
Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

 A STUDY ON AGENT SCHEDULING SCENARIOS IN

MULTI-AGENT SYSTEMS

1
CECILIA E. NUGRAHENI,

 2
LUCIANA ABEDNEGO

1,2
Department of Computer Science, Parahyangan Catholic University, Indonesia

E-mail:
1
cheni@unpar.ac.id,

2
luciana@unpar.ac.id

ABSTRACT

A multi-agent system (MAS) is understood as a collection of intelligent agents that interact with each other

and work together to achieve a goal. Since it consists of many agents, the communication, coordination, and

scheduling among agents are important issues in MAS. This paper presents a study on the effect of agent

scheduling on the performance of a MAS. The study is conducted on a small parameterized MAS, which is

a Sudoku solver. Four agent scheduling scenarios have been developed and implemented. Some

experiments have been conducted to measure the performance of each scenario. It is shown that the

scheduling scenarios have effect on the system performance.

Keywords: Multi-Agent Systems, Agent Scheduling Scenario, Sudoku, Sudoku Solver, Block World

Problem

1. INTRODUCTION

Multi-Agent Systems (MAS) has become one of

popular paradigms for understanding and building

complex systems, especially distributed systems [1,

2]. This paradigm is widely used to develop

nowadays systems. It has been applied in various

fields, e.g. in health and medical [3,4], traffic and

transportation [5,6], etc.

A MAS is understood as a collection of

intelligent agents that interact with each other and

work together to achieve a goal. In this context, the

agents are software or computer programs. Since it

consists of many agents, the communication,

coordination, and scheduling among agents are

important issues in MAS.

This work focuses on an important issue of MAS

which is scheduling. The objective of this research

is to analyze the effect of scheduling scenario on

the performance of a MAS. By knowing the effect

of the agent scheduling scenarios, we can apply an

appropriate or optimal scheduling scenario in order

to get the best performance of a MAS.

Various reviews on MAS can be found in

literature, ranging from the aspect of architecture,

agent communication, agent scheduling, modeling,

verification, performance, and application of MAS.

In particular, there are many research related to

performance evaluation of MAS, e.g. performance

comparison of two information retrieval MAS: the

one contains stationary agents only and the other

contains one mobile agent [7], performance

comparison between two MAS for combinatorial

auction and voting with different architecture and

agent communication [8], comparative study of two

different open-source MAS architectures [9], and

comparison between centralized and decentralized

scheduling approach of MAS [10]. Similar to [10],

this work focuses on the effect of scheduling

algorithm on the performance of MAS.

As case study we took MAS-based Sudoku

solver [11,12]. A research related to MAS that also

used Sudoku as the case study is found in [13].

However, the modelling of Sudoku in [13] is

different from our model. We use BWP-based

Sudoku Solver that, in our knowledge, has been

never used before by other researchers.

We limited our work on a class of MAS which is

parameterized MAS. This makes the difference

between this work and the others. The underlying

concept of parameterized MAS is parameterized

systems proposed in [14]. More work related to

parameterized systems can be found in [15,16,17].

We also limit our work to the interleaving systems

which means that at every time there is maximum

one active process.

The main contribution of this paper is to enrich

the results of research related to MAS, particularly

to the issues that affect the performance of MAS. In

addition, this paper also shows how a simple case

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

study like Sudoku puzzle can be used to study

complex systems.

The rest of this paper is structured as follows.

Section 2 explains the concept of BWP and how to

model Sudoku Solver as BWP. Section 3 presents

our BWP-based Sudoku solver that we used for the

case study. Section 4 and section 5 describes the

scheduling scenarios and the experimental results,

respectively. Conclusion and future work are given

in Section 6.

2. MODELLING SUDOKU PUZZLES AS

BWPS

A BWP consists of a set of blocks, a table, and

two robots. The blocks are initially arranged in

some vertical stacks. Each robot has its own task

capability: the first robot is capable to take a box at

a top of a stack and put it on the table, whereas the

second robot is capable to take a box on a table and

put it on a top of a stack. The problem is how to

change the initial arrangement to a new different

arrangement by using the two robots. Several

approaches for modelling and solving BWP can be

found in literature, for example in [18]. An

illustration of a BWP is given in Figure 1.

Figure 1. A Block World Problem.

BWP is frequently used in explaining the concept

of Multi-Agent Systems. In particular, in [17] BWP

is used as a case study for formal modelling and

verification of parameterized MAS. A

parameterized MAS is a MAS consisting a number

of similar agents. The number of the agents is given

as parameter of the system. It is assumed that the

system is interleaving, that means there is only one

agent works at a time.

Inspired by [17], we have proposed a novel

approach for solving Sudoku puzzles, which is by

modelling Sudoku puzzles as BWPs [11]. By

modifying some settings of block world problem

we have shown that Sudoku puzzles can be

regarded as a variant of BWP. The modification is

illustrated in Figure 2.

Figure 2. Modification of a BWP.

Three models for BWP based Sudoku solver

have been defined in [11]. The difference among

the models lies on the number and the task or the

capability of the robot.

The first model uses two robots and is based on

backtracking principle. This model is very similar

to the original BWP. The first robot’s task is to take

a box and tries to put on a cell on the board which

is valid for the box. Whereas the second robot’s

task is to take a box from a cell and put it back to

the stack outside the board. The first robot gets the

first turn, repeatedly does it task until all cells are

filled with boxes or it is unable to find a box that

can be placed on an empty cell. If the last condition

holds, then the second robot will do its task by

taking the last box put by the first robot from the

board. The searching for a solution is then

continued. Given a valid Sudoku puzzle, model 1

guarantees that a solution will be found.

The second and third models use nine robots and

use fixed-point principle, instead of backtracking

principle. The solution searching process is done by

making iterations until a termination condition is

reached. At each iteration, each robot i tries to find

an appropriate cell or a valid position for a box with

number i. If the searching succeeds, then it puts a

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

box with number i on that cell. After doing its job,

the robot i will give the turn to the next robot. After

the robot 9 does its job, it will be decided whether a

new iteration should be made or not. If in the last

iteration, all the robots cannot find appropriate

cells, then the process is stopped. Differs from the

first model, the second and the third model cannot

guarantee to find a solution for a, even, valid

puzzle.

Later, a new Sudoku Solver model has been

proposed [12]. All four models have been

successfully implemented and tested on 100

Sudoku puzzles. The experimental results show that

the first model provides the best performance,

followed by the fourth model. It is also reported

that the combination of model 4 and model 1 gives

improvement to the performance of the Solver.

In [12] all the models apply the same agent

scheduling scenario. In this work, we will study the

effect of agent scheduling on the performance of

the Sudoku Solver. For that purpose, we define four

scheduling scenarios. We apply each scenario on

the fourth model. Experiment will be conducted to

measure the performance of each scenario. We then

compare the performance of each scenario with the

original scenario.

3. BWP-BASED SUDOKU SOLVER

A Sudoku puzzle can be viewed as a BWP whose

elements are a table, a board, a set of boxes and a

set of robots [11,12]. The board comprises of 3x3

sub-blocks, each sub-block is a 3 x 3 cells, and is

located on the table. The number of the boxes is

9x9. Each box is labeled with a number within 1 to

9. For each label there are 9 boxes labeled with this

number. The initial arrangement is the arrangement

of the boxes so that there are some boxes are

already put on the cells of the board and the rest of

the boxes are outside the board. The boxes outside

the board are organized in piles according to their

numbers. The final arrangement is the arrangement

of the boxes satisfying these conditions: all boxes

are on the cells of the board, there are no boxes

with the same label in the same row, the same

column, and the same sub-block.

In this work, we used the fourth model proposed

in [12]. Nine robots with the same capability are

used by this model. Each robot is identified with a

number from 1 to 9. Every robot is responsible to

the stack of boxes according to its identifier. The

task of the robots is to take a box from their

corresponding stacks and put the box on a cell with

valid position of the board. A valid cell is defined

as follows:

Definition 1 A robot i will call a cell at (x, y) a

valid position if all the following conditions hold:

1) It is empty.

2) The row x does not contain any boxes with

number i.

3) The column y does not contain any boxes with

number i.

4) The sub-block where (x, y) is located does not

contain any boxes with number i.

5) For every other row r in the same sub-block

there is a box with number i or all cells in row r

in the same sub-block with the cell (x, y) are not

empty or the cell at the position (r, y) is not

empty.

6) For every other column c in the same sub-block

there is a box with number i or or all cells in

column c in the same sub-block with the cell (x,

y) are not empty or the cell at the position (x, c)

is not empty.

For example, Figure 3 illustrates a valid position

for robot 5.

Figure 3: A valid position for robot 5.

To solve a puzzle, the solution searching process

is done iteratively. At each iteration, the robots

work one by one, in ascending order, starting from

robot 1. Every time there is only one robot that

works. In our implementation, a special module,

called scheduler, is used to control this mechanism.

4. SCHEDULING SCENARIOS

In previous section we have explained that the

solution searching process is done iteratively. At

each iteration, each robot is given an equal

opportunity to carry out its task. The ordering of

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

agent is always the same, from 1 to 9. The

searching process is stopped whenever at an

iteration all robots fail to do their tasks.

By analyzing the fourth model, we can conclude

that there are interdependencies among the robots

in doing their tasks. Let’s consider the Sudoku

puzzle in Figure 4 and focus on the upper middle

sub-lock. Now assume that at an iteration, the robot

3 gets its turn before the robot 8. At this situation,

the robot 3 cannot do its task successfully. There

are two possible cells that can be taken, which are

(1,4) and (3,4). However, the robot 3 has no

capability to choose one of them due to the

definition of valid position. The situation will be

different if the robot 3 gets its turn after robot 8.

Since robot 8 manages to put a box on cell on (1,4),

therefore robot 3 can put a box on cell (3,4).

Figure 4: Two robot ordering scenarios

Based on the analysis, we draw a hypothesis that

the agent ordering may bring effects on the

performance of the Solver.

Since our focus is on the ordering of the robots,

we define four scheduling scenarios that use

random ordering principle. The first scenario (S1)

and the second scenario (S2) are very similar to the

original scenario (OS). Each scenario is described

as follows:

• First scenario – S1

This scenario is very similar to OS, except before

the first iteration, the scheduler generates an

arbitrary permutation of a set {1, .., 9}. This permu-

tation is then used as the ordering of agents. The

algorithm is given in Figure 5.

ordering <- permutation(1,9)
repeat

res <- false
for (i in 1..9) do

 res <- res or action(ordering[i])
 endfor

until not res

Figure 5: S1 Algorithm.

• Second scenario – S2

This scenario is very similar to OS, except before

every iteration, the scheduler generate an arbitrary

permutation of a set {1, …, 9}. This permutation is

then used as the ordering of agents. The algorithm

is given in Figure 6.

repeat

ordering <- permutation(1,9)
res <- false
for (i in 1..9) do

 res <- res or action(ordering[i])
 endfor

until not res

Figure 6: S2 Algorithm.

For the third (S3) and the fourth (S4) scenarios,

at any iteration the scheduler picks a robot

randomly. The searching process will be stopped

whenever a stopping condition is reached. The

difference between the both scenarios is on the

stopping condition.

• Third scenario – S3

The stopping condition for S3 is defined as a

condition when after a number of consecutive

iteration there is no robot that can do its task

successfully. As consequence, the scheduler has to

record the number of failures. This number is reset

whenever a successfully do its task. The algorithm

is given in Figure 7.

counter <- 0
while (counter < max) do

 i <- pick_one_robot_randomly()
 if (action(i)) then

 counter <- 0
 else

 counter <- counter + 1
 endif
endwhile

Figure 7: S3 Algorithm.

• Fourth scenario – S4

S4 is an improvement of S3. The improvement is

done by adding a process after the stopping

condition for S3 is reached. Before stopping the

process, scheduler will ask every robot to do its

task, from robot 1 to robot 9. If there is a robot

doing its task successfully, the searching process is

continued. The algorithm is given in Figure 8

5. EXPERIMENTAL RESULTS

We have implemented all scenarios and

conducted some experiments to measure the

performance of each scenario. Each scenario is

tested on 100 Sudoku puzzles with different level

of difficulty. The puzzles are the same puzzles used

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

in [12]. Since each scenario contains a randomness

factor, for each scenario we run the Solver 9 times

for each puzzle. For S3 and S4, we set max to 20.

stop <- false
while not stop do

 counter <- 0
 while (counter < max) do

 i <- pick_one_robot_randomly()
 if (action(i)) then

 counter <- 0
 else

 counter <- counter + 1
 endif

 endwhile

 if (counter = max) then

 i <- 1
 succeed <- false

 resA <- false
 while (i <= 9 && not resA) do

 resA <- action(i)
 i++
 endwhile

 stop = not resA
 endif

endwhile

Figure 8: S4 Algorithm.

Our first experiment is to measure the average

time needed by the Solver with a particular scenario

in solving a Sudoku puzzle. From 100 puzzles, each

scenario is only capable of solving 44 puzzles. This

is the same number and the same puzzles that can

be solved by OS. Without considering the puzzles

that cannot be solved, the average time for solving

a puzzle are shown in Table 1. We can see that S1

has the minimum average time, followed by S2,

OS, S3, and the last is S4.

Table 1. Average Time for Solving a Puzzle

No OS S1 S2 S3 S4

1 8656 9920 9743 14994 15460

2 8469 9087 7831 12468 14058

3 13657 12392 11644 16949 17774

4 8500 8573 7465 12221 13951

5 10125 8964 8702 13572 14407

6 11203 9738 9724 13337 15593

7 8250 7767 8611 11234 14551

8 11109 10210 10137 15210 15048

9 12406 10925 10493 16435 15661

10 11266 8936 10853 14830 14084

Table 1. Average Time for Solving a Puzzle (cont.)

No OS S1 S2 S3 S4

11 8578 8071 11248 12596 14259

12 12422 11818 11542 15102 18108

13 9984 8052 11841 14753 14247

14 9906 9196 12267 13813 14979

15 8750 9161 11965 13106 14634

16 9860 9561 7823 14112 15020

17 12453 10182 8514 15049 15996

18 9890 9443 8925 12493 13988

19 9797 9238 9345 13493 13616

20 12063 10570 9821 14717 15734

21 16218 13918 16934 18372 19457

22 20093 15606 19307 15540 21804

23 15391 15017 17423 17907 19278

24 26875 14455 19866 24063 27181

25 18421 12856 17151 23121 20797

26 19938 15055 19077 27486 17774

27 12031 10818 13106 18422 17742

28 18781 13277 14967 19716 17160

29 17344 14002 14920 22904 21692

30 18625 15939 18339 25142 23612

31 17813 13398 19403 25781 24819

32 21282 17644 20047 25894 21761

33 16187 12779 16488 27276 22672

34 15657 13471 14312 21136 20963

35 24860 19885 21119 24141 24272

36 11844 9975 12774 17541 16421

37 50578 13272 15984 23656 19248

38 13703 11147 12780 19065 17249

39 13578 11894 13477 17170 19400

40 15579 17217 17001 23245 25805

41 15016 13858 14769 16941 17817

42 12328 11325 12170 15386 15987

43 16750 22077 21932 21994 26351

44 11937 10890 11295 13369 16121

Average 14561 11813 13181 17457 17961

Table 2 shows how many times a scenario has

the minimum average time. It can be seen that,

except S4, three other scenarios, S1, S2, and S3, are

able to beat OS, at least once. From this result we

can say that agent ordering scenarios may bring

effects to the performance of the solver.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

Table 2. Minimum Average Time

Scenario min. average time (times)

OS 4

S1 27

S2 12

S3 1

S4 0

The algorithm of S4 is more complex than the

other scenarios, as predicted, S4 provides the worst

performance in this experiment. For S3, from 9

attempts for solving a puzzle, it not always the case

that all attempts succeed. The worst case is from 9

attempts, there are only two attempts that succeed.

Furthermore, we measure the performance based

on the number of empty cells that can be filled by

the Solver using each scenario. The results are

presented in Table 3. Table 4 presents the

percentage of the empty cells that can be filled by

each scenario. It can be seen that except S3, every

scenario has the same performance.

If we pay more attention to the number of

puzzles that can be solved by each scenario and

also the percentage of filled cells, the new

scenarios’ performances are not better than OS. In

other words, the new scenarios don’t bring any

significant improvement to OS. Moreover, S3

provide a worse performance than OS.

Table 3. The Number of Filled Empty Cells

No Total empty cells OS S1 S2 S3 S4

1 52 24 24 24 22.2 24

2 49 31 31 31 30.7 31

3 51 12 12 12 11.6 12

4 49 18 18 18 15.8 18

5 51 8 8 8 7.78 8

6 51 13 13 13 10.7 13

7 53 9 9 9 8.78 9

8 49 21 21 21 20.3 21

9 54 9 9 9 8.22 9

10 53 10 10 10 7.89 10

11 55 2 2 2 1.89 2

12 53 4 4 4 3.78 4

13 53 7 7 7 6.67 7

14 55 11 11 11 10.6 11

15 51 11 11 11 10 11

Table 3. The Number of Filled Empty Cells (Cont.)

No Total empty cells OS S1 S2 S3 S4

16 51 8 8 8 7.56 8

17 55 8 8 8 7.89 8

18 54 9 9 9 9 9

19 53 9 9 9 7.44 9

20 55 14 14 14 11.7 14

21 53 7 7 7 7 7

22 57 2 2 2 2 2

23 57 2 2 2 1.78 2

24 57 2 2 2 2 2

25 53 8 8 8 8 8

26 57 1 1 1 1 1

27 53 25 25 25 23.2 25

28 57 1 1 1 1 1

29 57 2 2 2 1.78 2

30 55 2 2 2 1.89 2

31 58 0 0 0 0 0

32 57 0 0 0 0 0

33 57 0 0 0 0 0

34 57 4 4 4 4 4

35 57 2 2 2 1.33 2

36 58 7 7 7 6.67 7

37 57 2 2 2 1.89 2

38 53 9 9 9 8.89 9

39 57 1 1 1 1 1

40 57 3 3 3 2.11 3

41 53 10 10 10 8.89 10

42 53 10 10 10 8.78 10

43 60 1 1 1 0.89 1

44 57 5 5 5 5 5

45 55 3 3 3 2.78 3

46 57 1 1 1 0.78 1

47 53 17 17 17 13.7 17

48 57 0 0 0 0 0

49 53 3 3 3 2.78 3

50 61 2 2 2 1.89 2

51 57 0 0 0 0 0

52 57 1 1 1 1 1

53 57 1 1 1 1 1

54 57 1 1 1 0.89 1

55 58 6 6 6 5.67 6

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

Table 4. Percentage Filled Cells

Scenario Filled cells (%)

OS 0.127

S1 0.127

S2 0.127

S3 0.117

S4 0.127

6. CONCLUSIONS

We have studied the effects of agent scheduling

scenarios on the performance of MAS. In

particular, we take a Sudoku solver as a case study.

We have developed and implemented four agent

scheduling scenarios, which S1, S2, S3, and S4.

Each scenario uses a random ordering. From the

experimental result, it can be shown that S1 provide

the best performance in the aspect of time. Whereas

in the aspect of the number of puzzles that can be

solved by each scenario and also the percentage of

filled empty cells, the new scenarios don’t bring

any significant improvement.

The algorithm applied by the solver is based on

simple heuristics used in solving Sudoku puzzles

manually. From the experimental result, we can

draw the conclusion that the algorithm applied

cannot be used to solve puzzles with high level

difficulty. Therefore, our next plan is to find better

algorithms for solving Sudoku puzzles.

REFRENCES:

[1] G. Weiss. Multiagent Systems. 2nd edition.

MIT Press, 2013.

[2] M. Wooldridge. An Introduction to MultiAgent

Systems, Second Edition, John Wiley & Sons,

2009.

[3] S. Gupta and S. Pujari. A multi-agent system

(MAS) based scheme for health care and

medical diagnosis system. Proc. of International

Conference on Intelligent Agent Multi-Agent

Systems, 2009. IAMA 2009.

[4] S. Gupta, A. Sarkar, I. Pramanik, and B.

Mukherjee. Implementation Scheme for Online

Medical Diagnosis System Using Multi Agent

System with JADE. International Journal of

Scientific and Research Publications, Volume 2,

Issue 6, June 2012, ISSN 2250-3153.

[5] K. Almejalli, K. Dahal, and A. Hossain. An

intelligent multi-agent approach for road traffic

management systems. Proc. of International

Conference on Control Applications, (CCA)

Intelligent Control, (ISIC), 2009 IEEE.

[6] P.G. Balaji, G. Sachdeva, D. Srinivasan, and

Chen-Khong Tham. Multiagent System based

Urban Traffic Management. Proc. of IEEE

Congress on Evolutionary Computation, 2007.

[7] Babczynski, Z. Kruczkiewicz, and J. Magott.

Performance Comparison of Multi-Agent

Systems LNCS Vol. 3690, 2005, pp 612-615,

Springer-Verlag.

[8] V. Conitzer. Comparing Multiagent Systems

Research in Combinatorial Auctions and

Voting. Journal Annals of Mathematics and

Artificial Intelligence archive Volume 58 Issue

3-4, April 2010, pp. 239-259.

[9] D. Król and M. Zelmozer. A Comparison of

Performance-Evaluating Strategies for Data

Exchange in Multi-agent System. LNAI 4953,

pp. 793–802, 2008. Springer-Verlag.

[10] S. Paquet, N. Bernier, and B. Chaib-draa.

Multiagent Systems Viewed as Distributed

Scheduling Systems: Methodology and

Experiments. LNAI 3501, pp. 43-47, Springer-

Verlag, 2005.

[11] C.E. Nugraheni and L. Abednego. Modeling

Sudoku Puzzles as Block-World Problems.

International Journal of Computer, Information,

Systems and Control Engineering, vol. 7, no. 8,

2013, pp. 487 - 493.

[12] L. Abednego and C.E. Nugraheni. A Block

World Problem based Sudoku Solver.

International Journal of Computer, Information,

Systems and Control Engineering, vol. 8, no. 8,

2014, pp. 1303 - 1307.

[13] C. Agerbeck, M. O. Hansen, and K. Lyngby, A

Multi-Agent Approach to Solving NP-Complete

Problems,” Master’s thesis, Technical

University of Denmark, 2008.

[14] Cecilia E. Nugraheni. Predicate diagrams as

Basis for the Verification of Reactive Systems.

Hieronymus Verlag, 2004. ISBN 978-3-89791-

332-5.

[15] Cecilia E. Nugraheni. Universal Properties

Verification of Parameterized Parallel Systems

Lecture Notes in Computer Science Volume

3482, 2005, pp 453-462.

[16] Cecilia E. Nugraheni. Diagram-based

verification of parameterized systems. JCMCC,

Vol. 65, pp. 91-102, 2008.

[17] Cecilia E. Nugraheni. Formal Verification of

Parameterized Multi-Agent Systems Using

Predicate Diagrams*. Proc. of Computation

Tools 2011, IARIA, 2011, pp. 19-24.

Journal of Theoretical and Applied Information Technology
 20

th
 June 2015. Vol.76. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

[18] T. Taibi. Specification and validation of multi-

agent behaviour using TLA+ and TLC model

checker. Int. J. Artificial Intelligence and Soft

Computing, Vol. 1, No. 1, pp. 99-113, 2008.

