
Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

211

SOFTWARE TAMPERING DETECTION IN EMBEDDED

SYSTEMS

– A SYSTEMATIC LITERATURE REVIEW

1
ABDO ALI ABDULLAH AL-WOSABI,

2
ZARINA SHUKUR

1
 PhD Student, Faculty of Information Science and Technology, UKM, Malaysia

2
 Prof. Dr., Faculty of Information Science and Technology, UKM, Malaysia

Email:
1
abdoali8421@gmail.com ,

2
zarinashukur@gmail.com

ABSTRACT

Embedded systems (ES) become available anywhere and anytime as an established part of our daily

routines. Their usage in sense, store, process, and transfer our personal and private data, such as ATM card,

modern cars system, mobile phones, and etc., become irreplaceable. Developers of these systems face

significant challenges in code and information security. Whereas, software tampering is one of these

challenges, code integrity detection is one of the main approaches used to defeat it. Checking code integrity

achieves tamper proofing by method of identification of unauthorized alteration to recognize any tampered

code is executed or tampered data are used. For the purpose of this paper, we perform a research

methodology based on systematic literature reviews in-order to present different techniques/approaches of

code integrity checking in embedded systems. We briefly survey a number of research studies (specifically

between 2008 and 2014) related to this issue and present their proposed solutions. Obviously, there is no

complete solution, and our aim by conducting this review is to contribute (even a modest effort) on fighting

against software tampering.

Keywords: Embedded Systems, Software Tampering, Tampering Detection, Software Integrity

1. INTRODUCTION

A person of modern society relying on embedded

systems has increased rapidly and the era of digital

machines is gaining popularity among users and

also devices/machines providers. The advancement

in embedded systems applications is providing

user-friendly services. Obviously, embedded

systems used for implementing people's activities

every day, such as the digital scale machines,

digital cameras, modern cars, mobiles, ATM cards,

and etc., are extensively used most of the time

(almost) every day. At the same time, it attracts the

attackers to get and exploit potential vulnerabilities

in the system software, to gain unauthorized access,

for utilizing the system or fetching the data

illegally.

Basically, those potential vulnerabilities can be

exploited in any ES that not well designed with

anti-tamper techniques/algorithms. Embedded

system tampering (EST) is such a latent threat

which can be implemented by using certain tools

for injecting the tampered/malicious codes. Mostly,

an attacker’s aim is to acquire control over some

features of the software with an illegal alteration on

the executable code and behavior. A real world

example is the detected malpractices in fuel retail

outlets in India. Regulation breakers in the fuel

retail business deceived enforcers (and also clients)

by tampering the software of electronic pumps with

the help of certain dubious technicians [1].

Hence, tampering detection is gaining more

attention and priority from embedded systems

designers and developers [2]. Checking code

integrity achieves tamper proofing by method of

identification of unauthorized alteration to

recognize any tampered code is executed or

tampered data are used. As a result, unless

appropriate technique/tool detects the system

integrity of such devices, it will not lose customers,

but also it may initiate undesirable social impacts.

Indeed, such technique/tool does not prevent theft

but instead discourages software tampers.

2. RELATED DEFINITIONS

System security can be divided into three

security concerns; confidentiality, integrity, and

availability. Confidentiality is security concern on

preventing unauthorized users from illegal access to

protected data/software throughout their life-cycles.

The second security concern is integrity which

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

212

ensures that the data/software can't be altered or

deleted by unauthorized person. To a large extent,

confidentiality is about preventing unauthorized

reading of data and programs, while integrity is

concerned with preventing unauthorized writing.

Availability refers to ensuring the system/data will

be accessible when an authorized user needs it, and

without improper delay or undue halting. For

instance, ensuring the system being protected from

the denial of service attacks [3].

3. SYSTEMATIC LITERATURE REVIEWS

The aim of this paper is to review the current

state of the art related to software tampering in

embedded systems, so we have applied the

following processes based-on systematic literature

reviews mentioned by EBSE Technical Report [4].

The next subsections summarize the outcomes into:

the research questions, the search process, inclusion

and exclusion criteria, bibliography management

and document retrieval, and data extraction and

analysis. Also, an appendix shows summary of the

related information extracted from the selected

primary studies.

3.1 The Research Questions
The research questions is one of the key factor to

conduct any systematic literature review [4]. For

the purpose of our research, we have defined the

following research questions:

Question 1: What are the potential threats may

lead to software tampering in embedded systems?

Question 2: What are the existing

techniques/tools could be used to detect software

tampering in embedded systems?

Question 3: What are the current issues related

to implement tampering detection in embedded

systems?

3.2 The Search Process

Essentially, we have started our research by

implementing the literature search on related

studies, and we have found a number of research

studies/papers using UKM Online Library and

Internet services. However, the search process

would be continued until the end of our study. This

process has been conducted by using the search

engines on several digital libraries, such as:

• IEEE Xplore,

• ACM Digital Library,

• Scopus,

• Science Direct,

• Springer Link, and

• Google Scholar

Key terms that closely related to this research

project are: “Software tampering”, “Software

integrity”, “Anti-tamper techniques/tools”,

“Tampering detection”, and “Embedded systems”.
3.3 Inclusion and Exclusion Criteria

For the purpose of conducting this review, we

have defined criteria to specify those studies to be

included and those ignored/excluded studies. We

have applied the following inclusion criteria:

• Research studies published between 2008 and

2014 that related to software tampering in

embedded systems, and

• Those researches on techniques/tools related

to software tampering detection.

On the other hand, we have excluded certain

studies that:

• Informal published (no-defined or unknown

journal or conference),

• Papers that irrelevant to the above research

questions, and

• If there are duplicate versions of the same

study (research), then the old version has been

excluded.

However, if the research paper has been

published in more than one journal or conference,

then we have chosen the most complete version.

3.4 Bibliography Management and Document

Retrieval

Mendeley Desktop 1.12.1 has been used to

manage all citations and bibliography in-order to

formulate our thesis report. The key terms defined

above have been used for searching on the

mentioned search engines. These selected studies

appeared on journals/conferences have been

scanned using their title and abstract. All relevant

papers downloaded for further assessment and for

data extraction. Table1 presents these research

studies found while conducting searching and

scanning on the mentioned digital libraries.

Table 1: The Number of Found Research Studies

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

213

Digital Library

Total number of found papers

Based on

the defined

key terms

Based on

their titles

Based on

their

abstracts

IEEE Xplore 227 63 41

ACM Digital

Library
12 09 08

Scopus 45 22 16

Science Direct 19 12 12

Springer Link 48 18 13

Google Scholar 170 32 18

Total 521 156 108

However, there are a number of researches that

gathered from digital libraries are duplicated, so the

old version have been neglected according to the

exclusion criteria (mentioned above). Also, we have

applied scanning and skimming techniques on these

108 papers in-order to capture the closely related

studies. Accordingly, the total number of collected

studies which have been under consideration for

further review is about 50 researches. After

reviewing these studies, we have summarized

certain information from 15 papers which have

been considered as the main selected studies (see

the appendix: Table3).

3.5 Data Extraction and Analysis

It is essential to introduce the threat model to

figure out the most convenient techniques for

securing embedded systems. In general, embedded

systems can be exposed to two types of attacks,

regarding access to the embedded systems: remote

attacks and physical attacks [5], and some other

researchers [3], [6] summarize attacks against

embedded systems as follows:

• Physical attacks: involves direct tampering

with hardware components, such as: spoofing

attacks, splicing attacks, and replay attacks.

• Side channel attacks: attempts to indirectly

capture a secure data based on side channel

information from the system operations, such

as: timing attacks, power analysis, and fault

analysis attacks

• Software attacks: exploiting potential

vulnerabilities (like buffer overflow attacks)

on many software, or by injecting malicious

code (like Trojan horse programs or viruses)

in-order to overwrite data on system memory

or cause the processor to execute an

unordered or malicious section (/s) of code.

• Network attacks: exploiting potential

vulnerabilities on the transmission medium. It

could be classified as active attacks (for

instance DoS attack), and passive attacks (for

instance monitor and eavesdropping, and

traffic analysis).

Mainly, the lacking practices of joining efforts to

establish security into the development

methodology of information technology

frameworks are a consequence of various elements

that are related to the development process, or the

environment in which the framework works. These

embedded security challenges may include:

heterogeneity, complexity, adaptability,

decentralized control, time-to-market pressures,

performance, energy efficiency (power

consumption), and security cost [6], [7].

Hence, these elements may make designers

hesitant to concentrate on information security

accurately from early phases of system

development, as it is considered as exercise in

futility. In [7], the study defines a four level

security strategy in-order to overcome these

challenges. The proposed strategy consists of:
1. Preventing the event or presentation of

vulnerabilities by enhancement of design

and development processes,

2. Applying different tolerance methods, for

example, vulnerability recognition, attack

recovery, and self-adaptive procedures,

3. Vulnerability elimination during the

development stage and during the utilization

stage, and

4. Vulnerability predicting that accomplished

by conducting a system assessment with

respect to attack occurrence.

Furthermore, Babar et al. [6] identified the main

features of the security framework and architecture

consist of: lightweight cryptography, physical

security, standardized security protocols, secure

operating systems, future application areas, and

secure storage.

Indeed, wide varieties of research carry out on

three main types of solutions: hardware level

solution, software level solution, and a combination

of these two. For example, solution can be fulfilled

by incorporating a hardware system as an external

checker/tester, or on the product level where a

trusted part of code exists to verify the targeted

system security. Table 2 (in the appendix)

summarizes the proposed solutions (software only

approach, hardware only approach, and hybrid

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

214

approach) versus some of mentioned issues and

challenges [6].

As shown above, we have presented the views of

a number of researchers on: threat model,

integrating security into the development

methodology of ES, and the main types of the

proposed solutions. Furthermore, more reviewed

studies related to data and software security on

embedded systems are listed below.

Invention by Schwartz et al. [8] suggests creating

numerous hashes for executable software, the

combination of which represent a signature of a

whole executable software. Every individual hash

corresponds to a particular part of the executable

software (we call it code segment); such that every

fractional digest is a signature of less than all of the

code bytes. As a request to load a code segment

(e.g., a page or something else) of the code into

memory from a storage device, a verification hash

of the code segment is calculated. Then the

verification digest is contrasted with a fractional

digest of the numerous hashes to verify integrity of

the code segment.

Solution based on analyzing the real-time

execution of code section has also been proposed.

Zimmer et al. [9] utilize worst-case execution time

(WCET) bounds data to recognize code tampering

in real-time cyber-physical systems (CPS) by

instrumenting the tasks and schedulers to confirm

timing analysis results in-order to ensure that the

execution time has not exceeds the expected time

bounds.

Another research’s objective is to develop a

secure mechanism for ensuring the software

integrity of the ES that does not need a peripheral

hardware and infrastructure for generating the

security key, storage and management, and gives an

adequate security level. Also, saving the code in an

encrypted format; cryptographic keys are created in

real time, on interest, before the execution of the

encoded code module [10].

On the other hand, Roger's outline applies a

Parallel Message Authentication Code (PMAC)

algorithms that takes into account utilizing a single

hardware encryption module for both encryption

and validation, henceforth it is system-resource

wise and cost-effective [3]. They utilize the block

cipher encryption as a part of their signature

generation process (a CBC-MAC scheme is

utilized). They introduce a mechanism for saving

memory costs by securing various instructions

and/or data blocks with a single signature.

Also, hardware monitor solution has been

applied by a number of researchers. In [11], authors

have presented a checking system to verify the

proper software execution. Their protection is

focused around monitoring the embedded system

processor utilizing system resources that are

discrete from the code binary, initially introduced

for embedded systems in general. Since both

encryption and validation are regularly

computationally intensive, so, some authenticated-

encryption algorithms have been suggested.

However, study has been fulfilled for remote

outlines to permit verification without physical

existence over a network. Remote verification

needs a secure network protocol. For instance,

Basile et al. [12] add hardware level components to

externally verify the system integrity. They

concentrate on recognizing if executed code has

been altered by utilizing a field programmable gate

array (FPGA) to construct a secure architecture.

The researchers' objective is to design a system that

makes it hard to conduct a successful real world

attack. However, the researchers do note that this

technique for security is not expected for high

security systems such as military and government.

Whenever pure hardware solution or pure

software solution fails, a combination of hardware

and software solutions can be exploited. For

example, Gelbart et al. [5] proposed a system that

joint compiler-hardware approach to protect the

software in the embedded system by encrypting

data and code in the memory. They used FPGA to

decrypt executables, and validate the code integrity

before to be executed on the processor.

Additionally, Nimgaonkar et al. [13] introduce

Memory Integrity Verification (MIV) to ensure data

and code integrity. Data and code would be

encrypted before inserting it into the memory and it

would be decrypted after reading it. This prevents

an attacker from observing or modifying the

protected data/code. They consider the energy

efficiency and have used the Merkle hash tree with

time-stamps and time-stamp cache to reduce the

energy consumption of the verification procedure.

Indeed, information security and privacy has

direct influences on the current smart metering

infrastructure, and intelligent vehicles. So, a

number of studies carried out to discuss related

issues on these two fields. For instance, seals can

increase the level of system integrity since they

detect tampering when it is occurred, and then

protective action could be applied when seal is

tampered with. Ransom et al. [14] present invention

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

215

that introduce the favored embodiments relate to a

system and method of securing information formed,

saved and transferred by an energy management

(EM) device that is secured by a tamper-detection

seal unit functioning to considerably detect illegal

access to the EM device and specify any such

action. In one embodiment, the system

incorporates: producing the information; the

information being categorized by an integrity;

identifying when the tamper-detection seal unit

specifies that unapproved access has happened; and

securing the integrity of the information in response

to that alteration (i.e., applying the assigned

protective action (/s)).

A trusted computing base with secure storage and

public key cryptography can also be mentioned

here. In [15], the researchers outline multiparty

processing units (local substations) to compute the

sum of their energy consumption without revealing

user’s information. They proposed that the current

smart metering structure ought to be reconsidered

with a specific end goal to supplant a one-sided

trust idea with a more versatile architecture in

which meter devices have a trusted segment and

have a certain level of independence.

Furthermore, Kumari et al. [16] propose usage

control mechanisms for information that have to be

shared over the network by smart meters connected

to online social websites. They suggest sending

information that is to be controlled just to

information users that induce the information

provider of having usage control mechanisms

present and activated.

In terms of developing an applicable framework

to protect code-integrity against an intended

tampering, Nilsson et al. [17] have introduced

secure firmware updates over the air (SFOTA)

protocol on intelligent vehicle in-order to secure the

transmission of the firmware code between the

portal and a vehicle. The proposed framework

facilitates code verification for firmware updates

based on simple hash chain calculation on memory

contents, challenge-response mechanism, and

include random numbers to prevent pre-image

attacks. However, the key management for using

and storing the encryption key is not considered

well as they assumed to use a single cryptographic

key for all the car’s control units.

On the other hand, mobile phones influenced by

the same issues too. In [18], the study proposed the

Specification Based Intrusion Detection Framework

(SBIDF) that exploits whether there are hardware

interrupts to classify a purely programming

initiated activity and human initiated activity. It

characterize specifications to identify the typical

conduct pattern, and impose this specification to all

third party applications on the cellphone at run-time

by observing the inter-component interface pattern

among critical modules. At whatever point these

critical modules start up for implementation, the

Authentication Module calculates an md5 hash over

the TEXT portion of the module. So as to locate the

integrity of the critical module, the Authentication

Module compares the hash with a precomputed

value of the hash of that segment. This

precomputed hash value is available in the

Specification Database. It could be computed by

the phone stack supplier before delivery to the

client, and after that statically saved in the

Specification Database for future utilization.

4. REAL WORLD EXAMPLES

There exist a number of real world projects on

data and code security in embedded systems. For

instance, EVITA and INSIKA projects have been

introduced and managed on European countries.

The EVITA project (http://www.evita-project.org/)

introduced three different security modules for

protected vehicles on-board communications giving

the principle for the prevention of external car

connection. They introduced Hardware Security

Modules (HSM) that facilitate means to secure the

platform safety, to guarantee the integrity and

secrecy of significant item, and to improve

cryptographic processes; accordingly securing

crucial resources of the system. The components of

the HSM are: Symmetric Cryptographic Engine,

Asymmetric Cryptographic Engine, Hash Engine,

Random Number Generator, and Secure CPU.

Whereas, forgery on taxation information has

become an important issue in all member states of

the European Union, specialists have to propose a

technology solution in-order to fight against

manipulation of cash taking. On 2008, the German

working group on cash registers started the INSIKA

project (http://www.insika.de/en/) funded by the

German Federal Ministry of Economics and

Technology. Aim of this project is to introduce an

applicable innovation for prohibiting information

deception in Electronic Cash Registers (ECR). The

main idea is based on digital signatures to detect

any illegal modifications to the protected

information. The basic idea of this project is based

on asymmetric cryptography (public and private

key algorithm), and SHA-1 algorithm.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

216

CONCLUSION

Software can be altered by attackers or malicious

users while running or at the rest. This kind of

alteration is known as "Software Tampering”. The

primary objective of software tampering is to gain

control over some aspects of the software with an

unauthorized modification that alter the software

program code and behavior. In this paper, we

reviewed a number of researches related to software

tampering in embedded systems. We focused on

three main solutions: software only approach,

hardware only approach, and hybrid approach. We

then summarize different solutions, based on

mentioned approaches, proposed by the selected

studies. We emphasize that there is no complete

solution, and the major aim of this paper is to

contribute positively (even a modest effort) on

combating such misuse acts.

APPENDIX

Table 3 summarizes certain information from a

number of reviewed studies. This table represents

the main ideas extracted from selected researches,

which ordered chronologically by the published

year.

REFERENCES

[1] G. Anand, “Electronic fuel pumps not tamper-

proof,” TheHindu.com, 27-Oct-2013.

[2] G. Myles and H. Jin, “A Metric-Based

Scheme for Evaluating Tamper Resistant

Software Systems,” pp. 187–202, 2010.

[3] A. Rogers and A. Milenković, “Security

extensions for integrity and confidentiality in

embedded processors,” Microprocess.

Microsyst., vol. 33, no. 5–6, pp. 398–414,

Aug. 2009.

[4] S. E. Group, “Guidelines for performing

Systematic Literature Reviews in Software

Engineering,” 2007.

[5] O. Gelbart, E. Leontie, B. Narahari, and R.

Simha, “A compiler-hardware approach to

software protection for embedded systems,”

Comput. Electr. Eng., vol. 35, no. 2, pp. 315–

328, Mar. 2009.

[6] S. Babar, A. Stango, and N. Prasad, “Proposed

embedded security framework for internet of

things (iot),” … Theory Aerosp. …, pp. 1–5,

2011.

[7] S. Mirjalili and A. Lenstra, “Security

observance throughout the life-cycle of

embedded systems,” Proc. 2008 Int. …, 2008.

[8] J. D. Schwarts, Y. L. Sie, and P. J. Hallin,

“(12) United States Patent,” vol. 2, no. 12,

2009.

[9] C. Zimmer, B. Bhat, F. Mueller, and N.

Carolina, “Time-Based Intrusion Detection in

Cyber-Physical Systems,” pp. 109–118, 2010.

[10] A. Venþkauskas and I. Mikuckienơ,

“Generation of the Secret Encryption Key

Using the Signature of the Embedded

System,” vol. 41, no. 4, pp. 368–375, 2012.

[11] S. Mao and T. Wolf, “Hardware Support for

Secure Processing in Embedded Systems,”

vol. 59, no. 6, pp. 847–854, 2010.

[12] C. Basile, S. Di Carlo, and a. Scionti, “FPGA-

Based Remote-Code Integrity Verification of

Programs in Distributed Embedded Systems,”

IEEE Trans. Syst. Man, Cybern. Part C

(Applications Rev., vol. 42, no. 2, pp. 187–

200, Mar. 2012.

[13] S. Nimgaonkar, M. Gomathisankaran, and S.

P. Mohanty, “TSV: A novel energy efficient

Memory Integrity Verification scheme for

embedded systems,” J. Syst. Archit., vol. 59,

no. 7, pp. 400–411, Aug. 2013.

[14] I. D. Ransom, V. Ca, E.- Etheridge, B. B. Ca,

S. J. Harding, V. Ca, M. F.- Hirschbolds, and

T. M. Kiister, “(12) United States Patent,”

vol. 2, no. 12, 2010.

[15] F. D. Garcia and B. Jacobs, “Homomorphic

Encryption,” pp. 226–238, 2011.

[16] P. Kumari, F. Kelbert, and A. Pretschner,

“Data Protection in Heterogeneous

Distributed Systems : A Smart Meter

Example,” 2011.

[17] D. K. Nilsson, L. Sun, and T. Nakajima, “A

Framework for Self-Verification of Firmware

Updates over the Air in Vehicle ECUs,” 2008

IEEE Globecom Work., pp. 1–5, Nov. 2008.

[18] A. Chaugule, Z. Xu, and S. Zhu, “A

Specification Based Intrusion Detection

Framework for Mobile Phones,” pp. 19–37,

2011.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

217

APPENDIX

Table 2: Comparison for Existing Solutions

Solution

Approach

Solved issues (challenges)

Comments

Cost Flexibility Performance
Power

Consumption

Software only Yes Yes Partially No No

Sometimes leads to overwhelm

the processing capacity of the

embedded system GPP

Hardware only No No Yes Yes

Hybrid approach

(Software and

Hardware)

Partially

Yes
Yes Yes Yes

Requires a clear vision of the

complete system and a good

interaction between the hardware

designers, the software designers,

and the security experts

Table 3: Summary of Selected Primary Studies

Sr.

No.
Details

1

Year 2013

Author(/s) Satyajeet Nimgaonkar, Mahadevan Gomathisankaran, and Saraju P. Mohanty

Title
TSV: A novel energy efficient Memory Integrity Verification scheme for embedded

systems

Methodology

Timestamps Verification (TSV) instrument by utilizing Merkle hash tree.

Throughout the write operation, the information scrambled through the memory

encryption block before storing it to the off-chip untrusted memory. Throughout a

read operation, the information is initially decoded and the hash location of the

information and the hash of the information is examined against the hash that is

saved in the hash cache. In the event that the hash equals then it is reasoned that

the condition of the information is legal, if no then, it is presumed that the

information is tampered.

Finding(/s)

They proposed a novel energy effective methodology (called TSV) to afford

Memory Integrity Verification (MIV) in ES. The energy savings with TSV

approach can run from 36% to 81%, contrasted with base case results, based on the

amount of timestamps that can be saved in the TS cache.

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

2

Year 2012

Author(/s) Cataldo Basile, Stefano Di Carlo, and Alberto Scionti

Title
FPGA-Based Remote-Code Integrity Verification of Programs in Distributed

Embedded Systems

Methodology

They propose the use of Field-programmable gate arrays (FPGAs) as a center of

trust to securely calculate code integrity validations taking into account memory

checksums, and introduces a protected protocol to convey them to an assigned

confirmation entity. They utilized FPGAs, and code integrity verification using

SHA-1 and AES.

Finding(/s)

The utilization of reconfigurable computing to securely perform remote code

trustworthiness confirmation of code in distributed ES. Likewise, the utilization of

remote dynamic update of reconfigurable gadgets to raise the intricacy of

mounting assaults.

Answer question(/s)

(Refer to 3.1)

Q1, Q2, & Q3

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

3

Year 2012

Author(/s)
Algimantas Venckauskas, Nerijus Jusas, Irena Mikuckiene, and Stasys

Maciulevicius

Title
Generation of the Secret Encryption Key Using the Signature of the Embedded

System

Methodology

The secure encoding key of the program module is created from the headers of the

code to be secured and from the hashes of the ES hardware and code parts (CPU,

RAM, ROM, BIOS, OS, and so on), utilizing the fastest and most straightforward

logical processes (XOR, OR, SHIFT).

Finding(/s)

The introduced technique creates high entropy keys (entropy rate near to 1) with

no extra hardware and structure cost. Likewise, The entropy of the secure encoding

key produced by utilizing the hash generation functions based on OR and XOR

processes and SHA-2 function is most elevated.

Answer question(/s)

(Refer to 3.1)
Q2, & Q3

4

Year 2011

Author(/s) Flavio D. Garcia, and Bart Jacobs

Title Privacy-Friendly Energy-Metering via Homomorphic Encryption

Methodology
They utilize an integration of Pallier additive homomorphic encoding and additive

secure sharing with public-key algorithm.

Finding(/s)

They propose the No-Leakage protocol for protected connection with energy

meters and for piracy identification (leak) in a security method. The existing

intelligent metering framework must be re-examined so as to supplant a one-sided

trust supposition by a more versatile structural planning where energy meters have

a trusted segment and impose a certain level of independence.

Answer question(/s)

(Refer to 3.1)
Q2

5

Year 2011

Author(/s) Ashwin Chaugule, Zhi Xu, and Sencun Zhu

Title A Specification Based Intrusion Detection Framework for Mobile Phones

Methodology

The study utilizes the md5 hash and description database to portray the typical

conduct style, and observe the inter-component connection style between distinct

modules.

Finding(/s)

They propose a Specification Based Intrusion Detection Framework (SBIDF) to

identify the unapproved malicious behavior (strange intrudes). The assessment of

simulated conduct of actual malware demonstrates that they would be able to

distinguish all forms of malware that endeavors to access critical services without

having user's license.

Answer question(/s)

(Refer to 3.1)
Q2

6

Year 2011

Author(/s) Sachin Babar, Antonietta Stango, Neeli Prasad, Jaydip Sen, and Ramjee Prasad

Title Proposed Embedded Security Framework for Internet of Things (IoT)

Methodology

Study and investigation of embedded protection, particularly in the field of Internet

of Things (IoT). They outlined the protection needs taking into account

computational time, energy utilization and memory needs of the systems.

Finding(/s)

They propose an embedded protection framework and architecture that can assist

designers and developers to convey more protected systems. Their result consider

the security from the earliest starting point i.e. from the designing stage to the

operation phase. Additionally, the researchers deduce that the suitable system-level

study will empower the determination of the candidate solutions for the hardware

and programming modules.

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

7

Year 2011

Author(/s) Prachi Kumari, Florian Kelbert, and Alexander Pretschner

Title Data Protection in Heterogeneous Distributed Systems: A Smart Meter Example

Methodology Apply use control techniques at each area outside the energy filed. These

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

techniques intercept each demand to get an information and permit the flow of

information just if a confirmation of presence of an identical mechanism at the

other side is given. Additionally, utilize digital certificates (approved by a

certificate authority) for the protected verification of information requesters to

perform the detective enforcement techniques. Likewise, encoding the usage

controlled information and guaranteeing that just authenticated usage control

techniques can unscramble the information.

Finding(/s)

They presented a framework for enforcing information security in a diverse

distributed system including of an intelligent meter linked to a web based social

networks (WBSN).

Answer question(/s)

(Refer to 3.1)
Q2

8

Year 2010

Author(/s) Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan

Title Time-Based Intrusion Detection in Cyber-Physical Systems

Methodology

Analyzing the execution time to identify an application's best case execution time

(BCET) and worst case execution time (WCET) boundaries that permits check of a

function's deadline. Their methodology supplements network-centric security with

application-level intrusion recognition.

Finding(/s)

They identify the execution of prohibited instructions in real time ES. Such

intrusion disclosure uses data acquired by static timing check. For real time ES,

timing boundaries on code areas are readily accessible as they are previously

identified before the schedulability check.

The study shows how to give micro-timings for numerous granularity scales of

system code. Through boundaries monitoring of these micro-timings, they create

methods to distinguish intrusions in a self-checking mode by the application, and

by the OS scheduler.

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

9

Year 2010

Author(/s)
Douglas S. Ransom, E. Etheridge, Stewart J. Harding, Markus F. Hirschbolds,

Theresa M. Koster, and Simon H. Lightbody

Title System and Method for Seal Tamper Detection for Intelligent Electronic Devices

Methodology

They identify a wide varieties of existing security protocols, algorithms, and

methods for revealing and reacting to system tampering in an Energy Management

(EM) device, for example, seal, SSL, TLS, IPSec, RSA, DES, digital signature,

audit log, hash function, and etc.

Finding(/s)
Introducing a system and security methods to discover an unauthorized altering in

an Energy Management device.

Answer question(/s)

(Refer to 3.1)
Q2

10

Year 2010

Author(/s) Shufu Mao, and Tilman Wolf

Title Hardware Support for Secure Processing in Embedded Systems

Methodology

Analyze the binary code of an ES application and infer a control flow diagram.

They utilize a checking subsystem that works along with the embedded processor.

The monitoring module confirms that just processing procedures are performed

that coincide with the initially installed code. Any unauthorized execution would

disturb the manner of execution procedures, and consequently, alarm the

monitoring module.

Finding(/s)

Their outcomes demonstrate that exclusively depending on control flow data, as it

has been carried out in the past, is not a proficient method for recognizing attacks.

Rather, they have proposed a hash based style that utilizes low memory and can

distinguish deviations from intentional processing within an individual instruction

cycle.

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

11 Year 2009

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

Author(/s) Austin Rogers, and Aleksandar Milenkovic

Title Security extensions for integrity and confidentiality in embedded processors

Methodology

Their methodology is nearly totally hardware approach, need no compiler

assistance and just low OS support. Integrity is guaranteed utilizing runtime check

of cryptographically robust signatures embedded in the code and data. Information

blocks are further secured from replay attacks by utilizing sequence values. The

sequence values are secured utilizing a tree like structure. Secrecy is guaranteed by

encoding instructions and information sections and signatures utilizing a dissimilar

one-time pad (OTP) encoding technique.

Finding(/s)

They proposed a number of cost effective architectural additions adequate for mid-

range to high-end ES processors. These additions guarantee the integrity and

secrecy of both code and information, presenting low execution overhead (1.86%

for code and 14.9% for information).

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

12

Year 2009

Author(/s) Olga Gelbart, Eugen Leontie, Bhagirath Narahari, and Rahul Simha

Title A compiler-hardware approach to software protection for embedded systems

Methodology

Their approach has three components. The first is design: the utilization of

assisting FPGA that they call it as the FPGA guard. The second is a back-end

compiler module that controls the instructions such that every instruction segment

has a mark. The third is a detection algorithm, executed on the FPGA, which

inspects the marks of instruction segments to confirm legitimate execution (control

flow and instruction-integrity verification). They utilize AES for encoding of

information and code and CRC or SHA-1 calculation to facilitate integrity testing

of data and instructions.

Finding(/s)

They proposed CODESSEAL framework which depends on a compiler to append

security to the system and on FPGA to dynamically check the code and its data at

execution with less efficiency penalties.

Answer question(/s)

(Refer to 3.1)
Q1, Q2, & Q3

13

Year 2009

Author(/s) Jonathan D. Schwartz, Yu Lin Sie, and Philip Joseph Hallin

Title
Systems and Methods for Validating Executable File Integrity Using Partial Image

Hashes

Methodology

Creating numerous fractional hash values of the code for verification prior loading

the software. Every fractional hash of the hash values stand-for a hash of a

particular segment of code. Then combine the code with its related fractional hash

values into a system catalog or into a self-signed file.

Finding(/s)
Introducing a framework and methods to reinforce code-integrity based on

examining of numerous fractional hash values that corresponding to the code.

Answer question(/s)

(Refer to 3.1)
Q2

14

Year 2008

Author(/s) S. Hasan Mirjalili, and Arjen K. Lenstra

Title Security Observance throughout the Life-Cycle of Embedded Systems

Methodology
Analyze the whole life cycle of ES and convenient countermeasures are integrated

in the system design.

Finding(/s)

They proposed a methodology that considers the security factor from the starting

point of the system design of ES during their whole life cycle. A 4-level protection

method guarantees not just that a system has been appropriately outlined in terms

of security, additionally that the responsibilities of its designers are properly

managed. While the usage situations and users' actions can't be anticipated, it is not

completely ensured that the system is always secure.

Answer question(/s)

(Refer to 3.1)
Q3

15
Year 2008

Author(/s) Dennis K. Nilsson, and Lei Sun, Tatsuo Nakajima

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

Title
A Framework for Self-Verification of Firmware Updates over the Air in Vehicle

ECUs

Methodology

They used virtualization mechanisms to aid a functional and a control system. The

control system conducts a memory check of the downloaded firmware involves a

challenge-response technique between the gateway and the control system to

validate the downloaded binary. Likewise, computing a hash sequence

corresponding to the memory data and a challenge. A random value is incorporated

to generate randomness in the digest computation to prohibit an attacker from

executing a replay attack. So, the last digest value is utilized as the check code.

Finding(/s)

They have developed an architecture for self-validation of remote firmware

updates in electronic control units (ECUs). The architecture comprises of a trusted

gateway and a car. It is fundamental to not just confirm that the firmware has been

downloaded properly but additionally to validate that the firmware has been

precisely flashed to memory.

Answer question(/s)

(Refer to 3.1)
Q2

