
Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

178

TRANSACTION LEVEL MODELS’ STRUCTURING: FROM

IDIOMS TO TLM-2

SALAHEDDINE HAMZA SFAR, IMED BENNOUR, RACHED TOURKI

Laboratory of Electronic and Microelectronic, Faculty of Sciences at Monastir, Tunisia

Email: slaheddine.sfar@isima.rnu.tn , imed.bennour@fss.rnu.tn , rached.tourki@fsm.rnu.tn

ABSTRACT

A system on chip (SoC) designing cost is not only dependent on the manufacturing process but also on the

used design methodologies and tools. Transaction level modelling (TLM) has emerged as an efficient

methodology of electronic system level (ESL) design, with an acceptable simulation speed and modelling

accuracy. During the last decade, the research efforts were to define the various TLM abstraction levels,

TLM taxonomies, and TLM programming languages. The result was the definition and the standardization

of the SystemC language, the TLM-2 library and a set of coding styles. The further step toward an efficient

TL modelling methodology consists in structuring the various TL models. This paper firstly reviews the

most important steps in the evolution of the TLM methodology and secondly it presents an efficient

structuring of the TL models based on TLM-2 library.

Keywords: Electronic System Level Design, SystemC, Transaction level modelling, architecture

exploration, system in chip, network on chip.

1. INTRODUCTION

Due to the growing complexity of electronic

systems, the use of a suitable design methodology

can divide the design cost by 10 or 100 [1]. In [2],

the authors assert that 80’s design methodologies

called "capture and simulate" or those of 90’s

called "describe then synthesize" are obsolete. The

last decade marks the rise of the so-called

"specifies explores and refines" design

methodologies which fill the weaknesses of

previous methodologies and bridge the widening

gap between register transfer level (RTL) and

system specifications. Over the years, a race is set

to elevate the levels of abstraction and therefore,

each methodology brings many novelties in terms

of design flow and specification language. This

give the birth to a new field of research called

electronic system level (ESL) design [3-5]. It

includes research works interested in resolving

issues arising when we transform the system level

model according to taxonomies illustrated in

Figure 1.

New system-level design languages (SLDL),

such as SystemC [6] and SystemVerilog [7], are

the major success ingredient of ESL design

methodologies [8]. As they are object-oriented

(OO), the designer can isolate communication (i.e.

interfaces) and each set of system’s functionalities

in a separate class. The use of dynamic classes, the

concept of inheritance and parameterized

constructors allow designers to create flexible,

robust and reusable components. SystemC

presents, in addition to its compatibility with C++,

means to describe a system at different levels of

abstractions. It provides data types and hierarchical

structures to simulate synchronous and/or

asynchronous modules [9]. In other words, it

allows describing semantics implemented in the

various graduations of taxonomic axes of the

Figure 1.

Temporal

Data

Concurrency

Communications

Configurability

G
a

te

p
ro

p
a

g
a

tio
n

C
y

c
le

a
c

c
u

ra
te

S
y

ste
m

e
v

e
n

t

C
y

c
le

a
p

p
ro

x
im

a
te

In
s

tru
ctio

n

c
y

cle

T
o

k
e

n

c
y

cle

P
a

rtia
l

o
rd

e
r

B
it

F
o

rm
a

t

V
a

lu
e

P
ro

p
e

rty

T
o

k
e

n

S
ig

n
a

l

P
ip

e
lin

e

M
u

ltith
re

a
d

P
a

ra
lle

l

M
u

lti

A
p

p
lica

tio
n

S
e

su
e

n
tia

l

P
o

in
t to

p
o

in
t

B
u

ffe
re

d

L
o

w

sp
e

e
d

 B
u

s

C
o

p
ro

ce
ss

o
r

M
e

m
o

ry

H
ig

h

sp
e

e
d

 B
u

s

N
o

n
e

F
ix

e
d

D
e

sig
n

C
o

n
fig

u
ra

b
le

P
ro

g
ra

m
m

a
b

le

D
y

n
a

m
ic

Taxonomy axes specific to ESL

High resolution

Low resolution

Figure 1: System design taxonomy [4]

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

179

Transaction Level modelling (TLM) is among

the most promising ESL methodology to handle the

growing complexity [10]. The system designer

focuses on the functionality of the communication

between model elements without detailing its

implementation when he writes a transaction level

(TL) model. Such models focus on the exchanged

data and the communication phases without giving

importance to means used to accomplish the

transfer of this data [11]. Verification, architecture

exploration or early stage software development

and validation are the main use cases of TL models

[4], [12], [13] and [14]. Nevertheless, the high

complexity of modern systems makes TL models

very challenging to develop. They are tightly

dependent on the system design taxonomy, the

description languages, the developed TL idioms

and the model’s use case. For that, TL models do

not have a precise definition and several research

groups such as in [15] and [16] are working to

establish and enforce their standards. In 2011, the

main update of the SystemC standard integrates

TLM-2 library. It provides commonly used utilities

to make easier the TL models writing. Nonetheless,

standard establishment does not resolve everything;

it is just the corner stone to pass to transaction-

level synthesis and electronic design automation as

next logical steps for the coming years. Before that,

good practice in describing and simulating systems

at transaction-level must be done and additional

TLM guides need to be established.

Figure 2: TLM methodology - achievements and

challenges

Figure 2 summarizes the achieved tasks and the

remained tasks toward a complete TLM

methodology. TL model structuring is one of the

current challenging tasks. It has to define good

practice and clear rules in TL model writing in

order to allow a high degree of interoperability of

the models from multiple designers and to

accelerate the development of advanced EDA tools

around TL models. In this paper, we trace the

evolution of TLM’s concepts from idioms and

basic abstraction levels to advanced application

programming interface , then we propose a

structuring solution for the most two dominating

levels of TL models (transaction and transfer). At

each abstraction level, we depict several methods

involved in communication and specify theirs

interactions. In addition, we take inventory of

schemas to insert temporal constraints and we

detail their implementations in the identified

methods. The proposed solution targets the last

SystemC standards.

The rest of this paper is organized as follows.

Section 2 reviews the evolution and the basic

concepts of TLM, which are transaction levels,

TLM idioms, the TLM-2 library and coding styles.

Section 3 and section 4 describes our proposal to

structure respectively transaction and transfer

models and details communication methods’

implementations. Section 5 discusses the extension

of our solution to a network on chip (NoC) based

communication modelling. Finally, section 6

concludes the paper.

2. TLM’S EVOLUTION

2.1 Basic transaction levels

In a previous work [17], we contributed to

identify six basic inter-modules transaction levels:

shared variables, messages, transactions, transfers,

pin and RTL. Each level marks a trade-off between

relative simulation speed and communication

details and accuracy and corresponds to a specific

modelling scheme. The Table 1 summarizes their

characteristics

Shared variable based models and message-

based models reflect two levels of traditional

programming. If the first ones are often monolithic

programs, the second ones are more organized

where messages are enriched data structure. The

developer does not have to switch to another

programming language when writing messages-

based models. He pushes the programming

language used in shared variables model to its

limits to shape parallelism, the main characteristic

of hardware systems.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

180

Transaction and transfer models are inherent to

the TLM. They help to fill the gap between a

message level and Pin level. TLM describes the

communication behavior of a module using

function calls rather than driving physical signals.

Modelling the communication with transactions

and transfers is suitable for hardware blocks. Their

meanings can be inferred by looking at bus cycle

chronogram that shows arbitration transfer,

addressing transfer and data exchange transfer.

Both models are based on requests and responses

that are transported by function calls. The designer

adds, to the message data structure, attributes like

address, data size and endianness to emphasize the

system memory mapping. Compared to message

model, functional entities become more structured

and compartmentalized. The border between the

communication part and the processing part in a

functional entity is more explicit. However,

transaction and transfer models present some

differences. In the transaction model, the

communication protocol is sketchy and sums up to

a possible delay between request and response,

added as a transaction attribute. The

communication part handles transactions on the fly,

so there is no worry of transaction reorganization

or buffering. While, transfer model divides

communication protocol into non-repetitive phases.

The phase’s insertion induces two main

transformations in the model. Firstly, phases

impose additional synchronization points.

Secondly, the designer should worry about

transactions reorganization and buffering since the

model’s components could handle transfers of

different transactions.

Table 1: Inter-modules transaction levels

Transactions levels
Time granularity

(communication)
Transfer unit Abstraction of

Shared variable Untimed -
Functional structure, communication

resources

Message untimed Message Time

Transaction Approximately timed Transaction Protocol phases

Transfer Bus cycle byte Clock signal

Pin Clock cycle bit Signals, registers, logic functions

RTL nanoseconds bit Logic gates

Finally, the pin level provides more details on

the communication from the perspective of

synchronization points. It links the phases of the

communication with the activity of some pins of

the communication medium. In a bus context, the

address phase acts on address pins, the arbitration

phase uses the control pins, etc. The only signal

that may appear at pin level is the clock signal.

When used, the phase duration is quantified in

clock cycles. Unlike the transfer level, the number

of phases is no more limited and belongs to the

designer to determine their number. The phase

sequence may include repetitions. These repetitions

are very convenient to describe for example a bus

burst mode. In this case, a unique address phase

induce several payload exchange phases.

2.2 Proposals for transaction levels

Theoretically, the TLM methodology is

independent of the programming language used,

but historically SystemC and SpecC [18] are the

most system level description languages (SLDL)

used to write transactional models. Several levels

of abstraction have been proposed in the literature

to describe the inter-module communication. In

Table 2 we summarize these levels according to,

first, the used SLDL and, second, to the

organization behind the work. Faced to the

multitude the abstraction levels, a harmonization

task is mandatory to achieve a high degree of

interoperability and reuse of TL models.

Generally, harmonization task is based on

diagrams. In [34], authors used a two dimensions

diagram to compare abstraction levels introduced

by OCP-IP with those introduced by OSCI. The

taxonomy axes used in this diagram is “time” as x-

axis and “data” as y-axis. In our effort to line up

the transactional models of Table 2, we chose to

scale the x-axis by the type of transactions i.e.

message transaction, transfer, pin and RTL. Figure

3 gives a graphical comparison of the abstraction

levels defined by the University of California,

Synopsys, OCP-IP, CoWare and OSCI. As said

above, only transaction and transfer models are

inherent to the TL modelling. Nevertheless, as

shown into Figure 3, CoWare and OSCI

distinguish between these two levels, while others

do not. After the release of the second version of

the OSCI TLM library, OCP-IP has changed its

strategy in the TL modelling of the OCP channel.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

181

In the interest of compatibility, it has released, at

the end of 2008, a modelling kit using the OSCI

TLM-2 interfaces. Its documentation introduces

TL4 as a new level of abstraction for consistency

purpose with the work of OSCI [35]. TL4 shares

the same interfaces used in TL3 models. These

interfaces are then called OCP-IP TL3/TL4. In this

way, TL4 corresponds exactly to OSCI-LT and

TL3 is equivalent to OSCI-AT, but neither TL2 nor

TL1 have equivalence in OSCI work.

Table 2: Transaction levels in literature

 Organism
Bibliographic

references
Abstraction levels

S
p

ec
C

b
a
se

d

University of

California Irvine
[19) [20]

• Specification Model

• Processing Elements (PE) Assembling Model, or Architecture
Model

• Bus Arbitration Model

• Time Accurate Communication Model

• Cycle Accurate Computation Model

• Implementation Model

S
y
st

e
m

C
 b

a
se

d

Synopsys [21-25]

• Untimed Functional model

• Timed Functional Level

• Transaction Level Model or Bus Cycle Accurate Level

• Behavioral Hardware Model or Pin Accurate Level

• Register Transfer Model

Open Core Protocol
International
Partnership

(OCP-IP)

[26-29]

• Message level (TL3)

• Transaction level (TL2)

• Transfer level (TL1)

• RTL (TL0)

CoWare [30] [31]

• Functional View

• Programmers View

• Architects View

• Verification View
Open SystemC

Initiative

(OSCI)

[32] [33]
• Loosely-Timed coding style (LT)

• Approximately-Timed coding style (AT)

OCP TL2

OCP TL3

Transaction

level

Message Transaction Transfer Pin
Registre

transfer

Protocol Free Protocol refining

Untimed

Cycle

Timed

Approximate

Timed

Communication synthesis Interface synthesis

PE assembly

model

Specification

model

Bus arbitration model

Time

accurate

communicati

on model

/

Cycle

accurate

computation

model

Implementation

model

Time

Transaction

level

Time

Message Transaction Transfer Pin
Registre

transfer

Untimed

function

al model

Protocol Free Protocol refining

Timed

function

al model

TLM

Behavioral

hardware

model

RTL

OCP TL0

Untimed

Cycle

Timed

Approximate

Timed

Communication synthesis Interface synthesis

OCP TL1

Prog.

View

(PV)

Arch.

View
(AV or

PV+T)

Verification View

(VV)

OSCI-AT

 OSCI-LT

(a) SpecC based models (b) SystemC based models

Figure 3: Comparison of several transaction levels

2.3 TLM’s idioms

The most colloquial definition delimits a

transaction as the exchange that takes place

between two different points of a system,

subsystem or module for a finite interval of time.

Transactions are based on idioms that are

considered basic concepts of the TLM

methodology. Although we will give some

implementation details in SystemC, these idioms

are not restricted to the use of SystemC.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

182

2.3.1 Core interfaces

Core interfaces, as discussed in [30], are atomic

mechanisms essential to characterize transactional

communication. They specify the control flow, the

data flow, and the type of transaction. These core

interfaces are put (), get () and transport ().

The “put ()” configuration corresponds to a

component that sends a transaction to another

component. We call initiator the component that

initiates the transaction and target the component

that receives it or simply the component that reacts

to an initiator. Both the control flow and the data

flow are from the initiator to the target. The

“put ()” function is implemented using a pure

virtual function. In object-oriented programming, it

is a function with no implementation details and

whose behaviour is overridden within an inheriting

class by a function with the same signature. In our

case, “put ()” is declared as a pure virtual function

in the initiator and it is implemented in the target.

The “put ()” configuration corresponds to a

component that sends a transaction to another

component. We call initiator the component that

initiates the transaction and target the component

that receives it or simply the component that reacts

to an initiator. Both the control flow and the data

flow are from the initiator to the target. The “put

()” function is implemented using a pure virtual

function. In object-oriented programming, it is a

function with no implementation details and whose

behaviour is overridden within an inheriting class

by a function with the same signature. In our case,

“put ()” is declared as a pure virtual function in the

initiator and it is implemented in the target.

The “get ()” configuration is the complementary

of “put ()”. In this case, the initiator receives

transaction from the target: the control flow is from

the initiator to the target, but the data flow takes the

opposite direction. In this way “get ()” is declared

in the initiator and implemented in the target.

When using “get ()”, once the data is consumed, it

is deleted within the producer. Another variant

“peek ()” allows the consumer to read the data

without erasing it in the producer.

Transport is a bidirectional interface. It generally

follows the model of request-response pair, where

each request is closely linked to a response.

Generally, when using bidirectional interfaces, we

use the terminology “master” and “slave” instead

of “initiator” and “target”. The pair request-

response fits perfectly when modelling memory

access. When reading memory, the master asks

slave for data at a specific address so the slave

responds by sending the corresponding data. The

signature of “transport ()” can be seen as a fusion

of the two unidirectional functions “put ()” and

“get ()”and uses two arguments request and

response.

2.3.2 Blocking and non-blocking

communication

Interfaces mentioned above are blocking

interfaces. This means that the entity that begins

the transaction ceases all activities. The target or

the slave takes the hand to perform some

processing and returns with appropriate arguments.

With blocking interfaces, there is no need to

provide mechanisms to control the evolution of the

transaction, because this latter, in some way, never

fails: Receiving the response is a sign of the

completion of the transaction. In addition, when

using blocking interfaces, the designer must keep

in mind that the request (i.e. the interface call) and

the response (i.e. the interface return call) will

occur in two different simulation moments.

TLM methodology proposes non-blocking

variant of the interfaces mentioned above. The

non-blocking semantic allows a return in the same

delta cycle of the interface call. In a model using

this type of interface, the two communicating

entities no longer functioning alternately as in the

blocking mode, but in parallel. Bodies of non-

blocking interfaces are not too different from

blocking counterparts; nevertheless, they return

information about the evolution of the transaction.

The consumer should examine this return value to

determine whether the transaction is changing

properly and consequently choose the next

transaction step to proceed. In addition, buffers

must be provided into both communicating entities

to manage the transaction flow.

2.3.3 Interconnect component

As mentioned in the introduction, axis

“communication” is important in system

taxonomy. SystemC, as a SLDL, introduces in its

second version the concept of communication

channel. When writing high-level models in

SystemC, modules communicate through ports that

call interfaces that are implemented in channels. In

addition, SystemC permit to describe hierarchical

channel that includes processes and/or structured in

sub-modules. It helps to develop an abstract model

of a bus or a more complex communication

structure.

TLM aims, at refining of a functional model, an

elaborate description of the communication

between the system’s components. It uses not only

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

183

the artifice “communication channel” but it also

adds some improvements. For instance, the

introduction of “export” in SystemC, since version

2.1, was a TLM requirement. It develops the idea

that when using only ports, it is impossible to bind

directly the communicating modules because the

interfaces are implemented outside them and

precisely in channels. As an export implements

interfaces within the modules, a couple port -

export allows a direct binding between two

modules. However, a TL model may use

bidirectional interfaces, where the requests and the

responses take opposite paths. Therefore, the

couple port - export becomes insufficient,

especially when the communication is non-

blocking. In [33], the authors introduce the object

“socket”. It is composed of a port and an export.

Directly binding two sockets of two modules in the

same hierarchical level, is equivalent to bind a port

of each module to the export of the other. This will

allow to model transactional interconnections

composed of two paths: a forward path and a

backward path. The target’s socket implements the

interface of the forward path and the initiator’s

socket implements the interface of the backward

path. Of course, in the case of a blocking

communication the backward path becomes

superfluous.

Consequently, a question that comes readily to

mind: what about the communication channel in a

TL interconnection? The answer follows from the

system taxonomy. A transactional interconnection

is usually more complex than a simple point-to-

point connection and therefore it is more akin to a

module rather than a channel that implements

interfaces. This allows us to apply, to this so-called

“channel module”, the same principle of the system

taxonomy. Its communication part, i.e. core

interfaces, is integrated in the communicating

modules and “channel module" integrates

functionality part. The “channel module" is

commonly called in TLM: an interconnect

component. This component acts as an initiator and

a target at the same time. Even if it accesses to

transactions, it is neither a producer nor a

consumer. Definition of an address space,

transformation of the address, definition of priority

rules or transformation of transaction payload are

common functionalities that can be integrated in a

interconnect component. A bus, a bridge, an arbiter

or a router can be considered as interconnect

components. The separation of functionality and

interfaces of a TLM interconnection makes the

interconnect component interchangeable without

making changes into the communicating modules.

2.3.4 The notion of time

The use of TL models is to bridge the gap

between untimed functional models and cycle

accurate models. Although, they offer a rough

behaviour towards the time, they should be as

faithful as possible to the behaviour of the system.

It is obvious then that timing constraints insertion

patterns are an important criterion to distinguish

each TL model. The notion of time in a TL model

is closely related to the synchronization points with

the simulation kernel of the SLDL i.e. SystemC. To

evolve correctly, the model must give the control to

the simulation kernel to activate processes to

clearly characterize the different relationships

between them in order to describe the deterministic

system behavior. In addition, synchronization

points are important to control concurrent access to

various shared variables, channels and memory to

ensure the consistency of their contents.

The study of the simulation kernel, teaches us

that the latter offers a repetitive execution of

concurrent processes. Moreover, the order of

execution of these processes at the first iteration is

not predictable, but we know that it will keep this

order in the following iterations. This non-

determinism may give a non-compliant behavior

compared to the functional specification of the

system. Programmer View (PV) model, as the most

abstract among TL models, does not give

implementation details of the internal micro

architecture. With such models, it is hard to predict

the process activation and suspension moments or

delays between synchronization points. Thereby,

the designer must insert, time constraints to avoid

this non-determinism or at least limit its influence.

He use such constraints to define a partial order of

events that govern the system behaviour in

compliance with concurrent evolution of processes

and cause-effect relationships that should exist

between them. The causality brings an air of

determinism to the model, an essential

characteristic of real concurrent hardware

behaviour. Generally, to insert such constraints, the

designer adds explicit synchronization points after

a computation code block or a writing of a new

data. They are calls to wait () or notify (zero_time).

If a process calls wait (), it is suspended until the

next synchronization occurs. In contrary to wait (),

notify (zero_time) does not change the content of

the pool of ready to run processes, just the freshly

written data is communicated to other processes. In

other words, it does not pass the control to the

simulation kernel. Explicit synchronization must be

used with caution, since the overuse of wait ()

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

184

generates a huge and complex control flow and the

model becomes slow to simulate.

Other types of temporal constraints may be

added to a model of the type PV. They illustrate

functional constraints such as UART transfer rate,

a refresh rate of a display controller, or a delay

required to perform any computation. Free from

any micro-architecture, these, so-called, functional

delays are just added to give more constraints on

process execution order. Unlike previous

constraints, they are inserted in the model as

implicit synchronization points: the designer adds

time annotations to TLM interface call. In models

based on blocking interfaces, these annotations

guarantee a certain orthogonality between these

temporal constraints and the purely functional

model. This has three advantages; firstly, these

constraints can be easily removed to go back to a

purely functional model; appreciated during the

validation step. Secondly, these annotations can be

easily enriched when the designer refines the

model and substitute blocking interfaces with non-

blocking ones. This is easily done without touching

already validated functional parts of the models.

Finally, these annotations have another beneficial

effect on the model reuse. The designer can try

several models of channel or interconnect

component in a prelude of any advanced

architectural exploration.

In any cases, implicit annotations can

materialize those advantages only if TLM

interfaces are well specified and standardized.

When combined with a system design

methodology, they will be interpreted in various

ways. In the context of a bottom-up methodology,

the TL model is an assembly of existing

components. In this case, the implicit annotations

mimic the delays induced by these components.

While in the context of a top-down methodology,

these annotations are predictions for budgeting

future refined implementations.

2.4 TLM-2 library and coding styles

Since the version 2.0, released in 2001, SystemC

supports TLM methodology. It was limited to the

use of channels, ports and interfaces. In parallel, a

TLM working group was assigned the task of

creating a TLM library to be included in the

standard language. In 2005, this group released the

version 1.0 of this library [36] which was

succeeded in 2008 by the version 2. The latter was

actually included in the SystemC standard in 2011.

In [33], the authors explain that this version mainly

targets the description of bus based systems. The

library defines three groups of interfaces: transport

interface, direct memory interface (DMI) and

debug interface. It also sets a specific data

structure, named Generic Payload (GP), which is

exchanged between the initiator(s) and target(s) in

conjunction with these interfaces. In the interest of

models’ interoperability, the library defines a

communication protocol named Base Protocol

(BP).

The Transport interfaces are the main interfaces

provided by the TLM-2 library. These interfaces

are provided in blocking and non-blocking forms.

Both variants support time annotations and

temporal decoupling. Temporal decoupling allows

a process to ignore certain number of

synchronization points, considered redundant, with

the simulation kernel. However, juggling with

synchronization points is not without risk. The

designer must make the assumption that sampling

variables too early or too late does not affect either

model’s functionalities or model’s use case.

The blocking transport interface is called

b_transport (). It is implemented in the target and it

has no return value. It has two arguments: the

transaction and the time annotation. The use of this

interface is linked to a coding style called loosely

timed (LT). In such kind of coding style, a

transaction is linked to two timing points

corresponding to the API call and its return. The

return of b_transport () can be immediate or

delayed with an explicit call of wait (). If the return

is immediate, the initiator should check the time

annotation argument, to solicit an eventually

synchronization point.

Non-blocking transport interfaces are

nb_transport_fw () and nb_transport_bw (). The

first one is called by the initiator and implemented

in the target while the second is called by the target

and implemented in the initiator. Both interfaces’

signatures have, in addition to the transaction and

the timing annotation, the transaction phase as a

third argument. The use of these interfaces is

linked to a coding style called approximately timed

(AT). With such coding style, payloads transit not

only in the forward path but also in the backward

path and both the initiator and the target can

terminate the transaction. The TLM-2.0 library

provides also a class that defines the Base Protocol

(BP). This protocol adopts the request/response

principle. The request phase begins when the

initiator sends the request to the target and ends

when the target actually receives it and then is

ready to receive the next transaction request.

Similarly, the response phase begins when the

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

185

target sends the response to the initiator and ends

when the initiator actually receives it and becomes

ready to receive the response of the next

transaction. Thus, BEGIN_REQ and END_REQ

mark the beginning and the end of the request.

BEGIN_RESP and END_RESP mark the

beginning and the end of the response.

BP defines the complete sequence of the

protocol as follows: (BEGIN_REQ � END_REQ

� BEGIN_RESP � END_RESP). In addition to

this complete sequence, BP defines a multiple of

valid phase sequences that can give the tempo to

the transaction. Transaction phase may be changed

by the return value or by the backward path. In

fact, as shown in Figure 4, for each method call

there are several possible call returns. We refer to

each method call by Ai where i ∈ {1,2,3,4}. This

index marks the phase of the transaction after

calling a TLM-2 non-blocking interface. The

values 1, 2, 3 and 4 mark respectively

BEGIN_REQ, END_REQ, BEGIN_RESP and

END_RESP. We used the index 0 to mark the

beginning of the transaction. The indexes 4 and 5

show in turn the end of a transaction. The latter

index indicates that the return value is

TLM_COMPLETED, so the phase argument is

ignored. Rij refers to the call returns and i and j

refer respectively to call phase and return phase. In

other words a call returns Rij may change the phase

of the transaction.

Initiator Target

nb_transport_fw(t,BEGIN_REQ,x)

TLM_ACCEPTED nb_transport_fw(t,BEGIN_REQ,x)

Call

Return
TLM_UPDATED nb_transport_fw(t’,END_REQ,x+∆x)

TLM_COMPLETED nb_transport_fw(t’,-,x+∆x)

nb_transport_bw(t,END_REQ,x)

TLM_ACCEPTED nb_transport_bw(t,END_REQ,y)

nb_transport_bw(t,BEGIN_RESP,x)

TLM_ACCEPTED nb_transport_bw(t,BEGIN_RESP,x)

TLM_UPDATED nb_transport_bw(t’,END_RESP,x+∆x)

TLM_COMPLETED nb_transport_bw(t’,-,x+∆x)

TLM_UPDATED nb_transport_fw(t’,BEGIN_RESP,x+∆x)

nb_transport_fw(t,END_RESP,x)

TLM_ACCEPTED nb_transport_fw(t,END_RESP,x)

TLM_COMPLETED nb_transport_fw(t’,-,x+∆x)

Return

A 1
R11

T
a

rg
e

t
la

te
n

cy

R
e

q
u

e
st

 a
cc

e
p

t

d
e

la
y

R12

R13

R15

CallA 2

R22

CallA 3

Return

R33

R34

R35

Call A 4

Return
R44

R45

Figure 4: Transaction evolution using non-blocking

interfaces

3. STRUCTURING OF TRANSACTION

MODELS

As explained in previous section, the transaction

model inaugurates the TL modelling. When

SystemC is used, initiators and targets are defined

in separate models communicating through the

TLM-2 interfaces. In order to implement system

hierarchy we choose a structure using direct

instantiation of sub-modules and separate

compilation technique. We opted for this choice

because separate compilation allows us to move the

constructor in the implementation. Thus, we hide

the complexity to the model’s user. In this way,

this latter can have an idea about the hierarchy of

the system by just browsing header files [9].

3.1 Separation of communication and

functionality

In transaction model, separation of

communication and functionality is an obligation

as explained in section 2.2. It must be implemented

into both initiator and target modules. To do this,

each functional unit is matched to a core and a

wrapper: two sc_modules. The core implements the

functionality and the wrapper allows the core to

communicate with the other functional entities.

Figure 5 illustrates the static class diagram and

Code 1 shows extracts of several files

implementing an initiator side example of the static

class diagram. The header file MyInitiatorCore.h

defines the initiator’s core as a SimpleInitiatorCore

class that inherits from the class sc_module. In the

core’s constructor, we implement

SimpleInitiatorCore_Thread (), it is the sc_thread

responsible of carrying out some functionalities.

+nb_transport_bw()

+invalidate_direct_mem_ptr()

+R/W Function() : bool

MyInitiator

+socket

-InitiatorCore instance

tlm::tlm_bw_transport_if
sc_core::sc_module

-InitiatorCore_Thread1()

InitiatorCore

-MyInitiator* instance

-Var1

-Var2

1

1

+b_transport()

+nb_transport_fw()

+get_direct_mem_ptr() : bool

+transport_dbg() : unsigned int

MyTarget

+socket

-MyTargetCore instance

+access_reg_mem()

+run()

TargetCore

-MyTarget* instance

-mem1

-var1

-reg1

1

1

tlm::tlm_fw_transport_if

Figure 5: Class diagram showing separation between

communication and functionalities.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

12
13
14
15
16
17
18
19
. .
27
28
29
30
31
32
33
34
. .
45
46
47

#include "MyInitiatorCore.h"
#include "Params.h"

class MyInitiator: public tlm::tlm_bw_transport_if<>,public sc_core::sc_module
{
 public:

tlm::tlm_initiator_socket<> socket;
 . . .

 SC_HAS_PROCESS(MyInitiator);

 MyInitiator
 (
 sc_core::sc_module_name name
);

. . .
 private:

 SimpleInitiatorCore m_core;

An extract of MyInitiator.h

18
19
20
21
22
23
24
25
26
27
28

MyInitiator::MyInitiator
 (
 sc_core::sc_module_name name
)

 : sc_core::sc_module (name)
 , socket ("socket")
 ,m_core ("SimpleInitiatorCore",this)
{
 socket(*this);
}

An extract of MyInitiator.cpp

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
. .
39

#include "MyInitiator.h"

Class MyInitiator;

Class SimpleInitiatorCore: public sc_core::sc_module
{
 public:
 SC_HAS_PROCESS(SimpleInitiatorCore);
 SimpleInitiatorCore
 (
 sc_core::sc_module_name name,
 MyInitiator* testbench
);

 private:
 . . .
 MyInitiator* m_TestBench;

An extract of MyInitiatorCore.h

17
18
19
20
21
22
23
24
25
. .

SimpleInitiatorCore::SimpleInitiatorCore
 (
 sc_core::sc_module_name name,
 MyInitiator* testbench
)

 : sc_core::sc_module (name)
 , m_TestBench (testbench)
{
. . .

An extract of MyInitiatorCore.cpp

Code 1 : Separation between communication and functionalities of an initiator in TL model.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

The extract of the header file MyInitiator.h

shows that the wrapper is defined as a class named

MyInitiator. This class inherits from both classes:

sc_module and tlm::tlm_bw_transport_if<>. The

second class is mandatory to set the public member

“socket” as an initiator socket instance (line 19).

MyInitiator also defines, as a private member,

SimpleInitiatorCore instance (line 47). The

wrapper constructor uses C++ syntax to bind a

pointer of a MyInitiator class to

SimpleInitiatorCore class. The pointer “this” is

passed to the SimpleInitiatorCore class in the

course of the core initialization. The pointer “this”

represents the SimpleInitiatorCore class itself. It is

passed to the instance declaration for

SimpleInitiatorCore (line 25 in MyInitiator.cpp)

and then to the core’s constructor (line 24 in

MyInitiatorCore.h). Here, the pointer, passed from

the wrapper, is bound to the pointer variable

m_TestBench (line 24 in MyInitiatorCore.cpp).

Similarly, the target’s wrapper class inherits not

only the sc_module class but also

tlm::tlm_fw_transport_if<> class because it sets a

member of the target type socket. This solution,

which is quite complicated at first glance, allows us

to define a straight line between functionalities and

communication, an essential characteristic of a

transaction model. In addition, it has a double

advantage. Firstly, communication and

functionalities are placed in two separate

sc_module. Secondly, it does not involve

additional SystemC objects to bind the two

modules. We consider that adding objects such as

ports or FIFOs might distort the model

performances. By binding initiator and target

wrapper’s pointer to their respective core, wrappers

are the only SystemC modules visible at the top

level of the model

3.2 Interaction between wrappers and cores

Splitting up a functional entity in a core-wrapper

pair does not mean that its elements do not

cooperate. In the initiator side, the core initiates

cooperation with the wrapper. It asks, whenever is

needed, services to the wrapper through functions

calls. We named these proposed functions R/W

functions. For example, to write data,

SimpleInitiatorCore_Thread () calls the R/W

function write_data () through the wrapper’s

pointer m_Initiator as follows:

m_Initiator->write_data(current_data,i);

R/W functions are implemented in initiator’s

wrappers and must perform the following steps:

1) Create a generic payload object;

2) set its attributes;

3) call the b_transport through a socket;

4) test response_status attribute and get

response informations;

5) and call wait() if delay parameter has

been updated by the target.

All R/W functions have a Boolean return that

the core uses to make decision about the next

functionality to be executed.

In the target side, it is the wrapper that initiates

cooperation with the core. The target‘s wrapper

implements b_transport method which requests

access to a resource in the core through a function

call. We named such called function Access

function. Typically an Access function performs

the following steps:

1) Decodes address attribute to identify

resource location.

2) Performs effectively the read or write

according to the command attribute.

3) Calls specific core functions

according to the context.

3.3 Autonomous modules

An autonomous module is a module with a

target socket and an initiator socket. Hardware

acceleration modules are the typical case of such

module. The target socket serves for initialization

and/or configuration purpose. During computation

phase, Hardware acceleration module become

autonomous since it can read or write data through

its initiator socket.

+nb_transport_bw()

+invalidate_direct_mem_ptr()

+R/W Function() : bool

+b_transport()

+nb_transport_fw()

+get_direct_mem_ptr() : bool

+transport_dbg() : unsigned int

MyHWblock

+i_socket

+t_socket

-HWblockCore instance

tlm::tlm_bw_transport_if

-status_fsm()

-access_reg_mem()

-init()

-run()

-finish()

HWblockCore

-MyInitiator* instance

-Var1

-Var2

-mem

-reg

-m_status_event

tlm::tlm_fw_transport_if

sc_core::sc_module

1 1

Figure 6: Class diagram of autonomous module.

As shown in Figure 6, separation between core

and wrapper are mandatory. Since the declaration

of the autonomous module’s wrapper has two

sockets, it includes the implementation of both

b_transport and R/W functions. An additional

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

thread implemented in the core ensures role

switching between initiator and target. This thread

must be implemented as a finite state machine

(fsm) responsive to an event that must be notified

in the Access function. For each notification, the

fsm changes its state and fire up, in the core,

specific tasks either as master or as slave.

4. STRUCTURING OF TRANSFER

MODELS

Comparing to the transaction model, the

transfer model not only cuts the transaction

into phases but also uses non-blocking

communication idioms. The suitable TLM-2.0

coding style for such model is undoubtedly

the AT coding style. The separation of

functions (core) and communication

(wrapper) introduced into the transaction

model remains mandatory. The R/W function

and Access function are also reused but

should be extended to handle non-blocking

communication idioms between initiator and

target introduced by the AT coding style.

Using non-blocking interfaces in the AT

coding style constrains the transfer model to

keep track of payloads from their creations to

their releases. TLM-2.0 provides

tlm_mm_interface class to allow the

establishment of a memory manager. The

main task of the memory manager is to create

a pool. It is a contiguous memory space with a

dimension equal to an integer number of

transactions. The lifetime of a payload in the

pool is associated with a reference count. To

allocate a payload, an initiator calls the

function acquire () which increments

payload’s reference count. An interconnection

and/or the target component can call

acquire () to extend the lifetime of the

payload, since this method increments its

reference count. An initiator, an interconnect

component or a target can call release () to

decrement the reference count. This call is

done when the corresponding component no

more needs the payload. If the reference count

is zero when release () is called, it will in turn

calls free () in order to restore to the pool the

memory space monopolized by the payload.

To implement a memory manager, the

designer must define a subclass that

implements at least the free method. This

subclass supports payloads instance

management based on reference counting

mechanism. The memory manager must be

instantiated in the initiator and more

specifically in its wrapper. Payloads must be

claimed by a R/W function; however they can

be freed by an alternative function, depending

on the adopted phase sequence.

4.1 Additional methods

During a complete sequence of BP, the

initiator calls the interface nb_transport_fw

twice. Since these two calls regard the same

payload, they can be performed in the same

process (R/W function). However, we

preferred to associate the second call to a

separate process: end_response_method. This

additional method allows the R/W function to

return immediately when request phase ends.

In this way, the initiator’s core is no longer

blocked to wait response from target.

Therefore, end_response_method contributes

to enhancing the non-blocking character of

the transfer model. In addition, it helps to

illustrate the bidirectional collaboration

between core and wrapper. If, at the

beginning of a transaction, a core’s process

calls a R/W function to transfer request, at its

end, the end_response_method can call

another core’s process to trigger a specific

functionality. In the same manner, the

parallelism between core and wrapper is also

adopted at the target side. The target has to

call twice the interface nb_transport_bw. At

the first call, it signals the end of the request

phase. At the second call it signals the

beginning of the response phase. These two

calls are implemented in separate methods

respectively named end_request_method and

begin_response_method. It is clear that the

Access function call is made by the

begin_response_method.

As recommended in TLM-2 manual, we

preferred the use of payload event queue

(PEQ) to manage the exchange of payloads

between the proposed methods. The TLM-2

standard defines these utilities as queues of

event notifications, where each notification

carries an associated payload. Payloads are

injected into a PEQ with a delay annotation

and then they emerge from the PEQ at a time

calculated from current simulation time plus

the annotated delay. In our transfer model,

end_response_method, end_request_method

and begin_response_method are sensible

respectively to m_end_response_PEQ,

m_request_PEQ and m_response_PEQ.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

In summary, we dispatch the complete

sequence of the transaction into six methods.

In one side R/W function, nb_transport_bw

and end_response_method are implemented

in the initiator’s wrapper. In the other side,

end_request_method,

begin_response_method and

nb_transport_fw are implemented in the

target’s wrapper. The Figure 1 illustrates their

roles in the evolution of the phases. The first

call of the interface nb_transport_fw (A1) is

done in the R/W function, while the second

call (A4) is carried out in end_response-

method. In the target side, the first call of the

interface nb_transport_bw (A2) is done in

end_request_method, while the second call

(A3) is carried out in

begin_response_method.

Figure 1 : Dispatching of communication tasks into

several methods in transfer model.

In addition to the complete sequence, BP

allows the initiator or the target to complete

the transaction prematurely or to ignore

certain phases. When, looking to Error!

Reference source not found., we note, with

the exception of the call A2, that to each

TLM-2 interface call there are several

possible return calls. For calls A1, A3 and A4

there are respectively 4, 3 and 2 possible

return calls. We say that they mark

respectively the first point of divergence,

second point of divergence and the third point

of divergence.

Figure 8 extracts and organizes all

possible transaction sequences of BP

according to the following rules:

• Respect the rules of precedence

imposed by the complete sequence;

• A sequence must begin with a call A1;

• A sequence must ends by Ri4 or Ri5;

• A valid sequence is an alternation

between a call and a call return.

This Figure is useful to establish a various

methods’ diagram, and to highlight that there are

only eight possible graphs of temporal constraints.

The following subsections detail the six

methods: R/W function, nb_transport_bw,

end_response_method, end_request_method,

begin_response_method and

nb_transport_fw.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

or

or

or

or

or

or

or

1
st

 point of

divergence
2

ed
 point of

divergence

3
ed

 point of

divergence End of the transaction

�

�

�

�

�

�

	

Figure 8: Possible transaction sequences in TLM-2 base protocol

4.2 R/W function

Unlike in transaction model, the R/W function

in transfer model does not necessarily mean the

end of the transaction. As shown in Figure 9, this

method certainly begins the transaction by calling

nb_transport_fw and next it gives way to the other

methods. It is obvious that if the target returns

TLM_COMPLETED, the transfer model behaves

as the transaction model. That is why we preferred

to keep the same signature of R/W function of

transaction model. In addition, early termination of

the transaction indicates that access to the target’s

core (i.e. call of the Access function) is performed

by the target in nb_transport_fw. Therefore, the

R/W function should restore the transaction to the

memory manager before ending.

Begin

A1

Return

value?

TLM_COMPLETED (R15)TLM_ACCEPTED (R11)

TLM_UPDATED

Wait for A2

(notification of

m_EndReqPhase)

Phase?

END_REQ

(R12)

BEGIN_RESP

(R13)

Wait (delay)

Wait (delay)

End

Injection in

m_end_response_PEQ

Acquire the

transaction

Free

transaction

Add

RESP_ACCEPT_DELAY

Initialize

attributes

Figure 9: Flow chart of R/W function

4.3 Nb_transport_fw

As shown in Figure 10, the designer must

manage the first and the third points of divergence

when writing nb_transport_fw. He must choose

one of the four solutions in the first case and one of

two solutions in the second case. In addition, this

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

API must necessarily generate an error if the phase

is different from BEGIN_REQ or END_RESP for

compatibility with the base protocol.

At the first point of divergence, if the intended

return value is TLM_ACCEPTED or the intended

return phase is BEGIN_RESP, nb_transport_fw

must call an Access function

Begin

Phase?

BEGIN_REQ (A1) END_RESP (A4)

Add

REQ_ACCEPT_DELAY

Inject in

m_request_PEQ

End

tlm::TLM_ACCEPTED

Add

REQ_ACCEPT_DELAY

Inject in

m_response_PEQ

tlm::TLM_UPDATED

Add

TARGET_DELAY

delay=REQ_ACCEPT_

DELAY

delay=REQ_ACCEPT_

DELAY

tlm::TLM_UPDATED

Access to core

delay=REQ_ACCEPT_

DELAY

tlm::TLM_COMLETED

Access to core
Notify

m_end_resp_event

tlm::TLM_COMPLETED

Notify

m_end_resp_event

tlm::TLM_ACCEPTED

R12

R11

R13R15

R44 R45

Add

REQ_ACCEPT_DELAY

Inject in

m_response_PEQ

Add

TARGET_DELAY

tlm::TLM_ACCEPTED

Or

1
st

 point of divergence

Phase= END_REQ

Phase= BEGIN_RESP

3
rd

 point of divergence

Figure 10: Flow chart of nb_transport_fw

4.4 End_request_method

This method deals with the end of the request

phase. Its Flow chart is shown in Figure 11. Since

it is sensitive to m_end_request_PEQ, the method

body is simply a loop conditioned by the return

value of get_next_transaction (). No point of

divergence is managed by end_request_method as

the only suitable return value of nb_transport_bw

call is TLM_ACCEPTED. If this is the case, it

hands over to begin_response_method by injecting

the payload into m_response_PEQ. Otherwise,

end_request_method must generate an error.

Begin

Get_next_tr

ansaction() ?

Add

TARGET_DELAY

Inject in

m_response_PEQ

A2

Return

value?

TLM_ACCEPTED (R22)

TLM_COMPLETED TLM_UPDATED

End

NULL

delay=SC_ZERO_T

IME

Error

Figure. 11. Flow chart of end_request_method

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

4.5 Begin_response_method

Begin

Get_next_tr

ansaction()

?

End

NULL

Access to core

(Access function)

Update

response status

A3

delay=SC_ZERO_TIME

Return

value?

TLM_ACCEPTED (R33)

TLM_COMPLETED (R35)
TLM_UPDATED (R34)

Next_trigger

(m_end_resp_event)

Next_trigger

(m_response_PEQ.get_event())

Next_trigger(delay)

Figure 12. Flow chart of begin_response_method.

As shown in Figure 12, begin_response_method

is sensitive to m_response_PEQ. For each

emerging payload, it performs two main tasks.

Firstly, it calls an Access function to actually

execute the read or write command requested by

the R/W function. It also means that an update of

the status of the response is also required.

Secondly, it calls nb_transport_bw. Whatever its

return value, a synchronization point is required. If

the return value of the backward interface is

TLM_ACCEPTED, begin_response_method must

wait for the end response notification. In other

words, it must wait for A4. If the return value of

the backward interface is TLM_UPDATED or

TLM_COMPLETED, begin_response_method

must respect the annotated delay. In both cases, it

should call next_trigger () since calling wait () is

prohibited in SC_METHOD. This synchronization

is required to meet the response exclusion rule

imposed by the base protocol. This rule prohibits

the target to announce the beginning of a new

transaction response as it has not received yet

END_RESP of the transaction in progress or that

the latter is completed.

4.6 Nb_transport_bw

This method is rather special, since it depends

on previous transition made by the current

transaction. Whether A2 or A3 call, the designer

must think about keeping track of the last

transaction’s transition. For this, we opted for

backing up marked transactions in a C++ standard

template library (STL) container: std::map. The

filling of this container takes place in the R/W

function. The container associates a payload

pointer to previous_tran_phase_enum variable.

The possible values for this variable are

ACCEPTED_enum,

UPDATED_END_REQ_enum,

UPDATED_BEGIN_RESP_enum and

END_REQ_enum for respectively R11, R12, R13

and R22 transitions. The search in this container,

within nb_transport_bw, is made easy by using an

iterator.

When nb_transport_bw is called with

END_REQ as phase argument, it means that the

caller is end_request_method and the last

transaction’s transition R11. In this case

Nb_transport_bw should verify that the transaction

was marked ACCEPTED_enum. In addition, the

backward interface must notify the end of the

request phase and update marking of the

transaction to END_REQ_enum. It means that the

last transition is now R22 as shown in Figure. 13.

When nb_transport_bw is called with

BEGIN_RESP as phase argument, it means that the

caller is begin_response_method. In this case, the

designer must deal with the second point of

divergence. He will choose the initiator behaviour

towards the A3 call.

Obviously, nb_transport_bw must generate an

error if the phase is different from END_REQ or

BEGIN_RESP.

Notification of the end of the request phase is

used to unlock a R/W function which is waiting

A2. This synchronization point is dictated by the

request exclusion rule. BP’s rule prohibits an

initiator to send a new request if it has not received,

from the target and for the transaction in progress,

the completion of its request phase or the

beginning of its response phase

.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

Begin

Phase?
END_REQ (A2) BEGIN_RESP (A3)

Notify

m_EndReqPhase

tlm::TLM_ACCEPTED

Update previous

transition to R22

Previous

transition?

UPDATED_END_REQ_enum (R12)

ACCEPTED_enum (R11)

END_REQ_enum (R22)

Notify

m_EndReqPhase

Notify

m_EndReqPhase

Delay_PEQ=RESP

_ACCEPT_DELAY

Inject in

end_response_PEQ

tlm::TLM_ACCEPTED

Delay=RESP_ACCEPT

_DELAY

Phase= END_RESP

tlm::TLM_UPDATED

Delay=RESP_ACCEP

T_DELAY

tlm::TLM_COMPLETED

R33 R34 R35

2
nd

 point of divergence

Previous

transition?

ACCEPTED_enum (R11)

Error

End

Figure. 13. Flow chart of nb_transport_bw

4.7 End_response_method

Sensitive to m_end_response_PEQ, this method

performs a test on response status of each emerging

payload, to find out success or failure cause of the

transaction. In both cases, the initiator’s wrapper

must interact with the core to address the situation

and then calls nb_transport_fw to complete the

transaction as shown in Figure 14. For example, in

case of success of a read command,

end_response_method may call a core method to

copy the data. In case of failure, the core will be

notified to be able, for example, to resend the

request.

If the return value of the A4 is

TLM_COMPLETED or TLM_ACCEPTED,

end_response_method is responsible to restore the

memory acquired by R/W function to the memory

manager. Otherwise, it generates an error.

Begin

Get_next_tr

ansaction() ?

Response

status?

TLM_OK_RESPONSE

Access to core

A4

Return

value?

TLM_COMPLETED (R45)TLM_ACCEPTED (R44)

Free transaction

Deal with

response error

End

NULL

Error

TLM_UPDATED

Figure 14. Flow chart of end_response_method

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

4.8 Integration of temporal constraints

During a BP’s complete sequence and with the

AT coding style, a designer can model three

temporal constraints, two are set by the target and

only one is set by the initiator. In this section, we

will explain how to implement these constraints in

eight schemes resumed in Figure 8. We must keep

in mind that the designer cannot “master” the

behaviour of all system’s components, especially

when he incorporates third party TL models his

design.

The target sets the request_accept_delay: it is

the minimum time that the initiator must comply

before sending another request. It separates

BEGIN_REQ and END_REQ. Suppose we have a

transaction with write command, and then

BEGIN_REQ marks the moment when the data is

ready to be transferred from the initiator to the

target. Thus, it marks the moment of sending the

first byte. It is then natural that the target will delay

END_REQ until it receives the last byte.

Nevertheless, according to BP rules, the target is

not obliged to notify END_REQ, it may skip this

phase to go directly notify the BEGIN_RESP. In

this case, the target sets the latency: it is the delay

between BEGIN_REQ and BEGIN_RESP. It is the

minimum time required for the target to react to the

requested order. If the target has already notified

the END_REQ, it can delay the BEGIN_RESP

with a target delay. Therefore, in summary, we can

say that:

<target> latency = <target> request_accept_delay + <target>
 delay

The initiator configures a single time constraint

called response_accept_delay: it separates

BEGIN_RESP and END_RESP. To understand the

meaning of this delay, consider a transaction with

read command. BEGIN_RESP marks the moment

when the data is made available to the initiator.

This is, also, the moment when the first byte

starting to transit to the initiator. Therefore, the

initiator notifies the end of the response when

receiving the last byte. Of course, relying on the

BP’s rules, this is not an obligation.

Transfer model must take into account the three

temporal constraints mentioned above

(request_accept_delay, target delay, and

response_accept_delay), whatever the sequence

that the designer adopts for the couple initiator and

target. The model structure that we described in the

previous sub-section allowed us to spread out calls

of basic TLM-2 interfaces along four methods.

Figure 15 and Figure 16 show how to implement

these constraints into different methods.

In the case of the complete sequence of BP,

request_accept_delay delays end_request_method

against R/W function and so against

nb_transport_fw. This delay is implemented as an

annotation when the transaction is injected in

m_end_request_PEQ. This PEQ is in the list of

sensitivity of end_request_method.

If we have a sequence where the target omits the

end request phase to start directly the response

phase, the target, then, injects payload in

m_response_PEQ with an annotation equal to its

latency.

In the sequence N°5, we are in the situation

where nb_transport_fw changes the phase of the

transaction to END_REQ and at the same time the

target calls begin_response_method with a delay

equal to its latency. Therefore, the target injects

payload in m_response_PEQ with an annotation

equal to its latency and at the same time, it

annotates request_accept_delay. The initiator will

honour this constraint by calling wait () within the

R/W function. This situation must not be confused

with sequence N°3 where nb_transport_fw returns

TLM_ACCEPTED.

Situations N°7 and N°8 are particular, since

there are no calls of backward interface and R/W

function deals directly with the target. In the first

case, it is in charge to inject payload in

m_end_response_PEQ. The delay annotated is the

delay returned by nb_transport_fw plus

response_accept_delay. In the second case, no

injection in PEQ is needed, since transaction is

completed. After calling nb_transport_fw, the R/W

function just calls wait to fulfil a global delay

equal to the target’s latency plus

response_accept_delay.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 m_request_PEQ.notify(tran, PEQ_delay_time);

}

nb_transport_fw

if (command == tlm::TLM_WRITE_COMMAND)

{

 delay += TARGET_WRITE_DElAY;

}

else if (command == tlm::TLM_READ_COMMAND)

{

 delay += TARGET_READ_DElAY;

}

m_response_PEQ.notify(*trans_ptr, delay);

end_request_method

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case END_REQ_enum: // previous transition R22

 m_bw_path_map.erase(&trans);

 m_end_response_PEQ.notify

 (trans,INITIATOR_RESP_ACCEPT_DELAY);

 break;

nb_transport_bw

if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 m_request_PEQ.notify(tran, PEQ_delay_time);

}

nb_transport_fw

if (command == tlm::TLM_WRITE_COMMAND)

{

 delay += TARGET_WRITE_DElAY;

}

else if (command == tlm::TLM_READ_COMMAND)

{

 delay += TARGET_READ_DElAY;

}

m_response_PEQ.notify(*trans_ptr, delay);

end_request_method

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case END_REQ_enum: // previous transition R22

 m_bw_path_map.erase(&trans);

 phase = tlm::END_RESP;

 delay += INITIATOR_RESP_ACCEPT_DELAY;

 status = tlm::TLM_COMPLETED;

 break;

nb_transport_bw

if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 if (command == tlm::TLM_WRITE_COMMAND)

 {

 PEQ_delay_time += TARGET_WRITE_DElAY;

 }

 else if (command == tlm::TLM_READ_COMMAND)

 {

 PEQ_delay_time += TARGET_READ_DElAY;

 }

 m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

}

nb_transport_fw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case ACCEPTED_enum : // previous transition R11

 m_bw_path_map.erase(&trans);

 m_end_response_PEQ.notify

 (trans,INITIATOR_RESP_ACCEPT_DELAY);

 m_EndReqPhase.notify(SC_ZERO_TIME);

 break;

if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 if (command == tlm::TLM_WRITE_COMMAND)

 {

 PEQ_delay_time += TARGET_WRITE_DElAY;

 }

 else if (command == tlm::TLM_READ_COMMAND)

 {

 PEQ_delay_time += TARGET_READ_DElAY;

 }

 m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

}

nb_transport_fw

nb_transport_bw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case ACCEPTED_enum : // previous transition R11

 m_bw_path_map.erase(&trans);

 phase = tlm::END_RESP;

 delay += INITIATOR_RESP_ACCEPT_DELAY;

 status = tlm::TLM_COMPLETED;

 m_EndReqPhase.notify(SC_ZERO_TIME);

 break;

nb_transport_bw

�

�

�

�

Figure 15. Implementations of temporal constraints in a transfer model (continued)

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

196

nb_transport_fw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case UPDATED_END_REQ_enum:// prev. Transi. R12

 m_bw_path_map.erase(&trans);

 m_EndReqPhase.notify(SC_ZERO_TIME);

 m_end_response_PEQ.notify

 (trans,INITIATOR_RESP_ACCEPT_DELAY);

 break;

nb_transport_bw if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 if (command == tlm::TLM_WRITE_COMMAND)

 {

 PEQ_delay_time += TARGET_WRITE_DElAY;

 }

 else if (command == tlm::TLM_READ_COMMAND)

 {

 PEQ_delay_time += TARGET_READ_DElAY;

 }

 m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

 delay = TARGET_REQ_ACCEPT_DELAY;

 phase = tlm::END_REQ;

 status = tlm::TLM_UDATED;

}

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

 case UPDATED_END_REQ_enum:// prev. Transi. R12

 m_bw_path_map.erase(&trans);

 m_EndReqPhase.notify(SC_ZERO_TIME);

 phase = tlm::END_RESP;

 delay += INITIATOR_RESP_ACCEPT_DELAY;

 status = tlm::TLM_COMPLETED;

 break;

nb_transport_bw

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

 sc_core::sc_time PEQ_delay_time = delay +

TARGET_REQ_ACCEPT_DELAY;

 if (command == tlm::TLM_WRITE_COMMAND)

 {

 PEQ_delay_time += TARGET_WRITE_DELAY;

 }

 else if (command == tlm::TLM_READ_COMMAND)

 {

 PEQ_delay_time += TARGET_READ_DELAY;

 }

 m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

 delay = TARGET_REQ_ACCEPT_DELAY;

 phase = tlm::END_REQ;

 status = tlm::TLM_UPDATED;

}

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

 delay = TARGET_REQ_ACCEPT_DELAY;

 //accès au core

 // ajout de READ ou WRITE DELAY

 // m-à-j de la réponse

 phase = tlm::BEGIN_RESP;

 status = tlm::TLM_UPDATED;

}

switch (status)

 {

 case tlm::TLM_UPDATED:

 switch (phase)

 {

 case tlm::BEGIN_RESP:

 delay+=INITIATOR_RESP_ACCEPT_DELAY;

 m_end_response_PEQ.notify(trans,delay);
 break;

R/W function

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

 delay = TARGET_REQ_ACCEPT_DELAY;

 //accès au core

 // ajout de READ ou WRITE DELAY

 // m-à-j de la réponse

 phase = tlm::BEGIN_RESP;

 status = tlm::TLM_COMPLETED;

}

switch (status)

 {

 case tlm::TLM_COMPLETED: //similaire LT

 if(tran_ptr->get_response_status() ==

 tlm::TLM_OK_RESPONSE)

 {

 delay+=INITIATOR_RESP_ACCEPT_DELAY;

 if (delay != sc_core::SC_ZERO_TIME)

 {

 wait(delay);
 }

 ret=true;

 . . .

 }

 m_pool.release(tran_ptr);

 break;

R/W function

�

�

	

Figure. 16. Implementations of temporal constraints in a transfer model

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

197

5. DISCUSSION ABOUT NOC BASED

INTERCONNECT COMPONENT

As said early, the TLM-2 library mainly targets

a bus based communication. In the case of a

communication architecture based on network on

chip (NoC), some additional constraints must be

defined and clarified. We are now confronting to

end-to-end interconnections and peer-to-peer

interconnections. The first ones are related to the

model of the application and the second ones are

related to the model of the NoC. Both

interconnections use methods described in section

4. However, payloads exchanged between network

resources are not the same payloads exchanged in

the NoC model. Network hosts exchange messages

with application based significance and structure,

while inter and intra routers communication use

flits which are network layer related protocol data

units.

(0,-1)

mem

(1,-1) (2,-1)

SPI

µp

(2,0)

UART

(1,1)

GPU

(2,1)

USB

DMA

µP

M
e

m
o

ry
 m

a
p

p
in

g

0x000000

0x800000

0xF00000

MEM

Periph.

GPU

M
e

m
o

ry
 m

a
p

p
in

g

0x30

0x60

0x90

USB

UART

DMA

0xC0
SPI

M
e

m
o

ry
 m

a
p

p
in

g

0 TX_CTRL

4 TX_DATA

8 RX_CTRL

12 RX_DATA

16 INT_CTRL

20 INT_STATUS

24 INT_MASK

28 RSVD0

32 RSVD1

Subsystems

IP Blocks

Registers

(a) System architect view

(b) software developper view

Relative address in relation to the

position of the processor in the

network.

Figure. 17. System architect and software developer

view of NoC based system

In the point of view of the software developer, a

hardware system can be defined in very simple

way. Figure 17, shows an example on mono

processor system. This latter is seen by the

microprocessor as an addressable space. This space

is not defined randomly, but it is usually the result

of a specific address space mapping. For example,

the processor can read or write registers of the

Universal Asynchronous Receiver Transmitter

(UART) according to the given addresses. In TL

model, the reading or the writing is done by calling

a specific R/W function and the effective access to

the desired location is made, on the side of the

UART, by an access function. This communication

mechanism is independent of the position of both

processor and UART in the network. It defines an

end-to-end interconnection.

However, with the system architect view

detailed in Figure 18, the location of the processor

and its various devices in the network becomes

important. For example, suppose that the processor

wants to read the INT_STATUS location of the

UART. To do this, it calls a specific R/W function

implemented in its wrapper to send to the attached

network interface a payload that we name GPµp.

The address attribute, in this case, is obviously

equal to 0x800074. The network interfaces, are

modules responsible of the marshalling and the

“packetization” of the data. Marshalling converts

the user data into a flat data stream. Packetization

splits data stream into smaller packets before

transfer, to fit limited storage capabilities of routers

[2]. In the receiving side, again, the network

interface reassembles the complete data stream

before de-marshalling. We name the payload of the

packetized data GPnet. Its data pointer illustrates a

flit that circulates in the network. In [37], we

deduced that the generic payload’s data pointer

marshals data in flat stream of char. Therefore,

network interface can easily concatenate, to GPµp‘s

pointed stream, other flit’s parameters such as

destination address, flit type, packet id or quality of

service id etc. Then, GPnet’s data pointer just point

to a fraction of the constructed data stream. The

network interface, injects this payload in the

network by calling specific R/W function.

However, this solution is delicate to implement in

routers, because routers along the flits’ path should

read and/or adjust certain flit’s parameters.

For example, routers’ input controller should

first, extract destination address field to initialize

correctly GPnet’s address attribute and second

adjust this field to reintegrate it into the payload’s

data pointer. Routers’ switching matrix uses

GPnet’s address attribute to route transaction to the

right output arbiter. Due to such difficulties, we

prefer then the use of the generic payload extension

pointer to include the various flit’s parameters.

This requires defining a derived class from the

tlm::tlm_extension we call flit_tag_extension and

setup, for example, the following parameters:

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

198

Enum QoS_class {GT,BE}
Enum cast_type {unicast, multicast}
Enum packet_type {header, payload, tail}
QoS_class QoS;
Cast_type cast;
Packet_type flit_type;
Sc_int x_flit;
Sc_int y_flit;
Sc_uint packet_Id;
Sc_uint message_Id;

When we use the TLM-2 non-blocking

interfaces, there are two modes of execution of the

transaction’s phases:

• Sequential execution, it means that:

o Once the initiator has sent a request, it does

not perform any task until it receives a

response.

o The target accepts but does not serve the

following requests through the same socket

until it returns a response.

• Concurrent execution, it mean that:

o Once the initiator has sent a request, it can

perform various tasks without waiting for a

response.

o The target accepts and can serve subsequent

requests through the same socket even if it

has not returned response to the first

request.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

199

µp

Hw

block

Network’s ressources exchange GPµp

End-to-end communication
GPµp

GPnet

GPµp
GPnet

Routers exchange GPnet

Point-to-point communication

2D router

1D X router

1D Y router

1D router

Local arbiter

Local

controler

W
e

st

c
on

tr
o

le
r

Est c
on

tro
le

r

W
e

st
 a

rb
it

e
r Est a

rb
iter

3 X 3

Crossbar

3 X 3

Crossbar

Figure 18. NoC based systems use two generic payloads

In sequential execution, the initiator sends the

request and receives responses in the same process.

Similarly, on the side of the target it receives

requests and sends responses in the same process.

While in concurrent execution, these tasks take

place in two distinct processes, either on the side of

the initiator side or on the side of the target.

The choice between these two modes of

execution is crucial when modelling point-to-point

communication between several NoC’s elements. It

should describe, at best, semantics of routing

algorithm. For example, In the case of wormhole

algorithm, sequential execution is more suitable to

describe inter router communication, since flits

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

stop if there is no available storage into the input

controller of the target router. We are in the same

situation when a network host communicates with

the network interface, as this later has limited

storage resources. However, communication within

the router, that is to say between input controllers,

switching matrix and output arbiters of the same

router, they should adopt concurrent executions as

described in Section 4.

6. CONCLUSION

This paper not only reviewed the evolution of

TLM methodology but also presented a structuring

of TLM-2 based models for simulation, verification

and analysis. The structuring proposal covers the

“transaction models” and the “transfer models”.

For each level, we offered core-wrapper patterns

and methods that: make a straight separation

between functionality and communication within a

module, give means to a designer to control the

simulation speed by pointing out the influent

parameters (latency, TLM transaction sequences,

etc.), and increases the code line reuse. In the last

section, we discussed the structuring of TL models

for a NoC like “interconnect component”.

REFERENCES

[1] P. Coussy and A. Morawiec, High-Level

Synthesis – from Algorithm to Digital Circuit,

Springer, 2008.

[2] D. D. Gajski, S. Abdi, A. Gerslauer and G.

Schirner, Embedded System Design:

Modeling, Synthesis and Verification,

Springer, 2009.

[3] G. Martin and G. Smith, High-Level

Synthesis: Past, Present, and Future, IEEE

Design & Test of Computers, 2009, pp 18-25.

[4] B. Baily and G. Martin, ESL Models and their

Application: Electronic System Level Design

and Verification in Practice, Springer, 2010.

[5] M. Keating, The simple Art of SoC Design –

Closing the Gap between RTL and ESL,

Springer, 2011.

[6] International Electric and Electronic

Engineers, IEEE Standard SystemC Language

Reference Manual, IEEE Std 1666-2011,

2011.

[7] International Electric and Electronic

Engineers, IEEE Standard SystemVerilog-

Unified Hardware Design, Specification and

Verification Language, IEEE Std 1800-2009,

2009.

[8] H. D. Patel and S. K. Shukla, Ingredients for

Successful System Level Design Methodology,

Springer, 2008.

[9] David C. Black and J. Donovan, SystemC:

from the ground up, Springer, 2010.

[10] F. Ghenassia, Transaction Level Modeling

with SystemC – TLM Concepts and

Applications for Embedded Systems, Springer,

2005.

[11] S. Rigo, R. Azevedo, L. Santos, Electronic

System Level Design - An Open-Source

Approach, Springer, 2011.

[12] M. Glasser, Open Verification Methodology

CookBook, Springer, 2009.

[13] K. Popovici, F. Rousseau, A. A. Jerraya and

M. Wolf. Embedded Software Design and

Programming of Multiprocessor System-on-

Chip –Simulink and SystemC Case Study,

Springer, 2010.

[14] S. Kundu, S. Lerner and R. K. Gupta, High-

Level Verification – Methods and Tools for

Verification of System-Level Designs,

Springer, 2011.

[15] Synopsys Inc., SystemC Modeling Library 2

Manual, available at URL =

http://www.synopsys.com/cgi-

bin/slcw/kits/reg.cgi, Version F-2001.06-SP2,

January 2011.

[16] Open Core Protocol International Partnership,

OCP Modelling Kit User Manual, OCP-IP,

2010.

[17] S. H. Sfar, I. E. Bennour, K. Smiri, A.

Baganne, R. Tourki System Level Abstraction

Models and Application to MicroNetwork

Design, International Conference on

Microelectronic, ICM 2004, pp 642-645.

[18] R. Dömer, A. Gerslauer and D. Gajski, SpecC

Language Reference Manual, 2002.

[19] L. Cai and D. Gajski, Transaction Level

Modeling: An Overview, published in

International Conference on

Hardware/Software Codesign and System

Synthesis, October 2003 pp 19-24.

[20] D. Gajski, J. Peng, A. Gerstlauer, H. Yu, D.

Shin, System Design Methodology and Tools,

CECS, UC Irvine, Technical Report CECS-

TR-03-02, January 2003.

[21] S. Pasricha. Transaction level modeling of

SoC with SystemC 2.0. Synopsys user group

Conferences, 2002.

[22] Synopsys Inc, Describing synthesizable RTL

in SystemC, V1.1, January 2002.

[23] S. Holloway, D. Long, A. Fitch. From

Algorithm to SoC and CoCentric System

Studio. SNUG San Jose, 2002.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

201

[24] T. Grötker, S. Liao, G. Martin, and S. Swan.

System Design with SystemC. Kluwer

Academic Publishers, 2002.

[25] N. Calazans, E. Moreno, F. Hessel, V. Rosa,

F. Moraes, E. Carara, From VHDL Register

Transfer Level to SystemC Transaction Level

Modeling : a Comparative Case Study,

Proceedings of the 16th Symposium on

Integrated Circuits and Systems Design

SBCCI, 2003.

[26] A. Haverinen, M. Leclercq, N. Weyrich and

D. Wingard, White Paper for SystemC based

SoC Communication Modeling for the OCP

Protocol, OCP IP Association, URL =

http://www.ocpip.org, V1.0, 14 October 2002.

[27] T. Kogel, A. Haverinen and J. Aldis, OCP

TLM for Architectural Modeling, OCP-IP

methodology guideline, 2005.

[28] V. Lahtinen, J. Siirtola and T. Mäkeläinen,

Transaction-Level Modeling in

Communication Engine Design – A Case

Study, chapter 9 in Advances in Design and

Specification Languages for Embedded

Systems – Selected contributions from

FDL’06, S. A. Huss (ed.), Springer, 2007, pp

145-156.

[29] Open Core Protocol International Partnership,

A SystemC OCP Transaction Level

Communication Channel, V2.2 February

2007.

[30] B. Vanthournout, S. Goossens, T. Kogel,

Developing Transaction-level Models in

SystemC, CoWare TLM whitepaper, 2005.

[31] T. Kogel, TLM Peripheral Modeling for

Platform-Driven ESL Design – Using the

SystemC Modeling Library, SCml Package

V1.3, CoWare 2006.

[32] Open SystemC Initiative Language Working

Group, Requirements specifications for TLM

2.0, document version 1.1, included in TLM

package available in URL =

http://www.accellera.org, September 2007.

[33] Open SystemC Initiative TLM Working

Group, OSCI TLM-2.0 Language Reference

Manuel, document version JA32, software

version TLM 2.0.1, July 2009.

[34] Semiconductor Technology Academic

Research Center (STARC), Transaction-Level

Modeling (TLM) Guide, second Edition,

2008.

[35] Open Core Protocol International Partnership,

OCP Modelling Kit User Manual, OCP-IP,

2010.

[36] A. Rose, S. Swan, J. Pierce and J.M.

Fernandez, Transaction Level Modeling in

SystemC, OSCI TLM-1 Whitepaper, available

at URL = http://www.accellera.org, 2005.

[37] S. H. Sfar, I. E. Bennour and R. Tourki TLM

design framework of Generic NoC for

Performance Exploration, International

Journal on Programmable Devices Circuits

and Systems PDCS, vol. 09; Issue 1,

December 2009, pp 59-66.

