
Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

 ALL ABOUT SOFTWARE REUSABILITY: A SYSTEMATIC

LITERATURE REVIEW

1
SIHAM YOUNOUSSI,

 2
OUNSA ROUDIES

1,2

Mohammed-V Agdal Univ, Ecole Mohammadia d’Ingénieurs (EMI), Siweb Research Team.

E-mail:
1
siham.younoussi@gmail.com,

2
roudies@emi.ac.ma

ABSTRACT

Software reusability is an attribute in which software or its module is reused with very little or no

modification. For any organization, improving the business performance means performing their software

development. Software reusability offers great potential of significant gains for an organization, by

reducing cost and effort, and accelerating the Time to Market of software products. This paper presents a

literature review of various software reusability concepts. It presents some definitions and benefits of

software reusability, approaches to be adopted to perform reusability, reusability levels in software life

cycle, to reusability, maturity models and attributes affecting potentiality of software to be reused.

Keywords: Software Reusability Approaches, Software Reusability Benefits, Software Reusability Levels,

Software Maturity Models for Reuse, Software Reusability Attributes

1. INTRODUCTION

Reuse is one way for improving software

development performance. That is why many

organizations try to invest in software reusability,

by identifying best reuse strategies, methods and

component for maximum productivity.

Software reuse is creating new software systems,

while reusability is the degree to which a given

software component can be reused [1]. According

to [2], reusability is a property of a software

component that indicates its capability of reuse.

Software reuse is the process of building

software system from existing software rather than

building them from scratch [3]-[4]. Software

reusability is an attribute that refers to the expected

reuse potential of a software component [5]. This

means that, if a component’s reusability is low,

then its potential for reuse becomes low as well.

According to [6], software reusability relates to

using formerly written software in the form of

specification, design and code. This practice is

widely observed in the process of development for

most projects as it brings about several advantages.

Although reusable components like design

patterns, frameworks, component based software

development (CBSD), are already popular in

organizations, software reuse has rapidly evolved in

the last decade, and new reusability approaches are

emerging. So mastering reuse is necessary to

simplify and to foster reusability in software

development.

In this context, this paper focuses on trends in

software reuse practices and aims to outline how

reusability could improve the long-term

organization.

2. RESEARCH METHOD

We conducted a systematic literature review to

understand and identify approaches, benefits,

levels, barriers, maturity models and attributes, of

software reusability.

A systematic literature review (SLR) is a mean

of identifying, evaluating and interpreting all

available research relevant to a particular research

question or topic area [7]. The first step are eliciting

the research questions and mastering the quality of

collected papers.

2.1 Research Questions

We point out six research questions (RQ).

RQ1: What are the different approaches of the

software reuse?

This question aims at identifying the current

approaches of software reusability. We analyzed

the main definitions, goals and advantages of these

approaches.

RQ2: Are there any benefits of software

reusability?

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

It was important for us to know what the benefits

of software reuse are, and clarify why

Organizations are looking for ways to develop a

software reuse schedule.

RQ3: What are the different levels of software

reusability in software life cycle?

We need to know what the different reusability

levels are in software life cycle, and how it is

applied in these levels.

RQ4: Are there any barriers of software

reusability?

The goal is to identify barriers of software

reusability that must be overcome to successful

reuse.

RQ5: What are the maturity model for reuse?

We were looking for researches and case studies

that proposed maturity model for reuse.

RQ6: Is there any attributes that affect the

software reusability?

The purpose of this question is to elicit attributes

affecting the software reuse and relate to the

potentiality of software to be reused.

2.2 Research Process

We started our research process of identifying

primary studies by searching on the electronic

databases for researches that cover almost all major

journals and conference proceedings. The

repositories used were ACM Digital Library, IEEE

Xplore, Science Direct, Springer, and Scopus.

Based on our research goal, the following major

search keywords were used to formulate the search

query: Software reusability, approaches, benefits,

levels, maturity models and attributes. Alternative

words and synonyms were also used for such

keywords. Then, it was created an initial pilot

search string by joining major keywords with

Boolean AND operators, and the alternative words

and synonyms with Boolean OR operators.

2.3 Study Selection Criteria

Study selection was performed in the first step by

analyzing the title and abstract of articles found in

search process and select appropriate and relevant

studies. In the second step, we focused on

analyzing the introduction and conclusion. The

inclusion and exclusion criteria were analyzed for

each step in each primary study.

The inclusion and exclusion criteria used in our

study, are the following:

• Inclusion criteria:

o Papers discussed about software

reusability approaches and benefits.

o Papers discussed about maturity model of

reuse.

o Papers published from 2004 to 2015.

• Exclusion criteria:

o Papers out of our research scope.

o Short papers of one or two pages.

o Repeated papers.

2.4 Quality Assessment

The quality assessments are based on a checklist

of factors/questions that needs to be evaluated in

each study. For assessing studies, we defined the

following questions:

QA1: Does study mention the software

reusability approaches?

QA2: Does the study presented any benefits of

software reusability?

QA3: Is the study list the different levels of

software reusability?

QA4: Does study report any barriers of software

reusability?

QA5: Does study propose any maturity model for

reuse?

QA6: Does study propose any attributes that

affect the reuse?

We scored questions as bellow:

QA1: Y (Yes) study proposed some software

reusability approaches. P (Partially) study

mentioned one or more approaches, but did not

describe it. N (No) study did not propose any

approaches.

QA2: Y, study mentioned more than one benefits

of software reusability clearly. P, benefits are

implicit. N, study does not mention any benefit.

QA3: Y, study defined some levels of software

reusability. P, reusability levels are implicit. N,

study did not present any levels.

QA4: Y, study mentioned some barriers of

reusability explicitly. P, reusability barriers are

implicitly reported. N, study did not report any

barriers.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

QA5: Y, study proposed some maturity models

for reuse. P, study mentioned one or more maturity

model, but did not describe it. N, study did not

propose any maturity model.

QA6: Y, study mentioned attributes which affect

the reuse explicitly. P, attributes are implicit. N,

study did not mention any attribute.

2.5 Data Collection

These data were extracted from each paper:

• Title and year of publication

• Author(s) information

• Research issues

• Main topic

• The full source and references

All articles were reviewed and data was extracted

and checked. This idea was chosen for better

consistency in reviewing all papers and improving

quality of review.

RESULTS

This section summarizes the results of our study.

3.1 Search Results

As a result of performing study selection in the

first step, we get 252 papers. Title and abstract of

these papers were analyzed by applying the

including and excluding criteria, and then the

number of papers became 112.

In the second step, introduction and conclusion

of the 112 papers were evaluated using including

and excluding criteria. The final number papers

selected in this review was 24 papers as shown in

fig.1, and final selected studies are listed in table 1.

3.2 Quality Evaluation of Studies

We assessed the studies for quality using the

criteria explained in section 2.4, and the scores for

each of them are shown in table 2.

Fig. 1. Selection research process

Table 1: SELECTED STUDIES FOR REVIEW

ID Title Authot(s) Main topic Year

S1
Rise project: Towards a robust

framework for software reuse

E. S. Almeida, A. Alvaro,

D. Lucr´edio, V. C.

Garcia, and S. R. L Meira,

Overview of the RiSE Maturity Model,

which has been developed within the

RiSE project

2004

S2
Reusability Metrics for

Software Components

O. Paul ROTARU,

Marian DOBRE

Study of the adaptability and compose-

ability of software components, with

proposing metrics and a mathematical

model for the above-mentioned

characteristics of

software components.

2005

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

S3
Software Reuse Research:

Status and Future

B. William. Frakes and

Kyo Kang

Summarized software reuse research,

discusses major research contributions

and unsolved problems

2005

S4
A Forward-Looking Software

Reuse Strategy
J. Finnigan, J.Blanchette

Described a software reuse strategy and

illustrate that strategy using the

command-building software as an

example.

2007

S5
Towards a Maturity Model for

a Reuse Incremental Adoption

V. Garcia, D. Lucrédio,

A. Alvaro

Reuse Maturity Model proposal,

describing consistence features

for the incremental reuse adoption

2007

S6
Knowledge reuse for software

reuse

F. McCarey, M.O.

Cinneide and

N.Kushmerick

Component-based reuse can be

supported through knowledge

collaboration

2008

S7

Reducing efforts on software

project management using

software package reusability.

R. Kamalraj, B.G Geetha,

G. Singaravel

Focused on the consecutive tasks like

'Domain Analysis', 'Package Analysis;'

and 'System Analysis' for reusability to

minimize the required technical efforts

in development area

2009

S8
Reusability assessment for

software components

A.Sharma, P.S. Grover

and R. Kumar

Artificial neural based approach is been

proposed to access the reusability of

software component

2009

S9
A Value Analysis Model for

Measuring Software Reuse
M. Dinsoreanu, I. Ignat

Presented an integrated measurement

model that allows practitioners to apply

familiar project management

techniques for measuring software

reuse and to include software reuse

metrics in the analysis of project

performance indicators.

2009

S10
A survey on software

reusability

P.S. Sandhu, P. Kakkar,

S. Sharma

Presented the reusability

concepts for Component based Systems

and explores several existing metrics

2010

S11

Overview analysis of

reusability metrics in software

development for risk reduction

G. Singaravel, V.

Palanisamy, A. Krishnan

Provided a reusability metrics in

software development for risk

reduction, because risk is directly

proportional to the complexity of a

system and risk is inversely

proportional to the number of reusable

components used in a project.

2010

S12

A New Capability Maturity

Model For Reuse Based

Software Development

process

K.S Jasmine, R. Vasantha

Approach for making CMMI

investment decisions by proposing a

new process based capability maturity

model for reuse.

2010

S13

Software reusability

assessment using soft

computing techniques

Y. Singh, P.K. Bhatia and

O. Sangwan

Proposed a model for accessing

software reusability by different soft

computing techniques

2011

S14

Software Reuse in Agile

Development Organizations -

A Conceptual Management

Tool

W. Spoelstra, M. Iacob,

M. Sinderen

A conceptual management tool for

supporting software reuse is proposed.
2011

S15

Designing code level reusable

software components

B.Jalender, A.

Govardhan,R. Emchand

Described how to build the code level

reusable components and how to design

code level components

2012

S16

Reusability of Software

Components using J48

Decision Tree

K. Kaur, N. Mohan

and P. S. Sandhu

Proposed a reusability of Software

Components using J48 Decision Tree

2012

S17

Component-Based

Development: A Unified

Model Of Reusability Metrics

B. Koteska, G. Velinov
Proposed new metrics for component

reusability
2013

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

S18
Minimal information for

reusable scientific software
C. Hong

Looks at the concept of software

reusability from the perspective of the

software engineer and the researcher.

2014

S19

Reusability in Component

Based Software Development

- A Review

S. Thakral, S. Sagar and

Vinay

A literature review of various software

reusability concepts is presented
2014

S20 Software Reuse in Practice
R. Keswani, S. Joshi, A.

Jatain

Summarized software reuse research

and discussed major research

contributions.

2014

S21

Impact of Quality Attributes

on Software Reusability and

Metrics to assess these

Attributes

C. Monga, A. Jatain, D.

Gaur

Studied various attributes or factors

that affect the reusability of software.

The most common factors are

identified and their impact is analyzed.

2014

S22

Taxonomy, Definition,

Approaches, Benefits,

Reusability Levels, Factors

and adaptation of Software

Reusability: A Review of the

Research Literature

Y. Y. Ibraheem, A. M.

Abualkishik and M. Z.

Mohd Yussof,

Provided a systematic review of the

concept of reusability, identifying the

definition, Approaches, Benefits,

Reusability Levels, Factors and

adaptation of Software Reusability

2014

S23

Feature Prioritization for

Analyzing and Enhancing

Software Reusability

Md. Iftekharul A. Efat,

Md. S. Siddik, M.

Shoyaib, S. M. Khaled

An analysis of the various

attributes from the organization,

development and complexity

perspective, an optimized group of

properties are proposed

2014

S24

A Framework for Assessing

the Software Reusability using

Fuzzy Logic Approach for

Aspect Oriented Software

P. K. Singh, O. P

Sangwan, A. P. Singh, A.

Pratap

Explored the various metric that affects

the reusability of aspect oriented

software and

Estimate it using fuzzy logic approach.

2015

Table 2: Quality Evaluation of the Study

Source
QA

1

QA

2

QA

3

QA

4

QA

5

QA

6

S1 Y Y P Y P P

S2 Y N Y N N Y

S3 P Y N N N Y

S4 Y N N N N P

S5 Y Y Y N Y P

S6 Y Y N N N N

S7 Y P P N N Y

S8 Y P P N N Y

S9 N Y N N P P

S10 Y Y P Y Y Y

S11 Y Y Y N N Y

S12 N Y Y N Y N

S13 N N Y N P Y

S14 Y Y P Y Y Y

S15 Y Y Y N P P

S16 Y Y Y Y N Y

S17 N P Y P Y P

S18 N Y N N Y P

S19 P Y Y Y N Y

S20 N Y P Y N N

S21 Y P N N N Y

S22 Y Y Y P N Y

S23 Y Y P N N Y

S24 Y Y N N N Y

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

Fig. 2. Quality assessment results per question and type

of assessment response

Fig. 2 shows the coverage of every quality

assessment (QA) in the included studies. It shows

that QA1, QA2, QA3 and QA6 were covered in a

rate higher than 80% by Yes and partially answers.

That means that 80% of studies covers approaches,

benefits, levels and attributes of software

reusability. On the contrary, QA4 and QA5 were

covered in a rate higher than 50% by No. Which

means that few works examined barriers of

reusability (QA4), which can motivate

organizations to adopt software reusability

approaches. Moreover, the studies about maturity

models to software reusability are limited, which

highlight the need to explore this domain in order to

help organizations auditing his maturity reuse

levels.

3. DISCUSSION

This section discusses the answers to the six

research questions.

4.1 Does Study Mention the Software

Reusability Approaches?

75% of studies presents different software

reusability approaches used by developers. There

are eleven software reusability approaches [3]-[5]

which are the most uses: Application Frameworks,

Application product lines, Aspect-oriented software

development, Component-based development,

Configurable vertical applications, COTS

(Commercial-Off-The-Shelf) integration, Design

Patterns, Legacy system wrapping, Program

generators, Program libraries and Service-oriented

systems.

• Application Frameworks: are collections of

concrete and abstract classes that can be

adapted and extended to create application

systems. Application frameworks are reusable

software products that deliver reusable design

and common implementation to applications of

a specific domain.

The main advantages for Application

Frameworks are reducing the development

cost, enhancing the quality, promoting the

software reusability benefits and reusable

design.

• Application product lines: A product line is

defined as a set of software-intensive systems

sharing a common, managed set of features

that satisfy the specific needs of a particular

market segment or mission and that are

developed from a common set of core assets in

a prescribed way [28].

Software product line has proven to support

systematic reuse across the set of similar

products that software companies offer.

The main advantages for adopting Application

product lines have discussed by several authors

[28]-[3]. It usually include developing products

more efficiently, get them faster to the market

faster to stay competitive and produce with

higher quality.

• Aspect-oriented software development:

Aspect-oriented software development

(AOSD) is a new approach to software

development that addresses limitations inherent

in other approaches, including object-oriented

programming. AOSD aims to address

crosscutting concerns by providing means for

systematic identification, separation,

representation and composition. Crosscutting

concerns are encapsulated in separate modules,

known as aspects, so that localization can be

promoted. This results in better support for

modularization hence reducing development,

maintenance and evolution costs [27].

The main advantages for Aspect-oriented

software development are increasing the

software quality, enhancing the development

mechanisms, automating the mapping from

problem to solution and increasing modularity.

• Component-based development: The main

idea of the component-based approach is

building systems from already existing

components. This assumption has several

benefits: enhance efficiency, enhance the

ability to reuse components, managing growing

complexity, reducing the time and effort

needed to develop software, decreasing

production costs through software reuse,

enhancing the quality of system, reducing

maintenance costs, increasing development

productivity[6].

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

The main advantages for Component-based

development are reducing the development

time and cost, improving the software quality

and maintainability.

• Configurable vertical applications:

Configurable vertical application is a generic

system that is designed so that it can be

configured to the needs of specific system

customers [4]. An example of a vertical

application is software that helps doctors

manage patient records, patient and insurance

billing. Vertical application is considered as a

system that is concentrated on a narrow set of

simulation.

The main advantages for Configurable vertical

application are facilitating the configuration,

boosting the development, and anticipating the

future needs of users.

• COTS (Commercial-Off-The-Shelf)

integration: COTS products are designed to be

implemented easily into existing systems

without the need for customization, products

that are ready-made and available for sale to

the public. The easiest method to develop

systems quickly with lesser cost than the

traditional development is using development

by integration of pre-fabricated COTS

components, so COTS integration is

considered as a type of application system

reuse.

The main advantages for COTS integration are

reducing the development effort and cost,

improving the software quality, and increasing

the maintainability of the system.

• Design Patterns: A design pattern is a solution

for a recurring problem in software

engineering. A design pattern is a template for

how to solve a problem that can be used in

many different situations [6].

The main advantages of Design patterns are

increasing the flexibility for potential changes,

increasing productivity and software

reusability benefits, and reducing design

problems.

• Legacy system wrapping: By wrapping a set

of defining interfaces by legacy systems

provides access to interfaces. Rewriting a

legacy system from scratch can create an

information system with equivalent

functionality, and based on modern software

techniques and hardware [3].

The main advantages for Legacy system

wrapping are allowing access to interfaces,

reduce cost, and help to make the wrapping

process automatic for reducing user

intervention.

• Program generators: A Program Generator is

a program that enables an individual to create

program of their own easily with less effort and

programming knowledge. With a program

generator a user may only be required to

specify the steps or rules required for his or her

program and not need to write any code or very

little code A generator system embeds

knowledge of a particular type of application

and can generate systems or system fragments

in that domain. Program Generators Involves

the reuse of standard patterns and algorithms

[3].

The main advantages for Program Generators

are reducing the development efforts and cost,

improving the development quality, and

accelerating the development.

• Program libraries: Function and class

libraries implementing commonly used

abstractions are available for reuse. Libraries

contain data and code that provides necessary

services to independent programs. This idea

encourages the exchanging and sharing of data

and code [3].

The main advantages for Program libraries are

enhancing the quality, reducing of system

errors, boosting the reuse, and boosting the

sharing of code and data.

• Service-oriented systems: is a set of

methodologies and principles for developing

and designing software in the form of

component. These components are developed

by linking shared services that may be

externally provided. An enterprise system often

has applications and a stack of infrastructure

including databases, operating systems, and

networks [3].

The main advantages for Service-oriented

systems are offering a more flexible method for

software development, offering a better reuse,

and allowing software systems to be dynamic.

4.2 Are there any Benefits of Software

Reusability?

88% of the article agree that there are many

benefits of software reusability. By reviewing them,

it seems that the authors agreed that the major

benefits are the following:

• Increase productivity: Software reusability

improves productivity because the existing

software products are using, and very fewer

ones are creating from scratch.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

According to Singh [4], the concept of reusing

for an available software components consider

as a key feature in increasing productivity.

• Minimize cost: The cost of developing

software from scratch can be saved by

identifying and extracting the reusable

components from already developed and

existing systems or legacy systems [4].

• Improve quality: A good software reuse

assists the increasing of reliability and quality

[3].

According to [24], improve software quality

using any software over time reflects many

bugs which were not discernible when it was

created. Therefore, a software product that has

been reused many times will contain much less

bugs and defects than freshly created software.

• Increase dependability: Increasing

dependability will reduce the time of the

software development since it minimize the

development failures [16].

Reused software, that has been tried and tested

in working systems, should be more

dependable than new software [6]

• Accelerate development: Reusing software

can speed up system production because both

development and validation time should be

reduced [16].

According to [17] Reusing software to build a

new software product can reach the market by

on time for satisfying the customer needs.

Generalized software components can

minimize the time of product construction and

delivery of software.

• Reduce process risk: If software exists, there

is less uncertainty in the costs of reusing that

software than in the costs of development. This

is an important factor for project management

as it reduces the margin of error in project cost

estimation. This is particularly true when

relatively large software components such as

sub-systems are reused [16].

According to [17] Risk in creating new

software is reduced when available reusable

components already encompass the desired

functionality and have standard interfaces to

facilitate integration.

4.3 Is the Study List the Different Levels of

Software Reusability?

71% of articles proposed explicitly or implicitly

different reusability level in software life cycle.

Reuse is divided into following levels:

• Specification reuse: Understanding what to

build is one of the most tedious aspects of

software development, because sometimes

customers do not really know what they want,

so capitalizing on previously used abstract

artifacts like requirement specification

document may open the mind of software

customers to more functionalities that could

have been overlooked.

The reuse of specification is considered as a

higher level of reuse [6]

• Design reuse: The design process in most

engineering disciplines is based on reuse of

existing systems or components.

Software reusability more specifically refers to

design features of a software element (or

collection of software elements) that enhance

its suitability for reuse [16]. This type of reuse

is required when a system needs to be reported

in an entirely different software or hardware

environment [6].

• Code reuse: In computer science and software

engineering, reusability, is the likelihood a

segment of source code that can be used again

to add new functionalities with slight or no

modification [16].

The reusability of a piece of code does not

mean that we should be able to copy-paste the

same code in many places within the

application. In fact, it exactly means the

opposite thing. A piece of reusable code means

that the same code can be reused in different

places without re-writing it [17].

The reusable code can be object code, data

objects, source code, and standard subroutines

[6].

• Application system reuse: An increasing

number of organizations are using software not

just as all-inclusive applications, as in the past,

but also as component parts of larger

applications. In this new role, acquired

software must integrate with other software

functionality [16].

Application system reuse is considered a

special case of software reuse, where the whole

system is reused by implementing in through a

range of different operating systems and

computers [6].

• Test reuse: Reusable components are usually

accompanied by high quality documentation

and by previously developed tests plans and

cases. Whenever a new system is created by

simple selection and altering of such

components, then, their documentation and

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

tests will have to be much easier to develop as

well.

4.4 Does study report any barriers of software

reusability?

We cannot ignore the significant benefits

provided by systematic software reuse, but its

implementation is not simple, because many factors

make it infeasible, particularly in companies with a

large installed base of legacy software and

developers [S20].

Only 33% of studies depicts barriers of software

reusability. Various barriers are identified that must

be overcome such as the following:

• Organizational barriers: to reuse software

one needs a deep understanding of application

developer needs and business requirements

only then one can develop and deploy old

software for reuse [24].

• Administrative barriers: Owing to the large

size of industry, it becomes very difficult to

reuse software or part of it outside one’s

workgroup as an organization has multi

business units, so docketing and archiving

reuse across multiple business units becomes

infeasible [24].

A corporate-wide forum is needed to identify a

product development cycle where reuse

concerns can always be raised and resolved

[18]

• Economic barriers: supporting corporate-

wide reusable assets demands economic

investment, particularly if reuse groups need a

huge investment [24].

The costs and benefits must be understood for

a product life cycle based on a "Design for

Reuse" philosophy. Reusable work-products

must be viewed as capital assets [18].

• Technical barriers: Proper mechanisms are

needed to ensure that guidelines, techniques,

and standards for making things reusable are

developed and followed [18].

• Legal barriers: Negotiations must be

undertaken to determine how to retain rights to

components developed under customer

contract and recover costs in a reuse context.

Mechanisms will be needed for payment and

collection of royalties for use and reuse in the

commercial arena [18].

• Psychological barriers: highly talented

programmers are against reuse, as they believe

in developing everything their way and reuse

causes a not made her kind of an attitude [24].

4.5 Does Study Propose Any Maturity Model

for Reuse?

Only 42% of studies proposed maturity model of

reusability. Six papers presented models for

measuring the maturity of reusability in

organization. This let us extract five reuse maturity

models:

• RMM: In 1991, Koltun and Hudson [29]

presented the first version of the Reuse

Maturity Model (RMM). The model, in fact,

provides a concise form of obtaining

information on reuse practices in organizations.

The model is composed of five levels, and ten

dimensions or aspects of reuse maturity were

enumerated.

• RCM: In 1993, Davis [30] presented the

Reuse Capability Model (RCM), an evolution

of the STARS’ reuse maturity model. RCM

aids in the evaluation and planning for

improvements in the organization’s reuse

capability. The reuse adoption process is a

solution to implement a reuse program and it is

based on the implementation model defined by

[31].

• RRM: Another reference model for software

reuse called Reuse Reference Model (RRM)

was presented by [32]. RRM incorporates both

technical and organizational elements that can

be applied to establish a successful practice of

software reuse in the organization.

Based on the research results and case studies,

Rine and Nada conclude that the level of reuse,

as defined in RRM, determines the capability

of improvements in the productivity, quality

and time-to-market of the organization.

• RISE: The specification of the initial RiSE

Maturity Model was described by [11]. It

presented the approach for creating the model,

its current structure and its levels.

The main purpose of RiSE Maturity Model is

to support organizations in improving their

software development processes. In particular,

the model has to serve as a roadmap for

software reuse adoption and implementation.

The RiSE Maturity Model consists of the

following elements: Maturity Levels (Ad hoc

Reuse, Basic Reuse, Initial Reuse, Organized

Reuse, and Systematic Reuse), Goals assigned

to each level, Perspectives (Organizational,

Business, Technological and Processes) and

Practices grouped in levels and perspectives.

• RCMM: RCMM: Reuse Capability Maturity

Model, was presented by[18] as a maturity

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73

model with focus on reuse and describes which

are basic in order to ensure a well-planned and

controlled reuse oriented software

development.

In RCMM, there are five levels inspired by the

famous SEI’s (Software Engineering Institute)

Capability Maturity Model. Each level

represents a stage in the evolution to a mature

reuse process. A set of maturity goals for each

level and the activities, task and

responsibilities.

4.6 Does Study Propose any Attributes that

Affect the Software Reusability?

Most of papers point out a set of attributes that

affect the reuse.

Literature survey reveals common attributes that

are believed to influence reusability of software

components. In particular, papers [4], [6], [14],

[20], [23], [25], emphasis on the following nine

attributes:

• Understandability: A software component is

more usable if it is can be easily understood.

So when modules are well documented then

their understandability is high i.e. new

developers understand easier code of module

having comment lines.

• Portability: It is the ability of a component to

be transferred from one environment to another

with little modification, if required. If a

component has little or no portability then its

chances of being reused reduce.

• Maintainability: The degree to which the

system or module of the software can be

modified easily in order to fix bugs, adding

quality attributes, or for adjustment of the

operating environment change, increase

efficiency of the system.

• Adaptability: Adaptability determines as how

easily software satisfies requirement or

and user requires of the new environments

from being system and system constraints.

• Interface Complexity: Complex interfaces

will lead to the high efforts for understanding

and customizing the components. Therefore,

for better reusability, interface complexity

should be as low as possible.

• Flexibility: Flexibility is the ability to use a

software component in multiple configuration.

To use some source code component, it should

be flexible to be used in many contexts.

• Stability: Stable means the reasonability error

is free and it may be adapted with confidence

that there is no bug.

• Independence: This attributes refers to the

property of a component or software to

perform its tasks by itself. More is the

independence of software more will be

reusability, otherwise its dependability makes

it difficult to be used again and again.

• Documentation: Documentation is intended to

make software components easier to

understand.

4. CONCLUSION

Although software reusability can significantly

improve productivity and quality of a software

product, it is considered as difficult task especially

for legacy software.

In this study, we presented a literature review of

the most up-to-date research work published on

software reusability. This review of various

software reusability concepts offers a good

understanding of reusability for accelerating the

adoption of reusability in software development.

We found in this study that few works examined

barriers of reusability, which can motivate

organizations to adapt software reusability

approaches. Also the studies about maturity models

of software reuse are limited, so exploring this

domain for helping organizations to audit his

maturity reuse levels, can be a subject of a future

work.

REFRENCES:

[1] N. S. Gill, S. Sikka, “Inheritance Hierarchy

Based Reuse & Reusability Metrics in OOSD”,

International Journal on Computer Science and

Engineering (IJCSE), Vol. 3, n. 6, 201, pp.

2300-2309.

[2] B. William, Frakes and Kyo Kang, “Software

Reuse Research: Status and Future”, IEEE

Transactions on software engineering, Vol. 31,

n. 7, 2005.

[3] B. Jalendar, A. Govardhan and R. Emchand,

“Desiging code level reusable software

components”, International Journal of Software

Engineering & Applications, Vol. 3, n. 1,

January 2012, pp. 219-229.

[4] Y. Singh, P. K. Bhatia, O. Sangwan1, “software

reusability assessment using soft computing

techniques”, ACM SIGSOFT Software

Engineering Notes, Vol. 36, n. 1, January 2011,

pp. 1-7.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

74

[5] K. Kaur, N. Mohan and Dr. P. S. Sandhu,

“Reusability of Software Components using J48

Decision Tree”, Proceedings of the International

Conference on Artificial Intelligence and

Embedded Systems, 2012, pp.69-71.

[6] Y. Y. Ibraheem, A. M. Abualkishik and M. Z.

Mohd Yussof, Taxonomy, “Definition,

Approaches, Benefits, Reusability Levels,

Factors and adaptation of Software Reusability:

A Review of the Research Literature”, Journal

of Applied Sciences, Vol. 14, n. 20, 2014, pp.

2396-2421.

[7] B. Kitchenham, S. Charters, “Guidelines for

performing systematic literature reviews in

software engineering”, EBSE, 2007.

[8] E. S. Almeida, A. Alvaro, and D. Lucrédio, V.

C. Garcia, and, S. R. L. Meira, “RiSE Project:

Towards a Robust Framework for Software

Reus”, Proceedings of the In IEEE International

Conference on Information Reuse and

Integration (IRI), 2004, pp. 48–53.

[9] O. P. Rotaru, M. Dobre, “Reusability Metrics

for Software Components”, Proceedings of the

the 3rd ACS/IEEE International Conference,

2005, pp. 24.

[10] J. Finnigan, J.Blanchette, “A Forward-Looking

Software Reuse Strategy”, Proceedings of the

IEEE Aerospace Conference, 2007, pp. 1-9.

[11] V. Garcia, D. Lucrédio, A. Alvaro, “Towards a

Maturity Model for a Reuse Incremental

Adoption”, Proceedings of Simpósio Brasileiro

de Componentes, Arquitetura e Reutilização de

Software (SBCARS), 2007, pp. 61-74.

[12] F. McCarey, M.O. Cinneide and N.

Kushmerick, “Knowledge reuse for software

reuse”, Web Intelligence and Agent Systems,

Vol. 6, n. 1, 2008, pp. 59-81.

[13] R. Kamalraj, B.G Geetha, G. Singaravel,

“Reducing efforts on software project

management using software package

reusability”, Proceedings of the IEE Advance

Computing Conference, 2009, pp. 1624-1627.

[14] A.Sharma, P.S. Grover and R. Kumar,

“Reusability assessment for software

components”, ACM SIGSOFT Software

Engineering Notes, Vol. 34, n. 2, 2009, pp. 1-6.

[15] M. Dinsoreanu, I. Ignat, “A Value Analysis

Model for Measuring Software Reuse”,

Proceedings of the Second International

Conference IEE of Applications of Digital

Information and Web

Technologies(ICADIWT'09), 2009, pp. 846-

848.

[16] P.S. Sandhu, P. Kakkar, S. Sharma, “A survey

on software reusability”, Proceedings of the

Second International Conference IEE of

Applications of Mechanical and Electrical

Technology (ICMET), 2010, pp. 769-773.

[17] G. Singaravel, V. Palanisamy, A. Krishnan,

“Overview analysis of reusability metrics in

software development for risk reduction”,

Proceedings of the International Conference

IEE of Innovative Computing Technologies

(ICICT), 2010, pp. 1-5.

[18] K.S Jasmine, R. Vasantha, “A New Capability

Maturity Model For Reuse Based Software

Development process”, IACSIT International

Journal of Engineering and Technology, Vol. 2,

n. 1, February 2010, pp. 112-116.

[19] W. Spoelstra, M. Iacob, M. Sinderen,

“Software Reuse in Agile Development

Organizations - A Conceptual Management

Tool”, Proceedings of the 2011 ACM

Symposium on Applied Computing, 2011, pp.

315-322.

[20] B.Jalender, A. Govardhan,R. Emchand,

“Designing code level reusable software

components”, International Journal of Software

Engineering & Applications (IJSEA), Vol. 3, n.

1, January 2012, pp. 219-229.

[21] B. Koteska, G. Velinov, “Component-Based

Development: A Unified Model Of Reusability

Metrics”, Proceedings of ICT Innovations 2012:

Secure and Intelligent Systems, 2013, pp. 335.

[22] C. Hong, “Minimal information for reusable

scientific software”, Proceedings of the 2nd

Workshop on Working towards Sustainable

Scientific Software: Practice and Experience,

2014.

[23] S. Thakral, S. Sagar and Vinay, “Reusability in

Component Based Software Development - A

Review”, World Applied Sciences Journal, Vol.

31, n. 12, 2014, pp. 2068-2072.

[24] R. Keswani, S. Joshi, A. Jatain, “Software

Reuse in Practice”, Proceedings of the IEEE

International Conference on Advanced

Computing & Communication Technologies

(ACCT), 2014,pp. 159-162.

[25] C. Monga, A. Jatain, D. Gaur, “Impact of

Quality Attributes on Software Reusability and

Metrics to assess these Attributes”, Proceedings

of the IEEE International on Advance

Computing Conference (IACC), 2014, pp.

1430-1434.

[26] Md. Iftekharul A. Efat, Md. S. Siddik, M.

Shoyaib, S. M. Khaled, “Feature Prioritization

for Analyzing and Enhancing Software

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

Reusability”, Proceedings of the IEEE

International Conference on Informatics,

Electronics & Vision (ICIEV), 2014 pp. 1-5.

[27] P. K. Singh, O. P Sangwan, A. P. Singh, A.

Pratap, A Framework for Assessing the

Software Reusability using Fuzzy Logic

Approach for Aspect Oriented Software,

International Journal of Information

Technology and Computer Science, Vol. 7, n. 1,

2015, pp. 67-72.

[28] P. Clements and L. Northrop, Software Product

Lines: Practices and Patterns, Addison-Wesley,

2001.

[29] P. Koltun, P. A. Hudson, “A reuse maturity

model”, Proceedings of the 4th Annual

Workshop on Software Reuse, 1991.

[30] Davis, Ted, “The reuse capability model: A

basis for improving an organization’s reuse

capability”, Proceedings of 2nd ACM/IEEE

International Workshop on Software

Reusability, 1993, pp. 126-133.

[31] R. Prieto-D´ıaz, “Making software reuse work:

An implementation model”, ACM SIGSOFT

Software Engineering Notes, Vol. 16, n. 3,

1991, pp. 61-68.

[32] D.C. Rine, N. Nada, An empirical study of a

software reuse reference model, Information

and Software Technology, Vol. 42, n. 1, 2000,

pp. 47-65.

