id Trace 

1 (a, b,de,h) 

2 (a,d,c,e,g) 

3 (a,d,b,e,h) 

4 (a,c,d,e,g) 
 

Where:  

a = register request, e = decide 

b=examine thoroughly g= pay compensation 

c = examine casually, h = reject request 

d = check ticket,  

We can also denote the log by: 

L=[(a,b,d,e,h),(a,d,c,e,g), (a,d,b,e,h), (a,c,d,e,g)] 

In the reminder of this section, we will present each 

step performed by our algorithm and its output, 

when the algorithm is applied to the proposed case 

study. 

 

Read: 

L=[(a,b,d,e,h),(a,d,c,e,g), (a,d,b,e,h), (a,c,d,e,g)] 

Construct the characteristic matrix:  

ComputeSumR and SumC: 

Table 15: First characteristic matrix corresponding to L 

 a b d e h c g SumR 

a 0 1 1 1 1 1 1 6 

b 0 0 1 1 1 0 1 4 

d 0 1 0 1 1 1 1 5 

e 0 0 0 0 1 0 1 2 

h 0 0 0 0 0 0 0 0 

c 0 0 1 1 1 0 1 4 

g 0 0 0 0 0 0 0 0 

SumC 0 2 3 4 5 2 5  
 

Add to First Tasks:{a} because(SumC= min 

SumC)  

Add to Last Tasks: {g , h} because (SumR= min 

SumR) 

ComputeTotalS = SumC +SumR 

Table 16: First row and column sums 

 SumR SumC TotalS 

a 6 0 6 

b 4 2 6 

d 5 3 8 

e 2 4 6 

h 0 5 5 

c 4 2 6 

g 0 5 5 
 

Group tasks: {{a,b,e,c},{h,g},{d}} 

Compute logical similarity operator to the selected 

groups 

Table17 First logical similarity operator calculus 

 
a b d e h c g 

8 ⊕ �⊕ 7⊕ � 

�⊕ � 

a 0 1 1 1 1 1 1 0 1 

b 0 0 1 1 1 0 1 0 1 

d 0 1 0 1 1 1 1 0 1 

e 0 0 0 0 1 0 1 1 1 

h 0 0 0 0 0 0 0 1 1 

c 0 0 1 1 1 0 1 0 1 

g 0 0 0 0 0 0 0 1 1 8 ⊕ �⊕ 7⊕ � 

1 0 0 0 1 0 1   

g⨁h222222 1 1 1 1 1 1 1   
 

Output:  

• The tasks a,b,c, e form a partial block( they 

have the same behavior only with tasks g and 

h and not with d “red cells”) 

• g,h are in a feature block ( they have the same 
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behavior with all other tasks), so it can be 

substituted with a unique activity denoted gh 

Select the tasks having the same row’s value in the 

partial block {a,b,c,e} which are b and c 

Compute logical similarity operator to the tasks b 

and c  

Table18First logical similarity operator calculus 

 
a b d e c gh �⊕ 7 

a 0 1 1 1 1 1 1 

b 0 0 1 1 0 1 1 

d 0 1 0 1 1 1 1 

e 0 0 0 0 0 1 1 

c 0 0 1 1 0 1 1 

gh 0 0 0 0 0 0 1 

�⊕ 7 1 1 1 1 1 1  
 

Output:  

• The tasks b and  c constitute an Xor Partial 

block 

Reduce the characteristic matrix by replacing the 

feature block with a unique significant activity 
Table19 Characteristic matrix after substitution 

 
a bc d e gh SumR 

a 0 1 1 1 1 4 

bc 0 0 1 1 1 3 

d 0 1 0 1 1 3 

e 0 0 0 0 1 1 

gh 0 0 0 0 0 0 

SumC 0 2 2 3 4  
 

Compute TotalS = SumC +SumR 

TABLE 20: FIRST ROW AND COLUMN SUMS 

 SumR SumC TotalS 

a 4 0 4 

bc 3 2 5 

d 3 2 5 

e 1 0 1 

gh 0 4 4 

Group tasks: {{bc,d},{a,gh},{e}} 

Compute logical similarity operator to the selected 

groups 

Table 21 Characteristic matrix after substitution 

 
a bc d e gh ��⊕ 8 �7 ⊕ 0 

a 0 1 1 1 1 0 1 

bc 0 0 1 1 1 0 0 

d 0 1 0 1 1 0 0 

e 0 0 0 0 1 0 1 

gh 0 0 0 0 0 1 1 ��⊕ 8 0 0 0 0 0   �7 ⊕ 0 1 0 0 1 1   
 

Output:  

• The tasks bc and d form an parallel feature 

block (blue colored). 

• The tasks gh and a are not in block as they 

don’t have different behavior with all tasks 

(blue cells) 

Reduce the characteristic matrix by replacing the 

feature block {bc,d} by a unique significant activity 

denoted bcd: 
Table22 Characteristic matrix after substitution  

 
a bcd e gh 

a 0 1 1 1 

bcd 0 0 1 1 

e 0 0 0 1 

gh 0 0 0 0 
 

This result represents a succession pattern 

Generate a frame of the corresponding process 

model: 

 
Figure 7: Process model of the case study 

Recapitulation: 

Table 23: recapitulative table 

Block Content Nature 

a a The first task 

bcd (b,c),d 
(b,c) is a parallel block and 

(b,c),d is a xor block 

e e Normal succession task 

gh g,h The final (Xor block) 
 

Split the petri net (by replacing each feature block 

by its components). 

 
Figure 8: Petri net representing the log L 

8. CONCLUSION: 

In this paper, we presented an algorithmic approach 

to discover business processes given their event 

logs. We proceeded first by stating works related to 

process model discovery notably the α-algorithm 

and its adaptations to different constraints as loops, 

data volume. Previous approaches including use of 

matrix algebra in mining and adaptation of 

succession operator are discussed. We introduced 

the key concepts of indirect succession operator and 

characteristic matrix and explained the fundamentals 

a bcd e gh 
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of our approach of “process models” and “design 

pattern structures”. In the following section, we 

introduced logical similarity operator, explained and 

illustrated feature and partial block types as well as 

their mathematical formalism. In pattern type 

detection we covered XOR, succession and parallel 

patterns and finally exposed our mining algorithm 

followed by the case study in the previous section. 

This work meant to lay the ground to a much 

complete improvement;  In guise of perspectives, we 

intend to extend pattern discovery to handle loops, 

we also consider discussion of on-the-fly discovery 

as data are to be analyzed and process-discovered 

even before storing in event logs to deal with 

volume constraint. 

We also intend to test our approach using industrial 

process event logs and to develop a software 

application to support the algorithm and to provide a 

quantitative estimation of its performance as 

compared to other algorithms. 
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