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ABSTRACT 

A system on chip (SoC) designing cost is not only dependent on the manufacturing process but also on the 

used design methodologies and tools. Transaction level modelling (TLM) has emerged as an efficient 

methodology of electronic system level (ESL) design, with an acceptable simulation speed and modelling 

accuracy. During the last decade, the research efforts were to define the various TLM abstraction levels, 

TLM taxonomies, and TLM programming languages. The result was the definition and the standardization 

of the SystemC language, the TLM-2 library and a set of coding styles. The further step toward an efficient 

TL modelling methodology consists in structuring the various TL models. This paper firstly reviews the 

most important steps in the evolution of the TLM methodology and secondly it presents an efficient 

structuring of the TL models based on TLM-2 library. 

Keywords: Electronic System Level Design, SystemC, Transaction level modelling, architecture 

exploration, system in chip, network on chip. 

 

1. INTRODUCTION 

 

Due to the growing complexity of electronic 

systems, the use of a suitable design methodology 

can divide the design cost by 10 or 100 [1]. In [2], 

the authors assert that 80’s design methodologies 

called "capture and simulate" or those of 90’s 

called "describe then synthesize" are obsolete. The 

last decade marks the rise of the so-called 

"specifies explores and refines" design 

methodologies which fill the weaknesses of 

previous methodologies and bridge the widening 

gap between register transfer level (RTL) and 

system specifications. Over the years, a race is set 

to elevate the levels of abstraction and therefore, 

each methodology brings many novelties in terms 

of design flow and specification language. This 

give the birth to a new field of research called 

electronic system level (ESL) design [3-5]. It 

includes research works interested in resolving 

issues arising when we transform the system level 

model according to taxonomies illustrated in 

Figure 1. 

New system-level design languages (SLDL), 

such as SystemC [6] and SystemVerilog [7], are 

the major success ingredient of ESL design 

methodologies [8]. As they are object-oriented 

(OO), the designer can isolate communication (i.e. 

interfaces) and each set of system’s functionalities 

in a separate class. The use of dynamic classes, the 

concept of inheritance and parameterized 

constructors allow designers to create flexible, 

robust and reusable components. SystemC 

presents, in addition to its compatibility with C++, 

means to describe a system at different levels of 

abstractions. It provides data types and hierarchical 

structures to simulate synchronous and/or 

asynchronous modules [9]. In other words, it 

allows describing semantics implemented in the 

various graduations of taxonomic axes of the 

Figure 1. 
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Figure 1: System design taxonomy [4] 
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Transaction Level modelling (TLM) is among 

the most promising ESL methodology to handle the 

growing complexity [10]. The system designer 

focuses on the functionality of the communication 

between model elements without detailing its 

implementation when he writes a transaction level 

(TL) model. Such models focus on the exchanged 

data and the communication phases without giving 

importance to means used to accomplish the 

transfer of this data [11]. Verification, architecture 

exploration or early stage software development 

and validation are the main use cases of TL models 

[4], [12], [13] and [14]. Nevertheless, the high 

complexity of modern systems makes TL models 

very challenging to develop. They are tightly 

dependent on the system design taxonomy, the 

description languages, the developed TL idioms 

and the model’s use case. For that, TL models do 

not have a precise definition and several research 

groups such as in [15] and [16] are working to 

establish and enforce their standards. In 2011, the 

main update of the SystemC standard integrates 

TLM-2 library. It provides commonly used utilities 

to make easier the TL models writing. Nonetheless, 

standard establishment does not resolve everything; 

it is just the corner stone to pass to transaction-

level synthesis and electronic design automation as 

next logical steps for the coming years. Before that, 

good practice in describing and simulating systems 

at transaction-level must be done and additional 

TLM guides need to be established. 

 

Figure 2: TLM methodology - achievements and 

challenges 

Figure 2 summarizes the achieved tasks and the 

remained tasks toward a complete TLM 

methodology. TL model structuring is one of the 

current challenging tasks. It has to define good 

practice and clear rules in TL model writing in 

order to allow a high degree of interoperability of 

the models from multiple designers and to 

accelerate the development of advanced EDA tools 

around TL models. In this paper, we trace the 

evolution of TLM’s concepts from idioms and 

basic abstraction levels to advanced application 

programming interface , then we propose a 

structuring solution for the most two dominating 

levels of TL models (transaction and transfer). At 

each abstraction level, we depict several methods 

involved in communication and specify theirs 

interactions. In addition, we take inventory of 

schemas to insert temporal constraints and we 

detail their implementations in the identified 

methods. The proposed solution targets the last 

SystemC standards. 

The rest of this paper is organized as follows. 

Section 2 reviews the evolution and the basic 

concepts of TLM, which are transaction levels, 

TLM idioms, the TLM-2 library and coding styles. 

Section 3 and section 4 describes our proposal to 

structure respectively transaction and transfer 

models and details communication methods’ 

implementations. Section 5 discusses the extension 

of our solution to a network on chip (NoC) based 

communication modelling. Finally, section 6 

concludes the paper. 

2. TLM’S EVOLUTION 

2.1 Basic transaction levels 

 

In a previous work [17], we contributed to 

identify six basic inter-modules transaction levels: 

shared variables, messages, transactions, transfers, 

pin and RTL. Each level marks a trade-off between 

relative simulation speed and communication 

details and accuracy and corresponds to a specific 

modelling scheme. The Table 1 summarizes their 

characteristics  

Shared variable based models and message-

based models reflect two levels of traditional 

programming. If the first ones are often monolithic 

programs, the second ones are more organized 

where messages are enriched data structure. The 

developer does not have to switch to another 

programming language when writing messages-

based models. He pushes the programming 

language used in shared variables model to its 

limits to shape parallelism, the main characteristic 

of hardware systems. 
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Transaction and transfer models are inherent to 

the TLM. They help to fill the gap between a 

message level and Pin level. TLM describes the 

communication behavior of a module using 

function calls rather than driving physical signals. 

Modelling the communication with transactions 

and transfers is suitable for hardware blocks. Their 

meanings can be inferred by looking at bus cycle 

chronogram that shows arbitration transfer, 

addressing transfer and data exchange transfer. 

Both models are based on requests and responses 

that are transported by function calls. The designer 

adds, to the message data structure, attributes like 

address, data size and endianness to emphasize the 

system memory mapping. Compared to message 

model, functional entities become more structured 

and compartmentalized. The border between the 

communication part and the processing part in a 

functional entity is more explicit. However, 

transaction and transfer models present some 

differences. In the transaction model, the 

communication protocol is sketchy and sums up to 

a possible delay between request and response, 

added as a transaction attribute. The 

communication part handles transactions on the fly, 

so there is no worry of transaction reorganization 

or buffering. While, transfer model divides 

communication protocol into non-repetitive phases. 

The phase’s insertion induces two main 

transformations in the model. Firstly, phases 

impose additional synchronization points. 

Secondly, the designer should worry about 

transactions reorganization and buffering since the 

model’s components could handle transfers of 

different transactions. 

 

Table 1: Inter-modules transaction levels 

Transactions levels 
Time granularity 

(communication) 
Transfer unit Abstraction of  

Shared variable Untimed - 
Functional structure, communication 

resources 

Message untimed Message Time 

Transaction Approximately timed Transaction Protocol phases 

Transfer Bus cycle byte Clock signal 

Pin Clock cycle bit Signals, registers, logic functions  

RTL nanoseconds  bit Logic gates 

 

Finally, the pin level provides more details on 

the communication from the perspective of 

synchronization points. It links the phases of the 

communication with the activity of some pins of 

the communication medium. In a bus context, the 

address phase acts on address pins, the arbitration 

phase uses the control pins, etc. The only signal 

that may appear at pin level is the clock signal. 

When used, the phase duration is quantified in 

clock cycles. Unlike the transfer level, the number 

of phases is no more limited and belongs to the 

designer to determine their number. The phase 

sequence may include repetitions. These repetitions 

are very convenient to describe for example a bus 

burst mode. In this case, a unique address phase 

induce several payload exchange phases. 

2.2 Proposals for transaction levels 

 

Theoretically, the TLM methodology is 

independent of the programming language used, 

but historically SystemC and SpecC [18] are the 

most system level description languages (SLDL) 

used to write transactional models. Several levels 

of abstraction have been proposed in the literature 

to describe the inter-module communication. In 

Table 2 we summarize these levels according to, 

first, the used SLDL and, second, to the 

organization behind the work. Faced to the 

multitude the abstraction levels, a harmonization 

task is mandatory to achieve a high degree of 

interoperability and reuse of TL models. 

Generally, harmonization task is based on 

diagrams. In [34], authors used a two dimensions 

diagram to compare abstraction levels introduced 

by OCP-IP with those introduced by OSCI. The 

taxonomy axes used in this diagram is “time” as x-

axis and “data” as y-axis. In our effort to line up 

the transactional models of Table 2, we chose to 

scale the x-axis by the type of transactions i.e. 

message transaction, transfer, pin and RTL. Figure 

3 gives a graphical comparison of the abstraction 

levels defined by the University of California, 

Synopsys, OCP-IP, CoWare and OSCI. As said 

above, only transaction and transfer models are 

inherent to the TL modelling. Nevertheless, as 

shown into Figure 3, CoWare and OSCI 

distinguish between these two levels, while others 

do not. After the release of the second version of 

the OSCI TLM library, OCP-IP has changed its 

strategy in the TL modelling of the OCP channel. 
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In the interest of compatibility, it has released, at 

the end of 2008, a modelling kit using the OSCI 

TLM-2 interfaces. Its documentation introduces 

TL4 as a new level of abstraction for consistency 

purpose with the work of OSCI [35]. TL4 shares 

the same interfaces used in TL3 models. These 

interfaces are then called OCP-IP TL3/TL4. In this 

way, TL4 corresponds exactly to OSCI-LT and 

TL3 is equivalent to OSCI-AT, but neither TL2 nor 

TL1 have equivalence in OSCI work.

Table 2: Transaction levels in literature 

 Organism 
Bibliographic 

references 
Abstraction levels 

S
p

ec
C

 

b
a
se

d
 

University of 

California Irvine 
[19) [20] 

• Specification Model 

• Processing Elements (PE) Assembling Model, or Architecture 
Model 

• Bus Arbitration Model 

• Time Accurate Communication Model 

• Cycle Accurate Computation Model 

• Implementation Model 

S
y
st

e
m

C
 b

a
se

d
 

Synopsys [21-25] 

• Untimed Functional model 

• Timed Functional Level 

• Transaction Level Model or Bus Cycle Accurate Level 

• Behavioral Hardware Model or Pin Accurate Level 

• Register Transfer Model 

Open Core Protocol 
International 
Partnership 

(OCP-IP) 

[26-29] 

• Message level (TL3) 

• Transaction level (TL2) 

• Transfer level (TL1) 

• RTL (TL0) 

CoWare [30] [31] 

• Functional View 

• Programmers View 

• Architects View 

• Verification View 
Open SystemC 

Initiative 

(OSCI) 

[32] [33] 
• Loosely-Timed coding style (LT) 

• Approximately-Timed coding style (AT) 
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Figure 3: Comparison of several transaction levels 

 

2.3 TLM’s idioms 

 

The most colloquial definition delimits a 

transaction as the exchange that takes place 

between two different points of a system, 

subsystem or module for a finite interval of time. 

Transactions are based on idioms that are 

considered basic concepts of the TLM 

methodology. Although we will give some 

implementation details in SystemC, these idioms 

are not restricted to the use of SystemC. 
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2.3.1 Core interfaces 

Core interfaces, as discussed in [30], are atomic 

mechanisms essential to characterize transactional 

communication. They specify the control flow, the 

data flow, and the type of transaction. These core 

interfaces are put (), get () and transport (). 

The “put ()” configuration corresponds to a 

component that sends a transaction to another 

component. We call initiator the component that 

initiates the transaction and target the component 

that receives it or simply the component that reacts 

to an initiator. Both the control flow and the data 

flow are from the initiator to the target. The 

“put ()” function is implemented using a pure 

virtual function. In object-oriented programming, it 

is a function with no implementation details and 

whose behaviour is overridden within an inheriting 

class by a function with the same signature. In our 

case, “put ()” is declared as a pure virtual function 

in the initiator and it is implemented in the target. 

The “put ()” configuration corresponds to a 

component that sends a transaction to another 

component. We call initiator the component that 

initiates the transaction and target the component 

that receives it or simply the component that reacts 

to an initiator. Both the control flow and the data 

flow are from the initiator to the target. The “put 

()” function is implemented using a pure virtual 

function. In object-oriented programming, it is a 

function with no implementation details and whose 

behaviour is overridden within an inheriting class 

by a function with the same signature. In our case, 

“put ()” is declared as a pure virtual function in the 

initiator and it is implemented in the target.  

The “get ()” configuration is the complementary 

of “put ()”. In this case, the initiator receives 

transaction from the target: the control flow is from 

the initiator to the target, but the data flow takes the 

opposite direction. In this way “get ()” is declared 

in the initiator and implemented in the target. 

When using “get ()”, once the data is consumed, it 

is deleted within the producer. Another variant 

“peek ()” allows the consumer to read the data 

without erasing it in the producer. 

Transport is a bidirectional interface. It generally 

follows the model of request-response pair, where 

each request is closely linked to a response. 

Generally, when using bidirectional interfaces, we 

use the terminology “master” and “slave” instead 

of “initiator” and “target”. The pair request-

response fits perfectly when modelling memory 

access. When reading memory, the master asks 

slave for data at a specific address so the slave 

responds by sending the corresponding data. The 

signature of “transport ()” can be seen as a fusion 

of the two unidirectional functions “put ()” and 

“get ()”and uses two arguments request and 

response. 

2.3.2 Blocking and non-blocking 

communication 

Interfaces mentioned above are blocking 

interfaces. This means that the entity that begins 

the transaction ceases all activities. The target or 

the slave takes the hand to perform some 

processing and returns with appropriate arguments. 

With blocking interfaces, there is no need to 

provide mechanisms to control the evolution of the 

transaction, because this latter, in some way, never 

fails: Receiving the response is a sign of the 

completion of the transaction. In addition, when 

using blocking interfaces, the designer must keep 

in mind that the request (i.e. the interface call) and 

the response (i.e. the interface return call) will 

occur in two different simulation moments. 

TLM methodology proposes non-blocking 

variant of the interfaces mentioned above. The 

non-blocking semantic allows a return in the same 

delta cycle of the interface call. In a model using 

this type of interface, the two communicating 

entities no longer functioning alternately as in the 

blocking mode, but in parallel. Bodies of non-

blocking interfaces are not too different from 

blocking counterparts; nevertheless, they return 

information about the evolution of the transaction. 

The consumer should examine this return value to 

determine whether the transaction is changing 

properly and consequently choose the next 

transaction step to proceed. In addition, buffers 

must be provided into both communicating entities 

to manage the transaction flow. 

2.3.3 Interconnect component 

As mentioned in the introduction, axis 

“communication” is important in system 

taxonomy. SystemC, as a SLDL, introduces in its 

second version the concept of communication 

channel. When writing high-level models in 

SystemC, modules communicate through ports that 

call interfaces that are implemented in channels. In 

addition, SystemC permit to describe hierarchical 

channel that includes processes and/or structured in 

sub-modules. It helps to develop an abstract model 

of a bus or a more complex communication 

structure. 

TLM aims, at refining of a functional model, an 

elaborate description of the communication 

between the system’s components. It uses not only 
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the artifice “communication channel” but it also 

adds some improvements. For instance, the 

introduction of “export” in SystemC, since version 

2.1, was a TLM requirement. It develops the idea 

that when using only ports, it is impossible to bind 

directly the communicating modules because the 

interfaces are implemented outside them and 

precisely in channels. As an export implements 

interfaces within the modules, a couple port - 

export allows a direct binding between two 

modules. However, a TL model may use 

bidirectional interfaces, where the requests and the 

responses take opposite paths. Therefore, the 

couple port - export becomes insufficient, 

especially when the communication is non-

blocking. In [33], the authors introduce the object 

“socket”. It is composed of a port and an export. 

Directly binding two sockets of two modules in the 

same hierarchical level, is equivalent to bind a port 

of each module to the export of the other. This will 

allow to model transactional interconnections 

composed of two paths: a forward path and a 

backward path. The target’s socket implements the 

interface of the forward path and the initiator’s 

socket implements the interface of the backward 

path. Of course, in the case of a blocking 

communication the backward path becomes 

superfluous. 

Consequently, a question that comes readily to 

mind: what about the communication channel in a 

TL interconnection? The answer follows from the 

system taxonomy. A transactional interconnection 

is usually more complex than a simple point-to-

point connection and therefore it is more akin to a 

module rather than a channel that implements 

interfaces. This allows us to apply, to this so-called 

“channel module”, the same principle of the system 

taxonomy. Its communication part, i.e. core 

interfaces, is integrated in the communicating 

modules and “channel module" integrates 

functionality part. The “channel module" is 

commonly called in TLM: an interconnect 

component. This component acts as an initiator and 

a target at the same time. Even if it accesses to 

transactions, it is neither a producer nor a 

consumer. Definition of an address space, 

transformation of the address, definition of priority 

rules or transformation of transaction payload are 

common functionalities that can be integrated in a 

interconnect component. A bus, a bridge, an arbiter 

or a router can be considered as interconnect 

components. The separation of functionality and 

interfaces of a TLM interconnection makes the 

interconnect component interchangeable without 

making changes into the communicating modules. 

2.3.4 The notion of time 

The use of TL models is to bridge the gap 

between untimed functional models and cycle 

accurate models. Although, they offer a rough 

behaviour towards the time, they should be as 

faithful as possible to the behaviour of the system. 

It is obvious then that timing constraints insertion 

patterns are an important criterion to distinguish 

each TL model. The notion of time in a TL model 

is closely related to the synchronization points with 

the simulation kernel of the SLDL i.e. SystemC. To 

evolve correctly, the model must give the control to 

the simulation kernel to activate processes to 

clearly characterize the different relationships 

between them in order to describe the deterministic 

system behavior. In addition, synchronization 

points are important to control concurrent access to 

various shared variables, channels and memory to 

ensure the consistency of their contents.  

The study of the simulation kernel, teaches us 

that the latter offers a repetitive execution of 

concurrent processes. Moreover, the order of 

execution of these processes at the first iteration is 

not predictable, but we know that it will keep this 

order in the following iterations. This non-

determinism may give a non-compliant behavior 

compared to the functional specification of the 

system. Programmer View (PV) model, as the most 

abstract among TL models, does not give 

implementation details of the internal micro 

architecture. With such models, it is hard to predict 

the process activation and suspension moments or 

delays between synchronization points. Thereby, 

the designer must insert, time constraints to avoid 

this non-determinism or at least limit its influence. 

He use such constraints to define a partial order of 

events that govern the system behaviour in 

compliance with concurrent evolution of processes 

and cause-effect relationships that should exist 

between them. The causality brings an air of 

determinism to the model, an essential 

characteristic of real concurrent hardware 

behaviour. Generally, to insert such constraints, the 

designer adds explicit synchronization points after 

a computation code block or a writing of a new 

data. They are calls to wait () or notify (zero_time). 

If a process calls wait (), it is suspended until the 

next synchronization occurs. In contrary to wait (), 

notify (zero_time) does not change the content of 

the pool of ready to run processes, just the freshly 

written data is communicated to other processes. In 

other words, it does not pass the control to the 

simulation kernel. Explicit synchronization must be 

used with caution, since the overuse of wait () 
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generates a huge and complex control flow and the 

model becomes slow to simulate. 

Other types of temporal constraints may be 

added to a model of the type PV. They illustrate 

functional constraints such as UART transfer rate, 

a refresh rate of a display controller, or a delay 

required to perform any computation. Free from 

any micro-architecture, these, so-called, functional 

delays are just added to give more constraints on 

process execution order. Unlike previous 

constraints, they are inserted in the model as 

implicit synchronization points: the designer adds 

time annotations to TLM interface call. In models 

based on blocking interfaces, these annotations 

guarantee a certain orthogonality between these 

temporal constraints and the purely functional 

model. This has three advantages; firstly, these 

constraints can be easily removed to go back to a 

purely functional model; appreciated during the 

validation step. Secondly, these annotations can be 

easily enriched when the designer refines the 

model and substitute blocking interfaces with non-

blocking ones. This is easily done without touching 

already validated functional parts of the models. 

Finally, these annotations have another beneficial 

effect on the model reuse. The designer can try 

several models of channel or interconnect 

component in a prelude of any advanced 

architectural exploration. 

In any cases, implicit annotations can 

materialize those advantages only if TLM 

interfaces are well specified and standardized. 

When combined with a system design 

methodology, they will be interpreted in various 

ways. In the context of a bottom-up methodology, 

the TL model is an assembly of existing 

components. In this case, the implicit annotations 

mimic the delays induced by these components. 

While in the context of a top-down methodology, 

these annotations are predictions for budgeting 

future refined implementations. 

2.4 TLM-2 library and coding styles 

 

Since the version 2.0, released in 2001, SystemC 

supports TLM methodology. It was limited to the 

use of channels, ports and interfaces. In parallel, a 

TLM working group was assigned the task of 

creating a TLM library to be included in the 

standard language. In 2005, this group released the 

version 1.0 of this library [36] which was 

succeeded in 2008 by the version 2. The latter was 

actually included in the SystemC standard in 2011. 

In [33], the authors explain that this version mainly 

targets the description of bus based systems. The 

library defines three groups of interfaces: transport 

interface, direct memory interface (DMI) and 

debug interface. It also sets a specific data 

structure, named Generic Payload (GP), which is 

exchanged between the initiator(s) and target(s) in 

conjunction with these interfaces. In the interest of 

models’ interoperability, the library defines a 

communication protocol named Base Protocol 

(BP). 

The Transport interfaces are the main interfaces 

provided by the TLM-2 library. These interfaces 

are provided in blocking and non-blocking forms. 

Both variants support time annotations and 

temporal decoupling. Temporal decoupling allows 

a process to ignore certain number of 

synchronization points, considered redundant, with 

the simulation kernel. However, juggling with 

synchronization points is not without risk. The 

designer must make the assumption that sampling 

variables too early or too late does not affect either 

model’s functionalities or model’s use case.  

The blocking transport interface is called 

b_transport (). It is implemented in the target and it 

has no return value. It has two arguments: the 

transaction and the time annotation. The use of this 

interface is linked to a coding style called loosely 

timed (LT). In such kind of coding style, a 

transaction is linked to two timing points 

corresponding to the API call and its return. The 

return of b_transport () can be immediate or 

delayed with an explicit call of wait (). If the return 

is immediate, the initiator should check the time 

annotation argument, to solicit an eventually 

synchronization point. 

Non-blocking transport interfaces are 

nb_transport_fw () and nb_transport_bw (). The 

first one is called by the initiator and implemented 

in the target while the second is called by the target 

and implemented in the initiator. Both interfaces’ 

signatures have, in addition to the transaction and 

the timing annotation, the transaction phase as a 

third argument. The use of these interfaces is 

linked to a coding style called approximately timed 

(AT). With such coding style, payloads transit not 

only in the forward path but also in the backward 

path and both the initiator and the target can 

terminate the transaction. The TLM-2.0 library 

provides also a class that defines the Base Protocol 

(BP). This protocol adopts the request/response 

principle. The request phase begins when the 

initiator sends the request to the target and ends 

when the target actually receives it and then is 

ready to receive the next transaction request. 

Similarly, the response phase begins when the 
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target sends the response to the initiator and ends 

when the initiator actually receives it and becomes 

ready to receive the response of the next 

transaction. Thus, BEGIN_REQ and END_REQ 

mark the beginning and the end of the request. 

BEGIN_RESP and END_RESP mark the 

beginning and the end of the response. 

BP defines the complete sequence of the 

protocol as follows: (BEGIN_REQ � END_REQ 

� BEGIN_RESP � END_RESP). In addition to 

this complete sequence, BP defines a multiple of 

valid phase sequences that can give the tempo to 

the transaction. Transaction phase may be changed 

by the return value or by the backward path. In 

fact, as shown in Figure 4, for each method call 

there are several possible call returns. We refer to 

each method call by Ai where i ∈ {1,2,3,4}. This 

index marks the phase of the transaction after 

calling a TLM-2 non-blocking interface. The 

values 1, 2, 3 and 4 mark respectively 

BEGIN_REQ, END_REQ, BEGIN_RESP and 

END_RESP. We used the index 0 to mark the 

beginning of the transaction. The indexes 4 and 5 

show in turn the end of a transaction. The latter 

index indicates that the return value is 

TLM_COMPLETED, so the phase argument is 

ignored. Rij refers to the call returns and i and j 

refer respectively to call phase and return phase. In 

other words a call returns Rij may change the phase 

of the transaction. 

Initiator Target

nb_transport_fw(t,BEGIN_REQ,x)

TLM_ACCEPTED   nb_transport_fw(t,BEGIN_REQ,x)

Call

Return
TLM_UPDATED   nb_transport_fw(t’,END_REQ,x+∆x)

TLM_COMPLETED   nb_transport_fw(t’,-,x+∆x)

nb_transport_bw(t,END_REQ,x)

TLM_ACCEPTED   nb_transport_bw(t,END_REQ,y)

nb_transport_bw(t,BEGIN_RESP,x)

TLM_ACCEPTED   nb_transport_bw(t,BEGIN_RESP,x)

TLM_UPDATED   nb_transport_bw(t’,END_RESP,x+∆x)

TLM_COMPLETED   nb_transport_bw(t’,-,x+∆x)

TLM_UPDATED   nb_transport_fw(t’,BEGIN_RESP,x+∆x)

nb_transport_fw(t,END_RESP,x)

TLM_ACCEPTED   nb_transport_fw(t,END_RESP,x)

TLM_COMPLETED   nb_transport_fw(t’,-,x+∆x)

Return
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Figure 4: Transaction evolution using non-blocking 

interfaces 

3. STRUCTURING OF TRANSACTION 

MODELS 

 

As explained in previous section, the transaction 

model inaugurates the TL modelling. When 

SystemC is used, initiators and targets are defined 

in separate models communicating through the 

TLM-2 interfaces. In order to implement system 

hierarchy we choose a structure using direct 

instantiation of sub-modules and separate 

compilation technique. We opted for this choice 

because separate compilation allows us to move the 

constructor in the implementation. Thus, we hide 

the complexity to the model’s user. In this way, 

this latter can have an idea about the hierarchy of 

the system by just browsing header files [9]. 

3.1 Separation of communication and 

functionality 

 

In transaction model, separation of 

communication and functionality is an obligation 

as explained in section 2.2. It must be implemented 

into both initiator and target modules. To do this, 

each functional unit is matched to a core and a 

wrapper: two sc_modules. The core implements the 

functionality and the wrapper allows the core to 

communicate with the other functional entities. 

Figure 5 illustrates the static class diagram and 

Code 1 shows extracts of several files 

implementing an initiator side example of the static 

class diagram. The header file MyInitiatorCore.h 

defines the initiator’s core as a SimpleInitiatorCore 

class that inherits from the class sc_module. In the 

core’s constructor, we implement 

SimpleInitiatorCore_Thread (), it is the sc_thread 

responsible of carrying out some functionalities. 

+nb_transport_bw()

+invalidate_direct_mem_ptr()

+R/W Function() : bool

MyInitiator

+socket

-InitiatorCore instance

tlm::tlm_bw_transport_if
sc_core::sc_module

-InitiatorCore_Thread1()

InitiatorCore

-MyInitiator* instance

-Var1

-Var2

1

1

+b_transport()

+nb_transport_fw()

+get_direct_mem_ptr() : bool

+transport_dbg() : unsigned int

MyTarget

+socket

-MyTargetCore instance

+access_reg_mem()

+run()

TargetCore

-MyTarget* instance

-mem1

-var1

-reg1

1

1

tlm::tlm_fw_transport_if

 

Figure 5: Class diagram showing separation between 

communication and functionalities. 
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12 
13 
14 
15 
16 
17 
18 
19 
. .  
27 
28 
29 
30 
31 
32 
33 
34 
. . 
45 
46 
47 

#include "MyInitiatorCore.h" 
#include "Params.h" 
 
class MyInitiator: public tlm::tlm_bw_transport_if<>,public sc_core::sc_module 
{ 
 public: 
 
tlm::tlm_initiator_socket<> socket; 
 . . . 
 
 SC_HAS_PROCESS(MyInitiator); 
  
 MyInitiator 
 ( 
  sc_core::sc_module_name  name 
 ); 
 
. . . 
 private: 
  
 SimpleInitiatorCore m_core; 

An extract of MyInitiator.h 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

MyInitiator::MyInitiator 
 ( 
  sc_core::sc_module_name name 
 ) 
 
 : sc_core::sc_module  (name) 
 , socket   ("socket") 
 ,m_core   ("SimpleInitiatorCore",this) 
{ 
     socket(*this); 
} 

An extract of MyInitiator.cpp 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
. . 
39 

#include "MyInitiator.h" 
 
Class MyInitiator; 
 
Class SimpleInitiatorCore: public sc_core::sc_module 
{ 
 public: 
 SC_HAS_PROCESS(SimpleInitiatorCore); 
 SimpleInitiatorCore 
 (  
  sc_core::sc_module_name  name, 
  MyInitiator*    testbench 
 ); 
 
 
 private: 
 . . . 
 MyInitiator* m_TestBench; 

An extract of MyInitiatorCore.h 

17 
18 
19 
20 
21 
22 
23 
24 
25 
. . 

SimpleInitiatorCore::SimpleInitiatorCore 
 ( 
  sc_core::sc_module_name name, 
  MyInitiator*    testbench 
 ) 
 
 : sc_core::sc_module  (name) 
 , m_TestBench   (testbench) 
{ 
. . .  

An extract of MyInitiatorCore.cpp 

Code 1 : Separation between communication and functionalities of an initiator in TL model. 
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The extract of the header file MyInitiator.h 

shows that the wrapper is defined as a class named 

MyInitiator. This class inherits from both classes: 

sc_module and tlm::tlm_bw_transport_if<>. The 

second class is mandatory to set the public member 

“socket” as an initiator socket instance (line 19). 

MyInitiator also defines, as a private member, 

SimpleInitiatorCore instance (line 47). The 

wrapper constructor uses C++ syntax to bind a 

pointer of a MyInitiator class to 

SimpleInitiatorCore class. The pointer “this” is 

passed to the SimpleInitiatorCore class in the 

course of the core initialization. The pointer “this” 

represents the SimpleInitiatorCore class itself. It is 

passed to the instance declaration for 

SimpleInitiatorCore (line 25 in MyInitiator.cpp) 

and then to the core’s constructor (line 24 in 

MyInitiatorCore.h). Here, the pointer, passed from 

the wrapper, is bound to the pointer variable 

m_TestBench (line 24 in MyInitiatorCore.cpp). 

Similarly, the target’s wrapper class inherits not 

only the sc_module class but also 

tlm::tlm_fw_transport_if<> class because it sets a 

member of the target type socket. This solution, 

which is quite complicated at first glance, allows us 

to define a straight line between functionalities and 

communication, an essential characteristic of a 

transaction model. In addition, it has a double 

advantage. Firstly, communication and 

functionalities are placed in two separate 

sc_module. Secondly, it does not involve 

additional SystemC objects to bind the two 

modules. We consider that adding objects such as 

ports or FIFOs might distort the model 

performances. By binding initiator and target 

wrapper’s pointer to their respective core, wrappers 

are the only SystemC modules visible at the top 

level of the model 

3.2 Interaction between wrappers and cores 

 

Splitting up a functional entity in a core-wrapper 

pair does not mean that its elements do not 

cooperate. In the initiator side, the core initiates 

cooperation with the wrapper. It asks, whenever is 

needed, services to the wrapper through functions 

calls. We named these proposed functions R/W 

functions. For example, to write data, 

SimpleInitiatorCore_Thread () calls the R/W 

function write_data () through the wrapper’s 

pointer m_Initiator as follows: 

m_Initiator->write_data(current_data,i); 

R/W functions are implemented in initiator’s 

wrappers and must perform the following steps: 

1) Create a generic payload object; 

2) set its attributes; 

3) call the b_transport through a socket; 

4) test response_status attribute and get 

response informations; 

5) and call wait() if delay parameter has 

been updated by the target. 

All R/W functions have a Boolean return that 

the core uses to make decision about the next 

functionality to be executed. 

In the target side, it is the wrapper that initiates 

cooperation with the core. The target‘s wrapper 

implements b_transport method which requests 

access to a resource in the core through a function 

call. We named such called function Access 

function. Typically an Access function performs 

the following steps: 

1) Decodes address attribute to identify 

resource location. 

2) Performs effectively the read or write 

according to the command attribute. 

3) Calls specific core functions 

according to the context. 

3.3 Autonomous modules 

 

An autonomous module is a module with a 

target socket and an initiator socket. Hardware 

acceleration modules are the typical case of such 

module. The target socket serves for initialization 

and/or configuration purpose. During computation 

phase, Hardware acceleration module become 

autonomous since it can read or write data through 

its initiator socket. 

+nb_transport_bw()

+invalidate_direct_mem_ptr()

+R/W Function() : bool

+b_transport()

+nb_transport_fw()

+get_direct_mem_ptr() : bool

+transport_dbg() : unsigned int

MyHWblock

+i_socket

+t_socket

-HWblockCore instance

tlm::tlm_bw_transport_if

-status_fsm()

-access_reg_mem()

-init()

-run()

-finish()

HWblockCore

-MyInitiator* instance

-Var1

-Var2

-mem

-reg

-m_status_event

tlm::tlm_fw_transport_if

sc_core::sc_module

1 1

 

Figure 6: Class diagram of autonomous module. 

As shown in Figure 6, separation between core 

and wrapper are mandatory. Since the declaration 

of the autonomous module’s wrapper has two 

sockets, it includes the implementation of both 

b_transport and R/W functions. An additional 
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thread implemented in the core ensures role 

switching between initiator and target. This thread 

must be implemented as a finite state machine 

(fsm) responsive to an event that must be notified 

in the Access function. For each notification, the 

fsm changes its state and fire up, in the core, 

specific tasks either as master or as slave. 

4. STRUCTURING OF TRANSFER 

MODELS 

 

Comparing to the transaction model, the 

transfer model not only cuts the transaction 

into phases but also uses non-blocking 

communication idioms. The suitable TLM-2.0 

coding style for such model is undoubtedly 

the AT coding style. The separation of 

functions (core) and communication 

(wrapper) introduced into the transaction 

model remains mandatory. The R/W function 

and Access function are also reused but 

should be extended to handle non-blocking 

communication idioms between initiator and 

target introduced by the AT coding style. 

Using non-blocking interfaces in the AT 

coding style constrains the transfer model to 

keep track of payloads from their creations to 

their releases. TLM-2.0 provides 

tlm_mm_interface class to allow the 

establishment of a memory manager. The 

main task of the memory manager is to create 

a pool. It is a contiguous memory space with a 

dimension equal to an integer number of 

transactions. The lifetime of a payload in the 

pool is associated with a reference count. To 

allocate a payload, an initiator calls the 

function acquire () which increments 

payload’s reference count. An interconnection 

and/or the target component can call 

acquire () to extend the lifetime of the 

payload, since this method increments its 

reference count. An initiator, an interconnect 

component or a target can call release () to 

decrement the reference count. This call is 

done when the corresponding component no 

more needs the payload. If the reference count 

is zero when release () is called, it will in turn 

calls free () in order to restore to the pool the 

memory space monopolized by the payload. 

To implement a memory manager, the 

designer must define a subclass that 

implements at least the free method. This 

subclass supports payloads instance 

management based on reference counting 

mechanism. The memory manager must be 

instantiated in the initiator and more 

specifically in its wrapper. Payloads must be 

claimed by a R/W function; however they can 

be freed by an alternative function, depending 

on the adopted phase sequence. 

4.1 Additional methods 

 

During a complete sequence of BP, the 

initiator calls the interface nb_transport_fw 

twice. Since these two calls regard the same 

payload, they can be performed in the same 

process (R/W function). However, we 

preferred to associate the second call to a 

separate process: end_response_method. This 

additional method allows the R/W function to 

return immediately when request phase ends. 

In this way, the initiator’s core is no longer 

blocked to wait response from target. 

Therefore, end_response_method contributes 

to enhancing the non-blocking character of 

the transfer model. In addition, it helps to 

illustrate the bidirectional collaboration 

between core and wrapper. If, at the 

beginning of a transaction, a core’s process 

calls a R/W function to transfer request, at its 

end, the end_response_method can call 

another core’s process to trigger a specific 

functionality. In the same manner, the 

parallelism between core and wrapper is also 

adopted at the target side. The target has to 

call twice the interface nb_transport_bw. At 

the first call, it signals the end of the request 

phase. At the second call it signals the 

beginning of the response phase. These two 

calls are implemented in separate methods 

respectively named end_request_method and 

begin_response_method. It is clear that the 

Access function call is made by the 

begin_response_method. 

As recommended in TLM-2 manual, we 

preferred the use of payload event queue 

(PEQ) to manage the exchange of payloads 

between the proposed methods. The TLM-2 

standard defines these utilities as queues of 

event notifications, where each notification 

carries an associated payload. Payloads are 

injected into a PEQ with a delay annotation 

and then they emerge from the PEQ at a time 

calculated from current simulation time plus 

the annotated delay. In our transfer model, 

end_response_method, end_request_method 

and begin_response_method are sensible 

respectively to m_end_response_PEQ, 

m_request_PEQ and m_response_PEQ.  



Journal of Theoretical and Applied Information Technology 
 20

th
 June 2015. Vol.76. No.2 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
189 

In summary, we dispatch the complete 

sequence of the transaction into six methods. 

In one side R/W function, nb_transport_bw 

and end_response_method are implemented 

in the initiator’s wrapper. In the other side, 

end_request_method, 

begin_response_method and 

nb_transport_fw are implemented in the 

target’s wrapper. The Figure 1 illustrates their 

roles in the evolution of the phases. The first 

call of the interface nb_transport_fw (A1) is 

done in the R/W function, while the second 

call (A4) is carried out in end_response-

method. In the target side, the first call of the 

interface nb_transport_bw (A2) is done in 

end_request_method, while the second call 

(A3) is carried out in 

begin_response_method. 

 
Figure 1 : Dispatching of communication tasks into 

several methods in transfer model. 

In addition to the complete sequence, BP 

allows the initiator or the target to complete 

the transaction prematurely or to ignore 

certain phases. When, looking to Error! 

Reference source not found., we note, with 

the exception of the call A2, that to each 

TLM-2 interface call there are several 

possible return calls. For calls A1, A3 and A4 

there are respectively 4, 3 and 2 possible 

return calls. We say that they mark 

respectively the first point of divergence, 

second point of divergence and the third point 

of divergence. 

Figure 8 extracts and organizes all 

possible transaction sequences of BP 

according to the following rules: 

• Respect the rules of precedence 

imposed by the complete sequence; 

• A sequence must begin with a call A1; 

• A sequence must ends by Ri4 or Ri5; 

• A valid sequence is an alternation 

between a call and a call return. 

This Figure is useful to establish a various 

methods’ diagram, and to highlight that there are 

only eight possible graphs of temporal constraints.  

The following subsections detail the six 

methods: R/W function, nb_transport_bw, 

end_response_method, end_request_method, 

begin_response_method and 

nb_transport_fw. 
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Figure 8: Possible transaction sequences in TLM-2 base protocol 

 

4.2 R/W function 

 

Unlike in transaction model, the R/W function 

in transfer model does not necessarily mean the 

end of the transaction. As shown in Figure 9, this 

method certainly begins the transaction by calling 

nb_transport_fw and next it gives way to the other 

methods. It is obvious that if the target returns 

TLM_COMPLETED, the transfer model behaves 

as the transaction model. That is why we preferred 

to keep the same signature of R/W function of 

transaction model. In addition, early termination of 

the transaction indicates that access to the target’s 

core (i.e. call of the Access function) is performed 

by the target in nb_transport_fw. Therefore, the 

R/W function should restore the transaction to the 

memory manager before ending. 

Begin

A1

Return 

value?

TLM_COMPLETED (R15)TLM_ACCEPTED (R11)

TLM_UPDATED 

Wait for A2

(notification of  

m_EndReqPhase)

Phase?

END_REQ 

(R12)

BEGIN_RESP 

(R13)

Wait (delay)

Wait (delay)

End

Injection in

m_end_response_PEQ 

Acquire the 

transaction 

Free 

transaction

Add

RESP_ACCEPT_DELAY

Initialize 

attributes 

 
Figure 9: Flow chart of R/W function  

4.3 Nb_transport_fw 

 

As shown in Figure 10, the designer must 

manage the first and the third points of divergence 

when writing nb_transport_fw. He must choose 

one of the four solutions in the first case and one of 

two solutions in the second case. In addition, this 
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API must necessarily generate an error if the phase 

is different from BEGIN_REQ or END_RESP for 

compatibility with the base protocol.  

At the first point of divergence, if the intended 

return value is TLM_ACCEPTED or the intended 

return phase is BEGIN_RESP, nb_transport_fw 

must call an Access function 

 

 

 

Begin

Phase?

BEGIN_REQ (A1) END_RESP (A4)

Add 

REQ_ACCEPT_DELAY

Inject in 

m_request_PEQ

End

tlm::TLM_ACCEPTED

Add 
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tlm::TLM_UPDATED

Add

TARGET_DELAY
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DELAY
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3
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Figure 10: Flow chart of nb_transport_fw 

 

 

4.4 End_request_method 

 

This method deals with the end of the request 

phase. Its Flow chart is shown in Figure 11. Since 

it is sensitive to m_end_request_PEQ, the method 

body is simply a loop conditioned by the return 

value of get_next_transaction (). No point of 

divergence is managed by end_request_method as 

the only suitable return value of nb_transport_bw 

call is TLM_ACCEPTED. If this is the case, it 

hands over to begin_response_method by injecting 

the payload into m_response_PEQ. Otherwise, 

end_request_method must generate an error. 

Begin

Get_next_tr

ansaction() ?

Add

TARGET_DELAY

Inject in 

m_response_PEQ

A2

Return 

value?

TLM_ACCEPTED (R22)

TLM_COMPLETED TLM_UPDATED 

End

NULL

delay=SC_ZERO_T

IME

Error  

Figure. 11. Flow chart of end_request_method 
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4.5 Begin_response_method 

 

Begin

Get_next_tr

ansaction() 

?

End

NULL

Access to core

(Access function)

Update

response status

A3

delay=SC_ZERO_TIME

Return 

value?

TLM_ACCEPTED (R33)

TLM_COMPLETED (R35)
TLM_UPDATED (R34)

Next_trigger 

(m_end_resp_event)

Next_trigger

(m_response_PEQ.get_event())

Next_trigger(delay)

 

Figure 12. Flow chart of begin_response_method. 

 

As shown in Figure 12, begin_response_method 

is sensitive to m_response_PEQ. For each 

emerging payload, it performs two main tasks. 

Firstly, it calls an Access function to actually 

execute the read or write command requested by 

the R/W function. It also means that an update of 

the status of the response is also required. 

Secondly, it calls nb_transport_bw. Whatever its 

return value, a synchronization point is required. If 

the return value of the backward interface is 

TLM_ACCEPTED, begin_response_method must 

wait for the end response notification. In other 

words, it must wait for A4. If the return value of 

the backward interface is TLM_UPDATED or 

TLM_COMPLETED, begin_response_method 

must respect the annotated delay. In both cases, it 

should call next_trigger () since calling wait () is 

prohibited in SC_METHOD. This synchronization 

is required to meet the response exclusion rule 

imposed by the base protocol. This rule prohibits 

the target to announce the beginning of a new 

transaction response as it has not received yet 

END_RESP of the transaction in progress or that 

the latter is completed. 

 

 

 

4.6 Nb_transport_bw 

 

This method is rather special, since it depends 

on previous transition made by the current 

transaction. Whether A2 or A3 call, the designer 

must think about keeping track of the last 

transaction’s transition. For this, we opted for 

backing up marked transactions in a C++ standard 

template library (STL) container: std::map. The 

filling of this container takes place in the R/W 

function. The container associates a payload 

pointer to previous_tran_phase_enum variable. 

The possible values for this variable are 

ACCEPTED_enum, 

UPDATED_END_REQ_enum, 

UPDATED_BEGIN_RESP_enum and 

END_REQ_enum for respectively R11, R12, R13 

and R22 transitions. The search in this container, 

within nb_transport_bw, is made easy by using an 

iterator. 

When nb_transport_bw is called with 

END_REQ as phase argument, it means that the 

caller is end_request_method and the last 

transaction’s transition R11. In this case 

Nb_transport_bw should verify that the transaction 

was marked ACCEPTED_enum. In addition, the 

backward interface must notify the end of the 

request phase and update marking of the 

transaction to END_REQ_enum. It means that the 

last transition is now R22 as shown in Figure. 13. 

When nb_transport_bw is called with 

BEGIN_RESP as phase argument, it means that the 

caller is begin_response_method. In this case, the 

designer must deal with the second point of 

divergence. He will choose the initiator behaviour 

towards the A3 call. 

Obviously, nb_transport_bw must generate an 

error if the phase is different from END_REQ or 

BEGIN_RESP. 

Notification of the end of the request phase is 

used to unlock a R/W function which is waiting 

A2. This synchronization point is dictated by the 

request exclusion rule. BP’s rule prohibits an 

initiator to send a new request if it has not received, 

from the target and for the transaction in progress, 

the completion of its request phase or the 

beginning of its response phase 

.
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Figure. 13. Flow chart of nb_transport_bw 

 

4.7 End_response_method 

 

Sensitive to m_end_response_PEQ, this method 

performs a test on response status of each emerging 

payload, to find out success or failure cause of the 

transaction. In both cases, the initiator’s wrapper 

must interact with the core to address the situation 

and then calls nb_transport_fw to complete the 

transaction as shown in Figure 14. For example, in 

case of success of a read command, 

end_response_method may call a core method to 

copy the data. In case of failure, the core will be 

notified to be able, for example, to resend the 

request. 

If the return value of the A4 is 

TLM_COMPLETED or TLM_ACCEPTED, 

end_response_method is responsible to restore the 

memory acquired by R/W function to the memory 

manager. Otherwise, it generates an error. 
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Figure 14. Flow chart of end_response_method 
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4.8 Integration of temporal constraints 

 

During a BP’s complete sequence and with the 

AT coding style, a designer can model three 

temporal constraints, two are set by the target and 

only one is set by the initiator. In this section, we 

will explain how to implement these constraints in 

eight schemes resumed in Figure 8. We must keep 

in mind that the designer cannot “master” the 

behaviour of all system’s components, especially 

when he incorporates third party TL models his 

design. 

The target sets the request_accept_delay: it is 

the minimum time that the initiator must comply 

before sending another request. It separates 

BEGIN_REQ and END_REQ. Suppose we have a 

transaction with write command, and then 

BEGIN_REQ marks the moment when the data is 

ready to be transferred from the initiator to the 

target. Thus, it marks the moment of sending the 

first byte. It is then natural that the target will delay 

END_REQ until it receives the last byte. 

Nevertheless, according to BP rules, the target is 

not obliged to notify END_REQ, it may skip this 

phase to go directly notify the BEGIN_RESP. In 

this case, the target sets the latency: it is the delay 

between BEGIN_REQ and BEGIN_RESP. It is the 

minimum time required for the target to react to the 

requested order. If the target has already notified 

the END_REQ, it can delay the BEGIN_RESP 

with a target delay. Therefore, in summary, we can 

say that: 

 

<target> latency = <target> request_accept_delay + <target>
  delay 

 

The initiator configures a single time constraint 

called response_accept_delay: it separates 

BEGIN_RESP and END_RESP. To understand the 

meaning of this delay, consider a transaction with 

read command. BEGIN_RESP marks the moment 

when the data is made available to the initiator. 

This is, also, the moment when the first byte 

starting to transit to the initiator. Therefore, the 

initiator notifies the end of the response when 

receiving the last byte. Of course, relying on the 

BP’s rules, this is not an obligation. 

Transfer model must take into account the three 

temporal constraints mentioned above 

(request_accept_delay, target delay, and 

response_accept_delay), whatever the sequence 

that the designer adopts for the couple initiator and 

target. The model structure that we described in the 

previous sub-section allowed us to spread out calls 

of basic TLM-2 interfaces along four methods. 

Figure 15 and Figure 16 show how to implement 

these constraints into different methods. 

In the case of the complete sequence of BP, 

request_accept_delay delays end_request_method 

against R/W function and so against 

nb_transport_fw. This delay is implemented as an 

annotation when the transaction is injected in 

m_end_request_PEQ. This PEQ is in the list of 

sensitivity of end_request_method. 

If we have a sequence where the target omits the 

end request phase to start directly the response 

phase, the target, then, injects payload in 

m_response_PEQ with an annotation equal to its 

latency. 

In the sequence N°5, we are in the situation 

where nb_transport_fw changes the phase of the 

transaction to END_REQ and at the same time the 

target calls begin_response_method with a delay 

equal to its latency. Therefore, the target injects 

payload in m_response_PEQ with an annotation 

equal to its latency and at the same time, it 

annotates request_accept_delay. The initiator will 

honour this constraint by calling wait () within the 

R/W function. This situation must not be confused 

with sequence N°3 where nb_transport_fw returns 

TLM_ACCEPTED. 

Situations N°7 and N°8 are particular, since 

there are no calls of backward interface and R/W 

function deals directly with the target. In the first 

case, it is in charge to inject payload in 

m_end_response_PEQ. The delay annotated is the 

delay returned by nb_transport_fw plus 

response_accept_delay. In the second case, no 

injection in PEQ is needed, since transaction is 

completed. After calling nb_transport_fw, the R/W 

function just calls wait to fulfil a global delay 

equal to the target’s latency plus 

response_accept_delay.
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if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  m_request_PEQ.notify(tran, PEQ_delay_time); 

}

nb_transport_fw

if (command == tlm::TLM_WRITE_COMMAND)

{

  delay += TARGET_WRITE_DElAY;

}

else if (command == tlm::TLM_READ_COMMAND)

{

  delay += TARGET_READ_DElAY;

}

m_response_PEQ.notify(*trans_ptr, delay);

end_request_method

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case END_REQ_enum: // previous transition R22

    m_bw_path_map.erase(&trans);

    m_end_response_PEQ.notify

        (trans,INITIATOR_RESP_ACCEPT_DELAY);

    break;

nb_transport_bw

if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  m_request_PEQ.notify(tran, PEQ_delay_time); 

}

nb_transport_fw

if (command == tlm::TLM_WRITE_COMMAND)

{

  delay += TARGET_WRITE_DElAY;

}

else if (command == tlm::TLM_READ_COMMAND)

{

  delay += TARGET_READ_DElAY;

}

m_response_PEQ.notify(*trans_ptr, delay);

end_request_method

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case END_REQ_enum: // previous transition R22

    m_bw_path_map.erase(&trans);

    phase = tlm::END_RESP;

    delay += INITIATOR_RESP_ACCEPT_DELAY;

    status = tlm::TLM_COMPLETED;

    break;

nb_transport_bw

if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  if (command == tlm::TLM_WRITE_COMMAND)

  {

    PEQ_delay_time += TARGET_WRITE_DElAY;

  }

  else if (command == tlm::TLM_READ_COMMAND)

  {

    PEQ_delay_time += TARGET_READ_DElAY;

  }

  m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

}

nb_transport_fw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case ACCEPTED_enum : // previous transition R11

   m_bw_path_map.erase(&trans);

   m_end_response_PEQ.notify

       (trans,INITIATOR_RESP_ACCEPT_DELAY);

   m_EndReqPhase.notify(SC_ZERO_TIME);

   break;

if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  if (command == tlm::TLM_WRITE_COMMAND)

  {

    PEQ_delay_time += TARGET_WRITE_DElAY;

  }

  else if (command == tlm::TLM_READ_COMMAND)

  {

    PEQ_delay_time += TARGET_READ_DElAY;

  }

  m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

}

nb_transport_fw

nb_transport_bw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case ACCEPTED_enum : // previous transition R11

   m_bw_path_map.erase(&trans);

   phase = tlm::END_RESP;

   delay += INITIATOR_RESP_ACCEPT_DELAY;

   status = tlm::TLM_COMPLETED;

   m_EndReqPhase.notify(SC_ZERO_TIME);

   break;

nb_transport_bw

� 

� 

� 

� 
 

 

Figure 15. Implementations of temporal constraints in a transfer model (continued) 
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nb_transport_fw

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case UPDATED_END_REQ_enum:// prev. Transi. R12

    m_bw_path_map.erase(&trans);

    m_EndReqPhase.notify(SC_ZERO_TIME);

    m_end_response_PEQ.notify

        (trans,INITIATOR_RESP_ACCEPT_DELAY);

    break;

nb_transport_bw if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  if (command == tlm::TLM_WRITE_COMMAND)

  {

    PEQ_delay_time += TARGET_WRITE_DElAY;

  }

  else if (command == tlm::TLM_READ_COMMAND)

  {

    PEQ_delay_time += TARGET_READ_DElAY;

  }

  m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

  

  delay = TARGET_REQ_ACCEPT_DELAY;

  phase = tlm::END_REQ;

  status = tlm::TLM_UDATED;

}

case tlm::BEGIN_RESP : // current transition A3

 switch(trans_pair->second)

 {

   case UPDATED_END_REQ_enum:// prev. Transi. R12

    m_bw_path_map.erase(&trans);

    m_EndReqPhase.notify(SC_ZERO_TIME);

    phase = tlm::END_RESP;

    delay += INITIATOR_RESP_ACCEPT_DELAY;

    status = tlm::TLM_COMPLETED;

    break;

nb_transport_bw

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

  sc_core::sc_time PEQ_delay_time = delay + 

TARGET_REQ_ACCEPT_DELAY;

  if (command == tlm::TLM_WRITE_COMMAND)

  {

    PEQ_delay_time += TARGET_WRITE_DELAY;

  }

  else if (command == tlm::TLM_READ_COMMAND)

  {

    PEQ_delay_time += TARGET_READ_DELAY;

  }

  m_response_PEQ.notify(*trans_ptr, PEQ_delay_time);

  

  delay = TARGET_REQ_ACCEPT_DELAY;

  phase = tlm::END_REQ;

  status = tlm::TLM_UPDATED;

}

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

  delay = TARGET_REQ_ACCEPT_DELAY;  

  

  //accès au core

  // ajout de READ ou WRITE DELAY

  // m-à-j de la réponse

    

  phase = tlm::BEGIN_RESP;

  status = tlm::TLM_UPDATED;

}

switch (status)

 {

   case tlm::TLM_UPDATED:

    switch (phase)

    {

      case tlm::BEGIN_RESP:

        delay+=INITIATOR_RESP_ACCEPT_DELAY;

        m_end_response_PEQ.notify(trans,delay);
      break;

R/W function

nb_transport_fw

if (phase == tlm::BEGIN_REQ)

{

  delay = TARGET_REQ_ACCEPT_DELAY;  

  

  //accès au core

  // ajout de READ ou WRITE DELAY

  // m-à-j de la réponse

    

  phase = tlm::BEGIN_RESP;

  status = tlm::TLM_COMPLETED;

}

switch (status)

 {

   case tlm::TLM_COMPLETED: //similaire LT

    if(tran_ptr->get_response_status() ==

                            tlm::TLM_OK_RESPONSE)

    {

      delay+=INITIATOR_RESP_ACCEPT_DELAY;

      if (delay != sc_core::SC_ZERO_TIME)

      {

        wait(delay);
      }

      ret=true;

      . . . 

    }

    m_pool.release(tran_ptr);

    break;

R/W function

� 

� 

	 


 
 

 

Figure. 16. Implementations of temporal constraints in a transfer model 
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5. DISCUSSION ABOUT NOC BASED 

INTERCONNECT COMPONENT 

 

As said early, the TLM-2 library mainly targets 

a bus based communication. In the case of a 

communication architecture based on network on 

chip (NoC), some additional constraints must be 

defined and clarified. We are now confronting to 

end-to-end interconnections and peer-to-peer 

interconnections. The first ones are related to the 

model of the application and the second ones are 

related to the model of the NoC. Both 

interconnections use methods described in section 

4. However, payloads exchanged between network 

resources are not the same payloads exchanged in 

the NoC model. Network hosts exchange messages 

with application based significance and structure, 

while inter and intra routers communication use 

flits which are network layer related protocol data 

units. 
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Figure. 17. System architect and software developer 

view of NoC based system 

 

In the point of view of the software developer, a 

hardware system can be defined in very simple 

way. Figure 17, shows an example on mono 

processor system. This latter is seen by the 

microprocessor as an addressable space. This space 

is not defined randomly, but it is usually the result 

of a specific address space mapping. For example, 

the processor can read or write registers of the 

Universal Asynchronous Receiver Transmitter 

(UART) according to the given addresses. In TL 

model, the reading or the writing is done by calling 

a specific R/W function and the effective access to 

the desired location is made, on the side of the 

UART, by an access function. This communication 

mechanism is independent of the position of both 

processor and UART in the network. It defines an 

end-to-end interconnection. 

However, with the system architect view 

detailed in Figure 18, the location of the processor 

and its various devices in the network becomes 

important. For example, suppose that the processor 

wants to read the INT_STATUS location of the 

UART. To do this, it calls a specific R/W function 

implemented in its wrapper to send to the attached 

network interface a payload that we name GPµp. 

The address attribute, in this case, is obviously 

equal to 0x800074. The network interfaces, are 

modules responsible of the marshalling and the 

“packetization” of the data. Marshalling converts 

the user data into a flat data stream. Packetization 

splits data stream into smaller packets before 

transfer, to fit limited storage capabilities of routers 

[2]. In the receiving side, again, the network 

interface reassembles the complete data stream 

before de-marshalling. We name the payload of the 

packetized data GPnet. Its data pointer illustrates a 

flit that circulates in the network. In [37], we 

deduced that the generic payload’s data pointer 

marshals data in flat stream of char. Therefore, 

network interface can easily concatenate, to GPµp‘s 

pointed stream, other flit’s parameters such as 

destination address, flit type, packet id or quality of 

service id etc. Then, GPnet’s data pointer just point 

to a fraction of the constructed data stream. The 

network interface, injects this payload in the 

network by calling specific R/W function. 

However, this solution is delicate to implement in 

routers, because routers along the flits’ path should 

read and/or adjust certain flit’s parameters. 

For example, routers’ input controller should 

first, extract destination address field to initialize 

correctly GPnet’s address attribute and second 

adjust this field to reintegrate it into the payload’s 

data pointer. Routers’ switching matrix uses 

GPnet’s address attribute to route transaction to the 

right output arbiter. Due to such difficulties, we 

prefer then the use of the generic payload extension 

pointer to include the various flit’s parameters. 

This requires defining a derived class from the 

tlm::tlm_extension we call flit_tag_extension and 

setup, for example, the following parameters: 
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Enum QoS_class {GT,BE} 
Enum cast_type {unicast, multicast} 
Enum packet_type {header, payload, tail} 
QoS_class QoS; 
Cast_type cast; 
Packet_type flit_type; 
Sc_int x_flit; 
Sc_int y_flit; 
Sc_uint packet_Id; 
Sc_uint message_Id;  

When we use the TLM-2 non-blocking 

interfaces, there are two modes of execution of the 

transaction’s phases: 

 

• Sequential execution, it means that: 

o Once the initiator has sent a request, it does 

not perform any task until it receives a 

response. 

o The target accepts but does not serve the 

following requests through the same socket 

until it returns a response. 

• Concurrent execution, it mean that: 

o Once the initiator has sent a request, it can 

perform various tasks without waiting for a 

response. 

o The target accepts and can serve subsequent 

requests through the same socket even if it 

has not returned response to the first 

request. 
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Figure 18. NoC based systems use two generic payloads 
 

In sequential execution, the initiator sends the 

request and receives responses in the same process. 

Similarly, on the side of the target it receives 

requests and sends responses in the same process. 

While in concurrent execution, these tasks take 

place in two distinct processes, either on the side of 

the initiator side or on the side of the target. 

The choice between these two modes of 

execution is crucial when modelling point-to-point 

communication between several NoC’s elements. It 

should describe, at best, semantics of routing 

algorithm. For example, In the case of wormhole 

algorithm, sequential execution is more suitable to 

describe inter router communication, since flits 
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stop if there is no available storage into the input 

controller of the target router. We are in the same 

situation when a network host communicates with 

the network interface, as this later has limited 

storage resources. However, communication within 

the router, that is to say between input controllers, 

switching matrix and output arbiters of the same 

router, they should adopt concurrent executions as 

described in Section 4. 

6. CONCLUSION 

 

This paper not only reviewed the evolution of 

TLM methodology but also presented a structuring 

of TLM-2 based models for simulation, verification 

and analysis. The structuring proposal covers the 

“transaction models” and the “transfer models”. 

For each level, we offered core-wrapper patterns 

and methods that: make a straight separation 

between functionality and communication within a 

module, give means to a designer to control the 

simulation speed by pointing out the influent 

parameters (latency, TLM transaction sequences, 

etc.), and increases the code line reuse. In the last 

section, we discussed the structuring of TL models 

for a NoC like “interconnect component”. 
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