
Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

REVIEW OF THE DEFENSIVE APPROACHES FOR

STRUCTURED QUERY LANGUAGE INJECTION ATTACKS

AND THEIR COUNTERMEASURES

1
NABEEL SALIH ALI

*
, 2

ABDUL SAMAD SHIBGHATULLAH, 3
MUNQATH H. AL ATTAR

1,2
Faculty of Information and Communication Technology, University Technical Malaysia Melaka,

Malaysia, Melaka,
 3
Information Technology Research and Development Center, University of KUFA.

1Nabeel@uokufa.edu.iq ,
2
Samad@utem.edu.my ,

3
Munqith.alattar@uokufa.ed.iq

ABSTRACT

 Recently, Web applications have been used for most of the activities in animation. These applications

are affected by the structured query language injection (SQLI). In this paper, four major objectives can be

organized to direct the work study are:

• Conduct a detailed review of various SQLI attacks and investigation of previous approaches that detected

and prevented these attacks in Web applications.

• Compare the performance metrics of the different techniques to evaluate the precision of the results and

the cost of the time required to identify the efficiency of the techniques.

• Evaluate the effectiveness of the techniques in practices based on the effectiveness metrics.

• Define the efficiency and effectiveness direction of defensive approaches.

The main contributions of this work are:

• Summary and analysis of a critical review (strengths and weaknesses) of the defensive approaches that

have been implemented.

• Comparison of the result accuracy of the different approaches through an evaluation using the standard

performance metrics.

• Evaluation of the effectiveness of the techniques in practice.

• Identification and focus on the critical and important lines or defensive techniques that need

comprehensive studies by future researchers through which the advantages of high efficiency and

effectiveness can be obtained.

Keywords: SQL, Injection, Detection, Prevention, Approaches. Techniques.

1. INTRODUCTION

 The recent increase in Web applications for

online services via Web pages had led to the

increase in the number of customers for their

public access [1]. Therefore, Companies and

Organizations have been constantly striving to

enhance their communication capabilities by

providing secure application levels to achieve the

functionality that will allow them to build and

maintain relationships with their stockholders [2].

Consequently, this creates a situation where an

attacker can use the structured query language

injection (SQLI) vulnerabilities to control and

corrupt the target.

Web applications play a significant part in our life

and in any country’s evolution. Web applications

typically interact with backend database to retrieve

and present persistent data to the end user.

Therefore, a loophole in an application’s secure

design may allow illegal access into the backend

database via crafted injection and malicious update

[3] . Thus, security has become one of the main

challenges in the recent years because most of the

Web applications have suffered from vulnerabilities

that have made them attractive targets of security

attacks [4]. Hence, this flaw can used by terrorists

to collect private data and obtain illegal access to

* Corresponding Author H.F: +9647803896893

University of Kufa

the target [5]. SQL injection attack (SQLIA) is one

of the most prevalent and dominant classes of

serious Web application attacks [6]. SQLIA is a

provides attackers opportunities to gain direct

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

access to the database and extract sensitive

information from the backend database [1].

SQL injection for online application is the legal

access to the database. Unauthorized access to the

current data by a crafted user causes threat to their

Confidentiality, integrity, and authority. As a result,

the system may bear significant loss in giving

correct services to its users or face complete

destruction [7]. SQLIA is categorized as one of

the top 10 Web application vulnerabilities in 2013

experienced by Web applications according to

Open Web Application Security Project (OWASP)

[8].

SQLI refers to a class of code-injection attacks in

which the data provided by the crafted user are

included in the SQL query in such a way that part

of the user’s input is treated as an SQL code. The

trick used is the injection this query or command as

an input, possibly via the Web pages. SQLI is a one

of the more general classes of vulnerabilities that

could occur when a programming or scripting

language is embedded inside another [9]. The

attack occurs when data provided by user is not

properly validated and when the data are included

directly. The attack is a mechanism or technique

that exploits a security weakness occurring in the

database layer of an application [10]. The loophole

is present when user input is not strongly typed and

thereby unexpectedly executed or when user input

is in correctly filtered for string literal escape

characters embedded in the SQL statements [7].

In this paper, we present a detailed review and

comparative analysis of the common (previous and

existing) defensive approaches or techniques

against SQLIAs, to give a unified view of

proposed approaches as future reference for

conduct of a comprehensive study, and highlight

the need for further studies on the efficient and

effective techniques or approaches.

2. PREVIOUS WORKS

 Research authors proposed a wide range of

techniques to address the SQLI problem. These

techniques for detecting and preventing SQLIA

range from filtering, information- flow analysis,

penetration testing, development best practices and

defensive coding to fully automated framework.

Some techniques used to solve SQLIAs require

security awareness of the user, which cannot be

guaranteed. Moreover, some of the existing

solutions are unacceptably slow and can be

bypassed. Some are too restrictive, resulting in loss

of functionality [7].

On the other hand, many authors that presented

review or comparative analysis articles to

investigate and evaluated SQLI detection and

prevention tools or techniques as well as compared

these techniques or tools in terms of the ability to

address and stop SQLIAs. Relevant reviews or

evaluations articles have been presented, such as

the evaluation presented by Halfond et al. 2006.

They presented a survey and comparison of

proposed techniques for detecting and preventing

SQLIAs. Identified the various types of SQLIAs

and evaluated the techniques in terms of their

ability to detect and/or prevent such attacks. As

well as, studied the different mechanisms and

identified which techniques could handle which

mechanisms and summarized the deployment

requirements of each technique, but did not focus

on the evaluating the techniques precision and

effectiveness in practices [11]. Rahul et al. 2012,

presented a survey on different classes of SQLIA

and some of the important approaches for detection

of SQLIA but did not evaluate these approaches in

terms of the ability to address the SQLIAs [12]. A

survey on SQL Injection Attacks, detection and

prevention techniques presented by Kumar and

Pateriya, 2012 that presented different types of

SQL injection attacks and their prevention

techniques and conducted a comparative analysis of

different types of detection and prevention

techniques of SQL Injection attacks with respect to

automation, code suggestions and generates a report,

but did not an assessment the techniques based on

the common evaluation parameters such as

performance, efficiency and effectiveness [13].

Sankaran et al. 2014, presented the various attack

methods, their classification using which the system

administrators and programmers can understand

about SQLIA and secure the web application [14].

Our work focuses on the approaches that have been

employed by other researchers from 2005until 2014

to solve the SQLIA and highlights their strengths

and weaknesses (critical review) to give a unified

view of proposed approaches as future reference for

conduct of a comprehensive study. Furthermore,

our work focuses on the evaluation of the precision

and effectiveness of defensive approaches via

comparing the performance of the different

techniques based on standard performance metrics

(false positive, false negative and protocol overhead)

and results accuracy to define the efficiency of the

techniques, as well as evaluate these techniques in

terms of the ability to address and stop the attacks

of SQLI by comparing the techniques respect to

which technique can detect and prevent the attacks

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

and can stop all types of the attacks. Finally,

identification of the area of the defensive

approaches that need validation through more

studies in the future.

3. SEARCH METHODS

 The Method used to collect or search the data

for this study was based on multiple sources. The

first attempt was aimed at finding all the synonyms

for the SQLIAs and using these synonyms as the

search criteria. These criteria were used to find any

conceivable material available.

The selected main keywords related to the study

scope were SQLIA and detection and prevention

SQLIAs. Searches on reliable databases, such as the

Web of Science (ISI), ScienceDirect (Scopus), and

IEEE Xplore (IEEE) from 2005 to 2014, were

undertaken. After applying the filters, the searching

engines derived 24 studies from the Web of Science

(ISI), 118 studies from ScienceDirect (Scopus), and

12 studies from IEEE Xplore (IEEE).

Subsequently, we selected 24 common studies as

the basis for the conduct of our review and

evaluation.

4. DEFENSIVE APPROACHES FOR (SQLI)

ATTACKS

 In general, there are several kinds of Web

attacks such as: SQLI, cross- side scripting (XSS),

remote command execution (RCE) and path

traversal attacks. There are many ways to prevent

SQLIAs and protect a Web application, such as

defensive coding, information flow analysis,

content filtering, and penetration testing. The

prevention of SQLI concerns with correctness of

input value which is supplied by the client or user

at the coding level. There are two major concerns.

One is the crucial need for a mechanism to detect

and exactly identify SQLIAs. The other is

necessary of knowledge of SQLI vulnerabilities

(SQLIVs) to secure a Web application. Research

authors have proposed methods and techniques to

address SQLIAs. These include static analysis,

dynamic analysis, combined static and dynamic

analysis, Web framework, defensive programming

and machine learning techniques. Some techniques

could not address all SQLIA types whereas some

have special deployment requirements. Further,

some have not been implemented yet.

5. COMPARISON OF DEFENSIVE

APPROACHES BASED ON CRITICAL

REVIEW

 The detailed critical review conceptually

provides insights into the common (previous and

existing) works.

These works, which have been conducted from

2005 until 2014, were aimed to determine the

defense against the SQLIAs and highlight their

weaknesses. The review intends to address the lack

of knowledge, conduct a comparative analysis

between previous works, and highlight the need for

further studies on the efficient and effective

techniques or defensive approaches.

In this section, we present a detailed critical review

of the previous defensive approaches that have been

implemented and highlight their strengths and

weaknesses.

Table 1 Critical Review of the Defensive Techniques

Weakness Strength Author and year

Limited in terms of developing a complete
implementation of the proposed architecture to

extend the prototype

Uses static analysis of the stored procedure
source as a one-time offline procedure via the

form of a SQL-graph

Wei et al. 2005[15]

Additional overheard computation and listing of

input (black or white)

Efficient and effective. Buehrer et al. 2005

[16]

Requires the modification of the Web application’s

source code.

Efficient and effective. The techniques stopped

all of SQL injection attacks without generating
any false positives.

Halfond & Orso

2005 [17]

Possible undesirability of the technique to
developers because it requires new programming

paradigms.

The approach checked the correct code written
by the user at the compile level.

Diego et al. 2005
[18]

Difficulty in identifying all sources of user input is

the main limitation of this approach.

Prevents SQL injection attacks by using static

and dynamic checker

Martin et al. 2005

[19]

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

Did not use static analysis or the approach for
binary applications

The technique is precise and efficient, and has
minimal deployment requirements.

Halfond et al. 2006
[20]

Requires rewriting code Uses SQL token to detect and reject queries

that have been constructed by illegitimate

input.

Pietraszek &

Berghe 2006 [21]

Not efficient because it has a few false positives
and 39 SQL injection vulnerabilities

Performs comparison between the parse trees
of SQL query and the results after an attack to

assess the safety of these spots

Kosuga et al. 2007
[22]

Automatically enumerates SQL WHERE clauses

by exploring algorithms and does not complete the

implementation.

SAFELI is capable of discovering very

delicate vulnerabilities by taking advantage of

source code information

Lu et al. 2007 [23]

Implements the approach for binary applications
and deploys Web applications

Efficient and Effective in stopping more than
12,000 attacks without generating any false

positives

Halfond et al. 2008
[24]

Limited to identifying and checking sources and

sinks are subject to input validation; flow-

sensitive.

The query-specific detection approach is

efficient because it stops attacks without

producing false positives or false negatives.

Kemalis &

Tzouramanis 2008

[25]

Low execution overhead and requires no
modification of the runtime system

Proposed approach reduces the time and space
complexity.

Ezumalai, 2009 [26]

The identified weaknesses of black-box scanners

reside in many areas: crawling, input values, and
attack code selection.

The approach cannot detect without exploiting

the vulnerability.

Khoury et al. 2011

[27]

The proposed system could protect the common

SQL attacks, but could not prohibit some rare

attacks

The system effectively guarantees the security

of the database.

Yan et al. 2011 [28]

Ignores the false positives detected; not concerned

with huge data

Proposed model successfully generates

security level in real time environment based
on establishing a correlation between attack

signatures.

Alserhani et al.

2011 [29]

Implementing in a machine learning algorithms is

the lack in this method.

Can be used for detection program

modularization, SQL query profiling, and SQL
query listing during the implementation

Kim 2011 [30]

These models cannot enhance the prediction

models with more precise dynamic analysis-based

classification methods.

Detects more than 80% of the vulnerabilities

and provides an alternative and cheap way of

mitigating common Web applications
vulnerabilities

Shar & Tan 2012

[31]

Protocol overhead with query based technique Effective in stopping all the SQL injection
attacks without generating any false positive

Balasundaram &
Ramaraj 2012 [32]

Low false positive rate IPAAS protects real-world applications against

SQL injection and XSS vulnerabilities.

Scholte et al. 2012

[33]

Does not consider the construction SQL parser and

lacks dynamic checking complier

Provides optimized runtime analysis and does

not need further code modification

Natarajan &

Subramani 2012

[34]

Does not apply this approach based on machine
learning algorithms

Independent approach of the DBMS and does
not need complex operations that are based on

removal of the attribute values in SQL queries

during the analysis

Lee et al. 2012 [35]

Difficulty in measuring and locating vulnerable

code at software component or file level

The model results in 93% recall and 11% false

alarm rate in predicting SQLI vulnerabilities.

Shar et al. 2013 [36]

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

Most of the defensive techniques, such as:

AMNESIA [17], SecuriFly [19], combinational

approach [26], combined static and dynamic

analyses [30], [32], [35], and hybrid Program

Analysis [36], were based on combined Static and

Dynamic Analyses. The combination, which is

considered highly proficient against SQLIAs, but

very complicated, can compensate the limitations of

each method. SAFELI [23], SQL-IDS [25] and

Prediction static code attributes [31] are three of the

proposed approaches based on static analysis that

analyzes the code for vulnerability without actually

executing the code. Only two, namely, parse tree

validation [16] and Sania [22], are based on

comparison at run time of the parse tree of the SQL

statement before the inclusion of the user input with

the result after the inclusion of the input.

6. EVALUATION OF THE DEFENSIVE

APPROACHES

 In this section, we evaluate the efficiency and

effectiveness of the techniques using several

different criteria. We first consider which technique

efficient by evaluating with performance metrics

(false negative, false positive and protocol

overhead). We then evaluate the effectiveness of

each technique by comparing the techniques based

on which technique can detect and prevent the

attacks and can stop all types of the attacks. Finally,

we identify the techniques that have efficient results

and effectiveness based on the empirical evaluation

in practices. We examine the author’s description

of the technique and its current implementation of

the efficiency and effectiveness metrics.

6.1 Evaluation Based on Performance Metrics

 To evaluate the efficiency of the defensive

approaches, three standard performance metrics can

be used to compare the previous defensive

approaches against SQLIAs. These metrics are:

• False Negative: How many SQLIAs can go

undetected by these approaches?

• False Positive: How many legitimate SQL

queries are assessed as SQLIA and blocked?

• Protocol Overhead: What is the runtime cost of

using the defensive approaches?

Both the false negative and false positive metrics

are very important in measuring the effectiveness of

security mitigation approaches.

We evaluate each of the proposed approaches to

assess whether these are efficient via comparison of

their performances techniques based on the

standard performance metrics (false negative, false

positive and protocol overhead) and on their

empirical evaluations in practices. We consider

which techniques have result accuracy based on the

false negative and false positive values in their

empirical evaluation in practices. Subsequently, we

compare the techniques with the protocol overhead

metric to evaluate the cost of the time process

toward obtaining a unified view of their efficiency.

For the purpose of comparison, we divide the

techniques into three groups: false negative, false

positive and protocol overhead. False negative

techniques have many false negative values in their

results, false positive techniques have a few false

positive values in their results, and overhead

protocol techniques have the runtime costs.

Table 2 summarizes the performance metrics

evaluations of the precision in practices. We use

two different types of markings to indicate how a

technique performance. The symbol “3” denotes

that the technique has one of the metrics of that

type. Conversely, the symbol “5” denotes that a

technique does not have any metrics of

performance.

 From the accuracy standpoint, we assess each of

the techniques with respect to their precision

(accuracy) results based on the performance metrics

(false negative and false positive) shown in Table 2.

Each of the techniques has different result. To

evaluate the precision result for each technique, we

evaluate each technique with respect to the

following criteria. (1) Does the technique have any

false negative in the implementation? (2) Does the

technique have any false positive in the result and

throughput? (3) Does the technique have Protocol

overhead in the process and implementation? The

answers to these questions are summarized in

Table2.

Produces false positives at the initial stages;
therefore, poor in terms of security system

Negative tainting approach does not require
any customized and complex runtime
environments

Gadgikar 2013 [37]

Difficulty in detecting malicious code harder; only
recognizes and detects listed character

The framework provides security level and
prevents hackers from exploiting the databases

by using SQL injection attacks.

Ashitah et al. 2014
[38]

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

Table 1 Comparison Defensive Approaches for SQLI attacks based on Performance Metrics

Scheme False Negative False Positive Protocol Overhead

Stored Procedures [15] 5 3 3

Parse tree Validation [16] 5 5 3

AMNESIA [17] 5 5 3

SQL-DOM [18] 5 5 3

SECURIFLY [19] 5 5 3

Positive Tainting [20] 5 5 3

CSSE [21] 5 3 3

Sania [22] 5 3 5

SAFELI [23] 5 5 5

WASP [24] 5 5 5

SQL-IDS [25] 5 5 5

Combinational Approach [26] 5 5 3

Black -Box Testing [27] 5 3 5

Database Protection System [28] 5 3 5

Alert Correlation System (MARS) [29] 5 3 5

Static and Dynamic Analysis [30] 5 5 5

Prediction Static Code Attributes [31] 5 3 3

Static and Dynamic Analysis [32] 5 5 3

IPAAS [33] 5 3 5

SQL-IF [34] 5 5 5

Hybrid Program Analysis [36] 5 3 5

Static and Dynamic Analysis [35] 5 5 5

Negative Tainting Approach [37] 5 3 3

Combined Query Tokenization and Adaptive Method [38] 5 5 5

Most of the proposed techniques have a few false

positive in the results, which are: [15], [21], [22],

[27], [28], [29], [31], [33], [36] and [37]. On the

contrary, none of the techniques have any false

negative results. Most of the techniques have

remarkable accuracy, which means that these do not

have any false negative and false positive values in

the implementation. These are: [16], [17], [18],

[19], [20], [23], [24], [25], [26], [30], [32], [34],

[35], and [38]. Half of the defensive approaches

have protocol overhead process, namely, [15], [16],

[17], [18] [19], [20], [21], [26], [31], [32] and [37]

that affect the technique time cost. And the

techniques that did not have any protocol overhead

process, namely, [22], [23], [24], [25], [27], [28],

[29], [30], [33], [34], [35], [36], and [38]. As a

results from our evaluation of the efficiency

measurement (result precision) based on the

standard performance metrics (false positive, false

negative and protocol overhead) illustrate that

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

SAFELI [23], WASP [24], SQL-IDS [25], Static

and Dynamic Analysis [30], SQL-IF [34], Static

and Dynamic Analysis [35], and Combines Query

Tokenization and Adaptive Method [38] can be

efficient techniques.

However, the effectiveness of the techniques needs

to be measured via comparison based on other

criteria prior to the conduct of the technique

effectiveness evaluations.

6.2 Evaluation Based on Effectiveness

 Each of the techniques have different

characteristics in relation to the effectiveness

metrics.

To determine the effectiveness metrics required in a

technique, we evaluate each technique with respect

to the following criteria.

(1) Can the technique detect and prevent SQLIAs?

(2) Can the technique stop all types of the SQLIAs?

The answers to these questions are summarized in

Tables 3 and 4.

To compare, we divide the approaches or

techniques into two groups, namely, detection and

prevention approaches (Table3). Detection

techniques detect attacks mostly at runtime.

Prevention techniques statically identify the

vulnerabilities in the code to stop the attacks.

Table 3 summarizes the results in our evaluation.

We use two different types of markings to indicate

how a technique performs with respect to a given

detection and prevention approach. We use the

symbol “3” to denote that a technique can detect or

prevent SQLIAs. Conversely, we use the symbol

“5” to denote that a technique cannot detect or

prevent SQLIAs.

Table 2 comparison between Defensive Approaches based on detection and prevention for SQLIA

Scheme Detection Prevention Automated/Code Suggestion

Stored Procedures [15] 3 3 Automated

Parse tree Validation [16] 3 3 N/A

AMNESIA [17] 3 3 Automated

SQL-DOM [18] 3 3 Automated/code suggestion

SECURIFLY [19] 3 3 Automated

Positive Tainting [20] 3 3 Automated

CSSE [21] 3 3 Automated

Sania [22] 3 3 Automated

SAFELI [23] 3 5 Automated

WASP [24] 3 3 Automated

SQL-IDS [25] 3 5 Automated

Combinational Approach [26] 3 3 Automated

Black -Box Testing [27] 3 5 Automated

Database Protection System [28] 3 3 N/A

Alert Correlation System (MARS) [29] 3 5 N/A

Static and Dynamic Analysis [30] 3 3 Automated

Prediction Static Code Attributes [31] 3 5 N/A

Static and Dynamic Analysis [32] 3 3 Automated

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

IPAAS [33] 3 3 Automated

SQL-IF [34] 3 3 Automated

Hybrid Program Analysis [36] 3 5 N/A

Static and Dynamic Analysis [35] 3 3 Automated

Negative Tainting Approach [37] 3 3 Automated

Combined Query Tokenization and Adaptive

Method [38]

3 3 N/A

From the perspective of detection and prevention

SQLIAs. Almost all of the techniques or

approaches can effectively detect and prevent of the

SQLIAs are [15], [16], [17], [18], [19], [20], [21],

[22], [24], [26], [28], [30], [32], [33], [34], [35],

[37], and [38], except for a few, which are SAFELI

[23], SQL-IDS [25], Black-Box Testing [27], Alert

Correlation System (MARS) [29], Prediction

System [31] and Hybrid program analysis [36]. We

evaluate each proposed approaches or techniques

and assess it is capable of addressing the different

kinds of SQLIAs. In general, the different types of

SQLIAs are not performed separately, many are

used together or sequentially based on the intention

of a specific attacker. SQLIA types are

Tautology, Illegal/Logically Incorrect Queries,

Union Query, Piggy–Backed Queries, Stored

Procedures, Inference and Alternate Encodings.

Our assessment of the techniques is optimistic

compared to their performances in practices.

Table 4 summarizes the results of our comparison.

We use three different types of markings to indicate

how a technique performs with respect to the attack

type. We use the symbol “�” to denote that a

technique can successfully stop all attacks of a

particular type, the symbol “5” to denote that a

technique is not able to stop attacks of a particular

type, and the symbol “-“to denote that a technique

addresses the attack type partially.

Table 3 Comparison of defensive approaches based on stop to attack types

Scheme Taut Illegal/

Incorrect

Piggy-

Back

Union Stored

Proc.

Infer. Alt.

Encodings.

Stored Procedures [15] � � � � � � �

Parse tree Validation [16] � � � � � � �

AMNESIA [17] � � � � 5 � �

SQL-DOM [18] � � � � 5 � �

SECURIFLY [19] - - - - - - -

Positive Tainting [20] � � � � � � �

CSSE [21] � � � � 5 � 5

Sania [22] 5 � � � � � �

SAFELI [23] � � � � � � �

WASP [24] � � � � � � �

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

SQL-IDS [25] � � � � � � �

Combinational Approach [26] � � � � � � �

Black -Box Testing [27] � � � � 5 � �

Database Protection System [28] � � � � � � �

Alert Correlation System

(MARS) [29]
� � � � � � �

Static and Dynamic Analysis [30] � � � � � � �

Prediction Static Code Attributes

[31]
� � � � � � �

Static and Dynamic Analysis [32] � � � � � � �

IPAAS [33] � � � � � � �

SQL-IF [34] � � � 5 5 � �

Hybrid Program Analysis [36] � � � � � � �

Static and Dynamic Analysis [35] � � � � � � �

Negative Tainting Approach [37] � � � � 5 � �

Combined Query Tokenization

and Adaptive Method [38]
� � � � � � �

Almost all of the techniques [15], [16], [19], [20],

[22], [24], [25], [26], [28], [29], [30], [31], [32],

[33], [36], and [38] effectively handle all the SQLI

attack types. Some techniques are only partially

effective and cannot handle all the attack types for

SQLI [17], [18], [21], [23], [27], [34], [35], and

[37].

Stored procedures caused problems for most

techniques, such as AMNESIA [17], SQL-DOM

[18], CSSE [21], black-box Testing [27], SQL-IF

[34] and Negative Tainting [37]. With stored

procedures, the code that generates the query is

stored and executed on the database.

From Tables 3 and 4, we can conclude that the

effective techniques that capable of addressing the

problems of the SQLIAs and the ability to stop the

attack based on the results from our evaluation of

the effectiveness metrics are: Stored Procedures

[15], Parse Tree validation [16], SECURIFLY [19],

Positive Tainting [20], Sania [22], WASP [24],

Combinational Approach [26], database Protection

System [28], Combined Static and Dynamic

Analysis [30], Static and Dynamic Analysis [32],

IPAAS [33] and Combined Query Tokenization

and Adaptive Method [38].

6.3 Comparison Based on Efficiency and

Effectiveness Results

 We evaluate each proposed technique to assess

whether it is efficient and its effective based on the

number of criteria as summarized in Tables 2, 3 and

4. The evaluation of the efficiency is based on the

false negative, false positive and protocol overhead

values in the results, whereas the evaluation metrics

for the effectiveness of the technique are the

capabilities to stop all types of the attacks and can

detect and prevent the problems of SQLIAs.

Based on the evaluation results of the techniques or

approaches that evaluated in section 6.1 and 6.2 to

identify the efficient and effective technique,

techniques SAFELI [23], WASP [24], SQL-IDS

[25], Static and Dynamic Analysis [30], SQL-IF

[34], Static and Dynamic Analysis [35], and

Combines Query Tokenization and Adaptive

Method [38] are efficient. Half of the techniques,

namely, Stored Procedures [15], Parse Tree

validation [16], SECURIFLY [19], Positive

Tainting [20], Sania [22], WASP [24],

Combinational Approach [26], database Protection

System [28], Combined Static and Dynamic

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

Analysis [30], Static and Dynamic Analysis [32],

IPAAS [33] and Combined Query Tokenization

and Adaptive Method [38] show possible

effectiveness. The results from the comparison

between the two metrics (efficiency and

effectiveness) illustrate that dynamic tainting

(WASP) [24], combined static and dynamic

analysis [30] and combined query tokenization and

adaptive method [38] can be effective and efficient.

On the contrary, techniques Stored Procedures [15],

Parse Tree validation [16], SECURIFLY [19],

Positive Tainting [20], Sania [22], SAFELI [23],

SQL-IDS [25], Combinational Approach [26],

database Protection System [28], Static and

Dynamic Analysis [32], IPAAS [33], SQL-IF [34],

and Static and Dynamic Analysis [35] cannot be

efficient and effective.

7. CONCLUSION

 At present, SQLIAs are the most prevalent and

dominant class of serious security issue caused by

Web application vulnerabilities. SQLIAs are a

threat to the security and privacy of both the clients

and applications. In this paper, we presented a

detailed review and comparison of the most popular

existing SQLIAs approaches that have been

proposed to solve the attacks. We presented a

comprehensive critical review and highlighted the

strengths and weaknesses of each approach that has

been employed to provide a unified view of the

proposed approaches, which could serve as

reference for the conduct a comprehensive study in

the future. We conducted a comparative analysis of

the defensive approaches based on the evaluations

respect to efficiency and effectiveness of each

approach or technique. In our evaluation, we

evaluated comparing the techniques based on the

standard performance metrics (false negative, false

positive and protocol overhead) to identify the

efficiency of the techniques. Subsequently, we

evaluated the techniques by comparing them based

on the effectiveness metrics, in terms of the

capability to stop all types of the SQLIAs, as well

as, detect and prevent the attack. We also defined

the techniques that are efficient and effective based

on the previous comparison.

We found several general trends in the results

during the evaluation. Half of the proposed

approaches have a few false positive or protocol

overheads that refer to the runtime cost. Whilst,

none of them have false negative. Many of the

techniques have problems handling all types of

attacks, such as stored procedures. Whilst, most of

all the techniques can detect and prevent of the

SQLIAs. In conclusion, only a few techniques have

good efficiency and effectiveness results that are:

dynamic tainting (WASP) [24], combined static and

dynamic analysis [30] and combined query

tokenization and adaptive method [38].

Future study should focus on the comprehensive

evaluation of the approaches to determine

requirements and common development errors,

comparison of the performance of the different

approaches when these are subjected to legitimate

input, and defining the approach environment (e.g.

runtime, real time and online environment), and to

real-world attacks.

REFRENCES:

[1] K. Amirtahmasebi, S. R. Jalalinia, and S.

Khadem, “A Survey of SQL Injection Defense

Mechanisms,”, International Conference for

Internet Technology and Secured

Transactions,(ICITST 2009). (ICITST

2009)2009.

[2] W. G. J. Halfond, S. R. Choudhary, and A.

Orso, “Improving penetration testing through

static and dynamic analysis,” Softw. Testing,

Verif. Reliab., vol. 21, no. 3, pp. 195–214, Sep.

2011.

[3] M.Prabakar, M.KarthiKeyan, and K.

Marimuthu.2013, “AN EFFICIENT

TECHNIQUE FOR PREVENTING SQL

INJECTION ATTACK USING PATTERN,”

2013 IEEE Int. Conf. Emerg. Trends Comput.

Commun. Nanotechnol. (ICECCN 2013) AN,

vol. 978–1–4673, no. Iceccn, pp. 503–506,

2013.

[4] E. Athanasopoulos, A. Krithinakis, and E. P.

Markatos, “An Architecture for Enforcing

JavaScript Randomization in Web2 . 0

Applications,” Springer-Verlag Berlin Heidelb.

2011, vol. M. Burmest, no. ISC 2010, LNCS

6531, pp. 203–209, 2011, pp. 203–209, 2011.

[5] T. Abaas, A. S. Shibghatullah, R. Yusof, and

A. Alaameri, “Importance and Significance of

Information Sharing in,” Int. Symp. Res. Innov.

Sustain. 2014, vol. 2014, no. October, pp.

1719–1725, 2014.

[6] E. Janot and P. Zavarsky, “Preventing SQL

Injections in Online Applications : Study ,

Recommendations and Java Solution Prototype

Based on the SQL DOM.”,Open Web

Apllication Security

Project(OWASP),2008,Gehent,Belegium.

[7] M. H. A. S. P. Medhane, “Efficient Solution

for SQL Injection Attack Detection and

Prevention,” no. 1, pp. 395–398, 2013.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

268

[8] OWASP Foundation.Top Ten

Risks,2013.http://www.owasp.org/index.php/T

op_10_2013_Top_10.

[9] S. Srivastava, R. Ranjan, and K. Tripathi,

“Attacks Due to SQL Injection & Their

Prevention Method for Web-Application,” vol.

3, no. 2, pp. 3615–3618, 2012.

[10] I. Balasundaram and E. Ramaraj, “An Efficient

Technique for Detection and Prevention of

SQL Injection Attack using ASCII Based

String Matching,” Procedia Eng., vol. 30, no.

2011, pp. 183–190, Jan. 2012.

[11] W.G. Halfond, J. Viegas, and A. Orso, “A

Classification of SQL- Injection Attacks and

Countermeasures,” Proc. IEEE Int’l Symp.

Secure Software Eng., Mar. 2006.

[12] R. Shrivastava, J. Bhattacharyji, and R. Soni,

“SQL INJECTION ATTACKS IN

DATABASE USING WEB SERVICE :

DETECTION AND PREVENTION –

REVIEW,” vol. 6, pp. 162–165, 2012.

[13] P. Kumar and R. K. Pateriya, “A Survey on

SQL Injection Attacks , Detection and

Prevention Techniques,”, Third International

Conference Computing Communication &

Networking Technologies (ICCCNT 2012) ,

July, 2012.

[14] S. Sankaran, S. Sitharthan, and M. Ramkumar,

“Review on SQL Injection Attacks : Detection

Techniques and Protection Mechanisms,” vol.

5, no. 3, pp. 4019–4022, 2014.

[15] K. Wei and M. Muthuprasanna, “Preventing

SQL injection attacks in stored procedures,”

Aust. Softw. Eng. Conf., p. 8 pp.–198, 2006.

[16] G. T. Buehrer, B. W. Weide, and P. A. G.

Sivilotti, “Using Parse Tree Validation to

Prevent SQL Injection Attacks,” no.

September, pp. 106–113, 2005.

[17] W. G. J. Halfond and A. Orso, “AMNESIA :

Analysis and Monitoring for NEutralizing

SQL-Injection Attacks.”, international

Conference on Automated software

engineering, 2005, Pages 174-183.

[18] S. Diego, G. Drive, L. Jolla, R. A. Mcclure,

and I. H. Kruger, “SQL DOM : Compile Time

Checking of Dynamic SQL Statements,” pp.

88–96, 2005.

[19] M. Martin, B. Livshits, and M. S. Lam,

“Finding application errors and security flaws

using PQL,” ACM SIGPLAN Not., vol. 40, p.

365, 2005.

[20] W. G. J. Halfond, A. Orso, and P. Manolios,

“Using Positive Tainting and Syntax-aware

Evaluation to Counter SQL Injection Attacks,”

Proc. 14th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., pp. 175–185, 2006.

[21] T. Pietraszek and C. Vanden Berghe, “Context-

Sensitive String Evaluation,” pp. 124–145,

2006.

[22] Y. Kosuga, K. Kono, M. Hanaoka, M.

Hishiyama, and Y. Takahama, “Sania:

Syntactic and Semantic Analysis for

Automated Testing against SQL Injection,”

Twenty-Third Annu. Comput. Secur. Appl.

Conf. (ACSAC 2007), pp. 107–117, Dec. 2007.

[23] X. Lu, B. Peltsverger, S. Chen, G.

Southwestern, K. Qian, and S. Polytechnic, “A

Static Analysis Framework For Detecting SQL

Injection Vulnerabilities,” pp. 1–8.

[24] W. G. J. Halfond, A. Orso, and I. C. Society,

“WASP : Protecting Web Applications Using

Positive Tainting and Syntax-Aware

Evaluation,” vol. 34, no. 1, pp. 65–81, 2008.

[25] K. Kemalis and T. Tzouramanis, “SQL-IDS : A

Specification-based Approach for SQL-

Injection Detection,” pp. 2153–2158, 2008.

[26] C. Science, “Combinatorial Approach for

Preventing SQL Injection Attacks accaeds . In

view , ritopreses am,” no. March, pp. 6–7,

2009.

[27] N. Khoury, P. Zavarsky, D. Lindskog, and R.

Ruhl, “An Analysis of Black-Box Web

Application Security Scanners against Stored

SQL Injection,” 2011 IEEE Third Int’l Conf.

Privacy, Secur. Risk Trust 2011 IEEE Third

Int'l Conf. Soc. Comput., pp. 1095–1101, Oct.

2011.

[28] Y. Yan, S. Zhengyuan, and D. Zucheng, “The

database protection system against SQL

attacks,” 2011 3rd Int. Conf. Comput. Res.

Dev., pp. 99–102, Mar. 2011.

[29] F. Alserhani, M. Akhlaq, I. U. Awan, and A. J.

Cullen, “Event-Based Alert Correlation System

to Detect SQLI Activities,” 2011 IEEE Int.

Conf. Adv. Inf. Netw. Appl., pp. 175–182, Mar.

2011.

[30] J. Kim, “Injection Attack Detection Using the

Removal of SQL Query Attribute Values,”

2011 Int. Conf. Inf. Sci. Appl., pp. 1–7, Apr.

2011.

[31] L. K. Shar and H. B. K. Tan, “Predicting

common web application vulnerabilities from

input validation and sanitization code

patterns,” Proc. 27th IEEE/ACM Int. Conf.

Autom. Softw. Eng. - ASE 2012, p. 310, 2012.

[32] I. Balasundaram and E. Ramaraj, “An efficient

technique for detection and prevention of SQL

injection attack using ASCII based string

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

269

matching,” Procedia Eng., vol. 30, no. 2011,

pp. 183–190, 2012.

[33] T. Scholte, W. Robertson, D. Balzarotti, and E.

Kirda, “Preventing Input Validation

Vulnerabilities in Web Applications through

Automated Type Analysis,” 2012 IEEE 36th

Annu. Comput. Softw. Appl. Conf., pp. 233–

243, Jul. 2012.

[34] K. Natarajan and S. Subramani, “Generation of

Sql-injection Free Secure Algorithm to Detect

and Prevent Sql-Injection Attacks,” Procedia

Technol., vol. 4, pp. 790–796, 2012.

[35] I. Lee, S. Jeong, S. Yeo, and J. Moon, “A novel

method for SQL injection attack detection

based on removing SQL query attribute

values,” Math. Comput. Model., vol. 55, no. 1–

2, pp. 58–68, 2012.

[36] L. K. Shar, H. Beng Kuan Tan, and L. C.

Briand, “Mining SQL injection and cross site

scripting vulnerabilities using hybrid program

analysis,” 2013 35th Int. Conf. Softw. Eng., pp.

642–651, May 2013.

[37] A. S. Gadgikar, “Preventing SQL injection

attacks using negative tainting approach,” 2013

IEEE Int. Conf. Comput. Intell. Comput. Res.,

pp. 1–5, Dec. 2013.

[38] N. Ashitah, A. Othman, M. Science, U.

Teknologi, S. Alam, F. Hani, M. Ali, M. Binti,

and M. Noh, “Secured Web Application Using

Combination of Query Tokenization and

Adaptive Method in Preventing SQL Injection

Attacks,” no. l4CT, pp. 472–476, 2014.

