
Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

109

IMPROVEMENT OF SHORTEST-PATH ALGORITHMS

USING SUBGRAPHS' HEURISTICS

1
FAISAL KHAMAYSEH,

2
NABIL ARMAN

1
Asstt Prof., Department of Information Technology, Palestine Polytechnic University

2
Prof., Department of Computer Science & Engineering, Palestine Polytechnic University

2
 Corresponding Author

E-mail:
1
faisal@ppu.edu,

2
narman@ppu.edu

ABSTRACT

Given a graph G=(V,E,w), where V and E are finite set of vertices and edges respectively, is a directed

weighted graph with weights denoted by w(e)>0 for each edge e ∈E. P(s,t) is the shortest path between the

given vertices <s> and <t> containing the least sum of edge weights on the path from <s> to <t>. Properties

of the graph representation, using different matrix structures to represent the graph in normal flow and

reverse representations, are considered. Based on these structures, a new algorithm determines the

candidate subgraphs and prunes every subgraph that is either unreachable from the given source vertex <s>

or does not lead to the given destination<t>, benefiting from the rich information inherent in the matrix and

reverse matrix structure representations of the graph. The experiments were conducted using our heuristic

and the conventional shortest path finding, namely Dijkstra’s algorithm. Practical results are given showing

considerable improvements of the proposed algorithm in performance. This improves the shortest path

algorithm significantly.

Keywords: Shortest Path, Pruning, Graph Algorithms, Candidate Subgraphs, Heuristics.

1. INTRODUCTION

Shortest path finding problems are the most

encountered problems in graph algorithms and

communication network applications. Since finding

shortest paths over network topology is demanding

and expensive, it is worthy to consider various

techniques and heuristics that can help in improving

the existing algorithms. The most well-known

algorithm for finding a single-source shortest path

is Dijkstra's algorithm [4]. There are many attempts

to improve the functionality of shortest path

algorithms using different assumptions and graph

representations [1]-[3] and [6]-[9]. The main scope

of this paper is to introduce some heuristics to

improve the performance of shortest path finding.

This study addresses the value of the graph

representation in both forms –the normal and the

reverse matrix representations - to improve the

performance of the shortest path algorithm.

The first section of this paper describes an

existing technique of graph representation and how

this technique works on path existence in directed

unweighted graphs [1]. The second section of the

paper represents the techniques of finding shortest

paths in directed weighted graphs with some

enhancements on some current methods. The

remaining sections present our algorithm and its

improvements. This work presents a new improved

variation of finding single source-destination

shortest path by focusing on candidate sub graphs.

Let G=(V,E,w) be a directed graph, where V is a

set of vertices, E is a set of edges and w is the

weight function, where w(e)>0 for each edge e∈E.

Let each edge e has a non-negative weight. Assume

<s> and <t> are given vertices where <s> and

<t>∈V, <s> is the source vertex and <t> is the

destination. The single pair source-destination

shortest path is to find the path with the minimum

cost sum of edges from source <s> to destination

<t>.

Finding the shortest path varies in time

complexity upon the constraints to be applied.

Such examples are finding the single-source

shortest path, single-source shortest path with the

possibility of negative weights, k-shortest paths,

single-pair using heuristics, all-pairs shortest paths,

etc. These assumptions and constraints may require

applying simple minimum spanning tree procedures

to effectively find the shortest path, while other

assumptions may require advanced algorithms such

as Dijkstra's algorithm. Some variations and

improvements based on tree structures have been

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

110

presented in the literature. Example of such

variations is the running time based on Fibonacci-

heap min-priority queue which is O(|V|log|V|+|E|)

assuming that w(e) is a nonnegative weight [4].

Recently, [10] attempted to improve shortest path

algorithm based on search strategy by introducing a

constraint function with weighted values. Reference

[12] ignores the large number of irrelevant nodes

during shortest path finding. Some researchers have

focused more on overcoming the network structure

rather than the algorithm itself. Reference [11]

presented an algorithm to find the shortest path

through graph partitioning. They took an advantage

of road network features to improve the search. The

main feature is the possibility of partitioning the

graph into a set of components or clusters. They

focused on simplifying the detailed graph by

clustering nodes that are near each other. In the

final generated graph, the search is conducted near

the start of the destination of the path and among

the components on the transit edges.

2. DATA STRUCTURES

The normal and reverse representations require

two matrices with maximum |V|
2
 elements to in

order to represent the graph G containing |V| non-

repeatable vertices [1]. For efficient implementation

and to save storage, the matrix can also be

represented as a linear array with |E| entries. Fig. 1

depicts graph G=(V,E,w) which is represented in

the matrix structure and linear array as shown in

Fig. 2 and Fig. 3 respectively. These representations

were used in developing parallel algorithms for the

generalized same generation queries in deductive

databases [3].

s

a
3 d

e
7

c

2 5

h8

7

k

3

6

w
12

4

b

i

g

j

m

t

f

l

v

n

3

6

8

11

12

2

4

11

11

6

2

5

11

12

9

q

3

8

6

7

z

7

12

Figure 1: Directed Wighted Graph G=(V,E,W)

The main advantage of the graph matrix

representation shown Fig. 2 is that it stores all paths

from each node to all reachable nodes in the graph

G. This representation introduces a set of benefits.

Checking path existence and path links takes linear

time. This matrix also shows all graph roots and

paths' ends in reference to a given source vertex s.

This means that any unreachable vertex from a

given source is shown in the first column (the

source column). Each path is represented in as a

depth first search traversal order while common

parts of the paths are stored only once using array

indexing to avoid sub path duplications. For

example, if paths p1=<v1,v2,vi,…,vn-1,vn> and

p2=<v1,v2,..,vi,..,vm> are present in the graph, then

p2 is stored in the next row of p1 starting from the

column (i+1) representing the rest of the p2 as <vi+1,

vi+2, …> with empty i+1 entries. Moreover, the

vertex is represented only once in direct form. This

leads to store the distinct subpaths by storing the

first-visited nodes and recording their coordinates

while subsequent subpaths that are shared in more

than one path are represented by storing the

coordinates' pointer to the first common revisited

node. The basic advantage of this efficient graph-

- 0 1 2 3 4 5 6 7 8

0 s a b Z

1 I 0,3

2 j l m

3 k 2,4

4 2,5

5 n 2,6

6 t w

7 q 6,7

8 c 0,1

9 3,4

10 6,7

11 d h 8,1

12 6,7

13 e 11,0

14 f g 11,1

15 7,7

16 v 7,7

Figure 2: Graphmatrix Representation

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

- 0 1 2 3 4 5 6 7

0 z

 b

a

s

1 c

0,3

2

h

d

e

3 g f 2,6

4 i 0,1

5 m l j 4,1

6 k 1,3

7

4,1

8 6,3

9 n 6,3

10 w 1,3

11

t

9,1

12 q 11,

1

13 3,5

14 v 3,5

15 2,4

Figure 4: Reverse Matrix Representation

matrix representation is to avoid duplicate

representations of common subpaths.

The reverse matrix structure represents the graph

with leaves stored first. The advantage of this

representation is that it stores all paths that can

reach the node from the source nodes. The reverse

matrix can be constructed in the same way the main

matrix is constructed. The paths

p1=<v1,v2,v3,v4,v5> and p2=<v1,v2,v7,v8> that

are linearly retrieved from reverse matrix indicate

that the sources v5 and v8 reach the destination

vertex v1.

The sizes of both used graph matrices may differ

in the way of representing paths. The reason is that

some parts of some represented paths may be

visited earlier and being referenced later, while

these nodes may explicitly appear in consecutive

row entries or consecutive row and column entries

if first visited. For example; in the main matrix

representation, as shown in Fig. 2; if we attempt to

visit the two subgraphs of source <s> in a way that

subgraph rooted with <c>comes before the one

rooted with <a>, then the whole part rooted with

<k> in entry (3,4) is left-shifted two columns

because it is previously visited as successor of node

<c>. Another observation is that the number of

entries in both matrices must be the same, since

these entries represent the nodes and edges of the

main graph.

3. WEIGHTS REPRESENTATION

The straight forward representation of the graph

is to modify the matrix in Fig. 2 by adding the

weights, accumulative weight and the previously

utilized predecessor vertex in the same structure.

The structure (Vertex, Dist, Pred node) is used as

a matrix entry representation as shown in Fig. 5.

The advantage of this matrix is to be used while

finding the shortest path down to the current vertex

by adding either the current weight or by adding the

weight of the new Pred node. This is possible by

going through the paths stored in the weighted

graph matrix represented in Fig. 5 taking into

account the candidate vertices produced by marking

the set of vertices V' which is accomplished by

going through the reverse matrix starting from the

destination vertex <t> as shown in marked (shaded)

entries in Fig. 4. In this case, the distance of the

path (dist) is to be updated to the minimum sum of

Node reference Node Reference

0,0 s 8,1 c

0,1 a 8,2 0,1

0,2 b 9,2 3,4

0,3 z 10,2 6,7

1,3 i 11,0 d

1,4 0,3 11,1 h

2,4 j 11,2 8,1

2,5 l 12,2 6,7

2,6 m 13,0 e

3,4 k 13,1 11,0

3,5 2,4 14,1 f

4,5 2,5 14,2 g

5,5 n 14,3 11,1

5,6 2,6 15,3 7,7

6,6 t 16,3 v

6,7 w 16,4 7,7

7,7 q

7,8 6,7

Figure 3: Linear Array Representation

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

112

weights based on the new weight corresponding to

the new vertex. This ends up with the minimum

sum of weights from source vertex to current vertex

via the previously selected one which is named

Pred Node in this procedure.

The algorithm always adds the smallest weighted

candidate edge to the shortest tree keeping the

shortest path being calculated from the vertices of

candidate subgraph G'. As an example, the

procedure goes only through the candidate marked

entries as illustrated in Fig. 5 looking for the

shortest path. Other nodes are excluded by the

algorithm as these nodes do not lead to the

destination.

Figure 6: Candidate Subgraph G' (V',E',w)

Nodes 0 1 2 3 4 5 6 7 8

0 s - a 3 b 5 z

 s a

1 i 8 0,3

 b

2 j l m

3 K 11 2,4

 c

4 2,5

5 n 23 2,6

 k

6 t 34 w

 n

7 q 6,7

8 c 5 0,1

 s

9 3,4

10 6,7

11 d h 8,1

12 6,7

13 e 11,0

14 f g 11,1

15 7,7

16 v 7,7

Figure 5: Weighted Graph Matrix Representation.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

113

4. PROPOSED ALGORITHM

The advantage of shortest-path algorithms and

corresponding structure is apparent when the

algorithm is applied on large graphs such as huge

network nodes. It is not practical to use traditional

algorithms to find the shortest path. It is worthy to

minimize the graph and exclude the parts that do

not lead to destination vertex. This optimized

technique may exclude huge parts of the graph and

hence saves the cost and improves the performance

of the graph. The technique is summarized as:

1) Construct the matrix to represent the graph

with inner structure that includes the Vertex,

Dist, and Pred Node. Dist[v] maintains the

minimum distance to <v> via Pred Node.

2) Construct the Reverse Matrix to represent the

graph rooted with destinations.

3) Traverse the graph G starting by the given

destination to mark all candidate nodes in the

main matrix representation. This is possible

using Reverse Matrix marking all candidate

nodes as shown in Fig. 6. This is also possible

in different ways as preferred by the

programmer, e.g., copying the candidate nodes

to a different reduced matrix, having a mark

flag in the node structure, or by changing the

weights of the excluded nodes to infinity in

the main graph matrix. The preferred way is to

have a 0/1 flag in a corresponding coordinate

linear array representation.

4) After marking the candidate subgraph in the

main matrix, and starting from the given

source s, the algorithm adds all neighbor

edges by visiting all nodes listed in the next

column (breadth fashion) of the current node

(vertex). In this case, we always accumulate

the subpath weight by adding the current

vertex weight to accumulated path weight

(dist). Whenever we read the coordinates (i,j)

of any vertex, it means that we revisit the node

using another edge e with new weight w(e). In

this case we directly jump to coordinates'

pointer (i,j) in the main graph matrix as

represented in Fig. 2 and compare the new

weights and hence we keep the minimum path

distance with updated predecessor nodes.

Keeping the predecessor vertices enables us to

trace back the shortest path form the current vertex

to the source vertex. Starting from this source

vertex, the destination vertex is reached with no

guarantee that the search proceeds directly to this

destination. In some cases, the search will explore

irrelevant parts of the graph.

These steps assure that the shortest path works

only on candidate subgraphs that form the shortest

tree with leaves are possible destinations. Having

one destination in account, the reverse visits

minimize the candidate tree and excludes all parts

that do not lead to the given destination. Hence, the

algorithm ignores all unmarked tree nodes and

unreachable parts as shown in shaded excluded

subgraphsG1' and G2' in Fig. 8.This improved

technique leads to considerable saving in real

networks, such as communication and routs

networks.

The final shortest path tree is then formed from

the marked nodes within the indicated nodes in

candidate space. The minimized shortest tree is

shown in Fig. 9 as an overlap between the possible

shortest tree and the candidate subgraph. The

advantage of these candidate subgraphs is to

Vertex No vertex Coordinates Mark

0 s <0,0> 0 1

1 a <0,1> 0 1

2 b <0,2> 0 1

3 z <0,3> 0

4 i <1,3> 0 1

5 j <2,4> 0

6 l <2,5> 0

7 m <2,6> 0

8 k <3,4> 0 1

9 n <5,5> 0 1

10 t <6,6> 0 1

11 w <6,7> 0

12 q <7,7> 0

13 c <8,1> 0 1

14 d <11,0> 0 1

15 h <11,1> 0 1

16 e <13,0> 0 1

17 f <14,1> 0 1

18 g <14,2> 0 1

19 v <16,3> 0

Figure 7: MarkMatrix

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

114

minimize the graph to as small as possible around

the shortest path especially when source and

destination vertices are specifically indicated. More

precisely, we save the effort of the algorithm in

finding the shortest paths in irrelevant graph parts.

Algorithm Shortest Path Using Candidates

mainly uses the matrices Reverse Matrix, Weighted

Graph Matrix, and Mark Matrix in Figures 4, 5, and

7 respectively. The Reverse Matrix is generated

from original unweighted directed Graph Matrix

representation in Fig. 2. The two given source and

destination nodes are assumed to exist in the graph

G. An efficient algorithm called Path Existence

Query that aids in finding the existence of the path

in a directed graph from <s> to <t> is presented in

ref. [1]. The algorithm proceeds by finding the

candidate nodes starting from the destination node

<t> visiting all predecessors towards the source

node <s>. This is the main advantage of using the

reverse representation in Fig. 4. Marking nodes is

possible by updating Mark Matrix as shown in Fig.

7. It starts by initializing marked vertices to unmark

tag equals to zero. Then the algorithm finds the

shortest path among the marked nodes as of

Weighted Graph Matrix representation. The

function keeps in each entry of the main values;

Vertex, Dist, and Pred Node. These values are

updated as the procedure proceeds. Specifically, it

starts from the source node <s> checking the

marked nodes and calculating the path distance

horizontally then diagonally. The function stores in

Dist (when first visit the node) the accumulated

weight up to the Vertex, by adding the vertex

weight from its predecessor Pred Node. The

function keeps updating the Dist whenever reads a

coordinates of revisited node. Similar to updated

phases of Dijkstra’s algorithm [4], [5], it compares

the last calculated weight with the new weight

keeping the minimum value and the corresponding

predecessor node. This assures the objective of

finding the shortest path and can be done by

updating and applying any known shortest path

algorithm with slight updates.

Shortest Path Using Subgraph's Heuristics

The proposed algorithm benefits from the real

candidate subgraphs and ignores other irrelevant

graph parts looking for the shortest Path as

illustrated in following algorithm. On the other

hand, it finds the shortest path based on the

exclusion of all nodes in the graph that do not lead

to destination. This efficient procedure saves much

work comparing to the functionality of known

conventional algorithms, since the later works

exhaustively in the whole graph structure. The key

procedure in the algorithm it to structure the graph

baths in the matrices where candidate paths are

every path P(s,t) having source vertex <s> and

destination <t> as the P's head and end respectively.

This implies that every sub bath P'(s',t') where s'

Figure 9: Shortest Tree

Figure 8: Candidate Shortest Tree Space

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

and t' belong to the path P' is also included in the

candidate subgraph G'.

Algorithm
Shortest_Path_Using_Candidates(Graph, Mark,

Reverse_Matrix)

{

 initialize Mark[i] to 0

 Node=t

 Mark[Node]=1

 for every vertex next to Node in Reverse_Matrix

 if vertex != coordinates_pointer

 Node=vertex

 else

 Node=ReverseMatrix[coordinates_pointer]

 Mark[Node]=1

 end if

 end for

 dist= FindShortest(GraphMatrix, Mark, s)

}

Function FindShortest(GraphMatrix,Mark,s)
{

 for each vertex v in GraphMatrix

 Initialize dist[v] = infinity

 pred[v] = undefined

 end for

 dist[s] := 0

 MarkQ = set of Marked nodes in GraphMatrix

 ordered as of depth first search visits.

while MarkQ is not empty and u != t

 u= vertex in MarkQ with smallest distance in

 dist[];

 remove u from MarkQ

 if (u == t ||dist[u] == infinity) then break

 end if

 for each neighbor v of u and v is in MarkQ

 if v is coordinate pointer <a,b>

 v=GraphMatrix[a,b]

 end if

 p = dist[u] + dist_between(u, v)

 if p<dist[v]

 dist[v] = p

 pred[v] = u

 update v in MarkQ

 end if

 end for

end while

return dist

}

5. PERFORMANCE IMPROVEMENTS AND

MEASUREMENTS

An algorithm that finds the shortest path P(s,t)

between two given vertices <s> and <t> in a

directed weighted graph G(V,E,w) is presented.It

clearly determines the candidate subgraph

G'(V',E',w) corresponding to destination <t>

ignoring all subgraphs that do not lead to

destination from any source. This obvious

improvement excludes all disconnected parts that

may form large parts of graphs and this lowers the

cost. Each shortest path requires O((|V|+|E|)log |V|)

using traditional algorithms making the cost

extremely high.

The proposed algorithm introduces more

improvements comparing with some late studies

such as the improvements introduced in [7].

Moreover, our algorithm works in better and

improved performance on sparse and dense

networks.

The experimental phase provides evidence that

the proposed heuristic outperforms the conventional

algorithms. The performance of the algorithm is

compared with that of the conventional procedure

and shows a considerable cost saving in random

generated graphs with different sizes range from

100 to 500 nodes. Savings in performance occur in

dense graphs and more in sparse ones in most of the

trials. Table 1 shows the performance saving ratios

as a result of the experiment.

Figures 10 and 11 show the average performance

of applying the improved Dijkstra's algorithm on

set of random graphs with different density degrees.

This shows that the proposed algorithm

Table 1: Saving Ratio Of Performance In Sparse

And Dense Graphs

Nodes Sparse (%) Dense (%)

100 0.8907436 0.7525469

150 0.646433 0.6867926

200 0.5183573 0.6371958

250 0.5245072 0.6202232

300 0.5218704 0.6107841

350 0.5804231 0.4876443

400 0.5880742 0.4801536

450 0.5670171 0.4614253

500 0.6200705 0.4900764

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

Figure 11: Performance Of Proposed Algorithm Vs.

Improved Dijkstra’s Algorithm On Dense Graph

Figure10: Performance Of Proposed Algorithm Vs.

Improved Dijkstra’s Algorithm On Sparse Graph

outperforms the improved procedures such as

improved Dijkstra's algorithm.

6. CONCLUSIONS

An efficient and improved heuristic algorithm

for finding shortest paths between a given source

<s> and destination <t> using candidate subgraph

in a weighted directed graph G(V,E,w) with

weights as a function of |w(e)| is presented. In the

practical phase, the algorithm outperforms the

performance of improved Dijkstra's algorithm. It

shows obvious improved performance in set of

random general applied graphs. As a new heuristic

algorithm, the complexity will always be bounded

by the complexity of known algorithms, i.e., it will

not exceed O((|V|+|E|)log |V|) for each source <si>

and each destination <ti> in graph G.

The candidate nodes are identified as all nodes

exist in paths lead to destination node <t>. The

proposed heuristic determines the candidate

subgraphs by marking the ancestors of the

destination node using reverse matrix

representation to enable backward traversals.

Comparing with current conventional algorithms,

this heuristic improves the shortest path algorithm

significantly.

ACKNOWLEDGMENTS

This research is funded by The Scientific

Research Council, Ministry of Education and

Higher Education, State of Palestine under a project

number of 01/12/2013, and Palestine Polytechnic

University. The authors would like to thank the

research assistants Ms. Walaa Naser Idin and Ms.

Salma Dirbashi for their help in implementing the

algorithms.

REFERENCES:

[1] N. Arman. An Efficient Algorithm for

Checking Path Existence between Graph

Vertices. Proceedings of the 6th International

Arab Conference on Information Technology

(ACIT’2005), pp. 471-476, December 6-8,

2005, Al-Isra Private University, Amman,

Jordan, 2005.

[2] H. N. Djidjev, G. E. Pantziou, and C. D.

Zaroliagis. Improved Algorithms for Dynamic

Shortest Paths. Algorithmica, 2000 28: 367–

389.

[3] N. Arman. Parallel Algorithms for the

Generalized Same Generation Query in

Deductive Databases, Journal of Digital

Information Management: 4(3), 2006, 192-

196, ISSN 0972-72.

[4] T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein.. Dijkstra's

Algorithm. Introduction to Algorithms (Second

ed.). Section 24.3: pp. 595–601. MIT

Press and McGraw-Hill. 2001. ISBN 0-262-

03293-7.

[5] E. W. Dijkstra. A note on Two Problems in

Connexion with Graphs. Numerische

Mathematik 1, 1959. 269–271.

[6] J. B. Orlin, K. Kamesh Madduri, K.

Subramani, and M. Williamson. 2010. A faster

algorithm for the single source shortest path

problem with few distinct positive lengths. J.

Journal of Theoretical and Applied Information Technology
 10

th
 June 2015. Vol.76. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

of Discrete Algorithms 8(2), June 2010, 189-

198.

[7] L. Xiao, L. Chen, and J. Xiao. A new algorithm

for shortest path problem in large-scale

graph. Appl. Math, 6(3), 2012, 657-663.

[8] F. Zhang, A. Qiu, and Q. Li. Improve on

Dijkstra Shortest Path Algorithm for Huge

Data. Chinese academy of surveying and

mapping: China, 2005.

[9] F. Khamayseh and N. Arman. An Efficient

Heuristic Shortest Path Algorithm Using

Candidate Subgraphs. International Conference

on Intelligent Systems and Applications.

Hammamet, Tunisia. 22-24 March 2014.

[10] F. Khamayseh and N. Arman. An Efficient

Multiple Sources Single-Destination (MSSD)

Heuristic Algorithm Using Nodes Exclusions.

International Journal of Soft Computing. IJSC

10(3), 2015.

[11] F. Simekand I. Simecek. Improvement of

Shortest Path Algorithms through Graph

Partitioning. International Conference

Presentation of Mathematics. Liberec, Czech

Republic, 2011.

[12] Y. Huang, Q. Yi, and M. Shi. An Improved

Dijkstra Shortest Path Algorithm. Proceedings

of the 2nd International Conference on

Computer Science and Electronics Engineering

ICCSEE-2013. Hangzhou, China, March

2013. Atlantis Press, 2013: 226-229.

