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ABSTRACT 

 

Given a graph G=(V,E,w), where V and E are finite set of vertices and edges respectively, is a directed 

weighted graph with weights denoted by w(e)>0 for each edge e ∈E. P(s,t) is the shortest path between the 

given vertices <s> and <t> containing the least sum of edge weights on the path from <s> to <t>. Properties 

of the graph representation, using different matrix structures to represent the graph in normal flow and 

reverse representations, are considered. Based on these structures, a new algorithm determines the 

candidate subgraphs and prunes every subgraph that is either unreachable from the given source vertex <s> 

or does not lead to the given destination<t>, benefiting from the rich information inherent in the matrix and 

reverse matrix structure representations of the graph. The experiments were conducted using our heuristic 

and the conventional shortest path finding, namely Dijkstra’s algorithm. Practical results are given showing 

considerable improvements of the proposed algorithm in performance. This improves the shortest path 

algorithm significantly. 

Keywords: Shortest Path, Pruning, Graph Algorithms, Candidate Subgraphs, Heuristics. 

 

1. INTRODUCTION 

 

Shortest path finding problems are the most 

encountered problems in graph algorithms and 

communication network applications. Since finding 

shortest paths over network topology is demanding 

and expensive, it is worthy to consider various 

techniques and heuristics that can help in improving 

the existing algorithms. The most well-known 

algorithm for finding a single-source shortest path 

is Dijkstra's algorithm [4].  There are many attempts 

to improve the functionality of shortest path 

algorithms using different assumptions and graph 

representations [1]-[3] and [6]-[9]. The main scope 

of this paper is to introduce some heuristics to 

improve the performance of shortest path finding. 

This study addresses the value of the graph 

representation in both forms –the normal and the 

reverse matrix representations - to improve the 

performance of the shortest path algorithm.  

The first section of this paper describes an 

existing technique of graph representation and how 

this technique works on path existence in directed 

unweighted graphs [1]. The second section of the 

paper represents the techniques of finding shortest 

paths in directed weighted graphs with some 

enhancements on some current methods. The 

remaining sections present our algorithm and its 

improvements. This work presents a new improved 

variation of finding single source-destination 

shortest path by focusing on candidate sub graphs. 

Let G=(V,E,w) be a directed graph, where V is a 

set of vertices, E is a set of edges and w is the 

weight function, where w(e)>0 for each edge e∈E. 

Let each edge e has a non-negative weight. Assume 

<s> and <t> are given vertices where <s> and 

<t>∈V, <s> is the source vertex and <t> is the 

destination.  The single pair source-destination 

shortest path is to find the path with the minimum 

cost sum of edges from source <s> to destination 

<t>.   

Finding the shortest path varies in time 

complexity upon the constraints to be applied.  

Such examples are finding the single-source 

shortest path, single-source shortest path with the 

possibility of negative weights, k-shortest paths, 

single-pair using heuristics, all-pairs shortest paths, 

etc.  These assumptions and constraints may require 

applying simple minimum spanning tree procedures 

to effectively find the shortest path, while other 

assumptions may require advanced algorithms such 

as Dijkstra's algorithm. Some variations and 

improvements based on tree structures have been 
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presented in the literature.  Example of such 

variations is the running time based on Fibonacci-

heap min-priority queue which is O(|V|log|V|+|E|) 

assuming that w(e) is a nonnegative weight [4].  

Recently, [10] attempted to improve shortest path 

algorithm based on search strategy by introducing a 

constraint function with weighted values. Reference 

[12] ignores the large number of irrelevant nodes 

during shortest path finding. Some researchers have 

focused more on overcoming the network structure 

rather than the algorithm itself. Reference [11] 

presented an algorithm to find the shortest path 

through graph partitioning. They took an advantage 

of road network features to improve the search. The 

main feature is the possibility of partitioning the 

graph into a set of components or clusters. They 

focused on simplifying the detailed graph by 

clustering nodes that are near each other. In the 

final generated graph, the search is conducted near 

the start of the destination of the path and among 

the components on the transit edges.  

2. DATA STRUCTURES 

 

The normal and reverse representations require 

two matrices with maximum |V|
2
 elements to in 

order to represent the graph G containing |V| non-

repeatable vertices [1]. For efficient implementation 

and to save storage, the matrix can also be 

represented as a linear array with |E| entries.  Fig. 1 

depicts graph G=(V,E,w) which is represented in 

the matrix structure and linear array as shown in 

Fig. 2 and Fig. 3 respectively. These representations 

were used in developing parallel algorithms for the 

generalized same generation queries in deductive 

databases [3].  
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Figure 1: Directed Wighted Graph G=(V,E,W) 

The main advantage of the graph matrix 

representation shown Fig. 2 is that it stores all paths 

from each node to all reachable nodes in the graph 

G. This representation introduces a set of benefits. 

Checking path existence and path links takes linear 

time. This matrix also shows all graph roots and 

paths' ends in reference to a given source vertex s. 

This means that any unreachable vertex from a 

given source is shown in the first column (the 

source column).  Each path is represented in as a 

depth first search traversal order while common 

parts of the paths are stored only once using array 

indexing to avoid sub path duplications. For 

example, if paths p1=<v1,v2,vi,…,vn-1,vn> and 

p2=<v1,v2,..,vi,..,vm> are present in the graph, then 

p2 is stored in the next row of p1 starting from the 

column (i+1) representing the rest of the p2 as <vi+1, 

vi+2, …> with empty i+1 entries.  Moreover, the 

vertex is represented only once in direct form. This 

leads to store the distinct subpaths by storing the 

first-visited nodes and recording their coordinates 

while subsequent subpaths that are shared in more 

than one path are represented by storing the 

coordinates' pointer to the first common revisited 

node. The basic advantage of this efficient graph-
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Figure 2: Graphmatrix Representation 
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Figure 4: Reverse Matrix Representation 
 

matrix representation is to avoid duplicate 

representations of common subpaths. 

The reverse matrix structure represents the graph 

with leaves stored first. The advantage of this 

representation is that it stores all paths that can 

reach the node from the source nodes. The reverse 

matrix can be constructed in the same way the main 

matrix is constructed. The paths 

p1=<v1,v2,v3,v4,v5> and p2=<v1,v2,v7,v8> that 

are linearly retrieved from reverse matrix indicate 

that the sources v5 and v8 reach the destination 

vertex v1. 

The sizes of both used graph matrices may differ 

in the way of representing paths. The reason is that 

some parts of some represented paths may be 

visited earlier and being referenced later, while 

these nodes may explicitly appear in consecutive 

row entries or consecutive row and column entries 

if first visited. For example; in the main matrix 

representation, as shown in Fig. 2; if we attempt to 

visit the two subgraphs of source <s> in a way that 

subgraph rooted with <c>comes before the one 

rooted with <a>, then the whole part rooted with 

<k> in entry (3,4) is left-shifted two columns 

because it is previously visited as successor of node 

<c>. Another observation is that the number of 

entries in both matrices must be the same, since 

these entries represent the nodes and edges of the 

main graph. 

3. WEIGHTS REPRESENTATION 

 

The straight forward representation of the graph 

is to modify the matrix in Fig. 2 by adding the 

weights, accumulative weight and the previously 

utilized predecessor vertex in the same structure. 

The structure (Vertex, Dist, Pred node) is used as 

a matrix entry representation as shown in Fig. 5. 

The advantage of this matrix is to be used while 

finding the shortest path down to the current vertex 

by adding either the current weight or by adding the 

weight of the new Pred node.  This is possible by 

going through the paths stored in the weighted 

graph matrix represented in Fig. 5 taking into 

account the candidate vertices produced by marking 

the set of vertices V' which is accomplished by 

going through the reverse matrix starting from the 

destination vertex <t> as shown in marked (shaded) 

entries in Fig. 4. In this case, the distance of the 

path (dist) is to be updated to the minimum sum of 
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Figure 3: Linear Array Representation 
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weights based on the new weight corresponding to 

the new vertex. This ends up with the minimum 

sum of weights from source vertex to current vertex 

via the previously selected one which is named 

Pred Node in this procedure. 

The algorithm always adds the smallest weighted 

candidate edge to the shortest tree keeping the 

shortest path being calculated from the vertices of 

candidate subgraph G'. As an example, the 

procedure goes only through the candidate marked 

entries as illustrated in Fig. 5 looking for the 

shortest path. Other nodes are excluded by the 

algorithm as these nodes do not lead to the 

destination. 

 

 
Figure 6: Candidate Subgraph G' (V',E',w) 
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Figure 5: Weighted Graph Matrix Representation. 
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4. PROPOSED ALGORITHM 

 

The advantage of shortest-path algorithms and 

corresponding structure is apparent when the 

algorithm is applied on large graphs such as huge 

network nodes.  It is not practical to use traditional 

algorithms to find the shortest path. It is worthy to 

minimize the graph and exclude the parts that do 

not lead to destination vertex. This optimized 

technique may exclude huge parts of the graph and 

hence saves the cost and improves the performance 

of the graph. The technique is summarized as: 

 

1) Construct the matrix to represent the graph 

with inner structure that includes the Vertex, 

Dist, and Pred Node. Dist[v] maintains the 

minimum distance to <v> via Pred Node.  

2) Construct the Reverse Matrix to represent the 

graph rooted with destinations.  

3) Traverse the graph G starting by the given 

destination to mark all candidate nodes in the 

main matrix representation. This is possible 

using Reverse Matrix marking all candidate 

nodes as shown in Fig. 6. This is also possible 

in different ways as preferred by the 

programmer, e.g., copying the candidate nodes 

to a different reduced matrix, having a mark 

flag in the node structure, or by changing the 

weights of the excluded nodes to infinity in 

the main graph matrix. The preferred way is to 

have a 0/1 flag in a corresponding coordinate 

linear array representation. 

4) After marking the candidate subgraph in the 

main matrix, and starting from the given 

source s, the algorithm adds all neighbor 

edges by visiting all nodes listed in the next 

column (breadth fashion) of the current node 

(vertex). In this case, we always accumulate 

the subpath weight by adding the current 

vertex weight to accumulated path weight 

(dist). Whenever we read the coordinates (i,j) 

of any vertex, it means that we revisit the node 

using another edge e with new weight w(e). In 

this case we directly jump to coordinates' 

pointer (i,j) in the main graph matrix as 

represented in Fig. 2 and compare the new 

weights and hence we keep the minimum path 

distance with updated predecessor nodes. 

Keeping the predecessor vertices enables us to 

trace back the shortest path form the current vertex 

to the source vertex. Starting from this source 

vertex, the destination vertex is reached with no 

guarantee that the search proceeds directly to this 

destination. In some cases, the search will explore 

irrelevant parts of the graph.  

 

These steps assure that the shortest path works 

only on candidate subgraphs that form the shortest 

tree with leaves are possible destinations. Having 

one destination in account, the reverse visits 

minimize the candidate tree and excludes all parts 

that do not lead to the given destination. Hence, the 

algorithm ignores all unmarked tree nodes and 

unreachable parts as shown in shaded excluded 

subgraphsG1' and G2' in Fig. 8.This improved 

technique leads to considerable saving in real 

networks, such as communication and routs 

networks. 

The final shortest path tree is then formed from 

the marked nodes within the indicated nodes in 

candidate space. The minimized shortest tree is 

shown in Fig. 9 as an overlap between the possible 

shortest tree and the candidate subgraph. The 

advantage of these candidate subgraphs is to 

 

Vertex No vertex Coordinates Mark 

0 s <0,0> 0  1 

1 a <0,1> 0  1 

2 b <0,2> 0  1 

3 z <0,3> 0 

4 i <1,3> 0  1 

5 j <2,4> 0 

6 l <2,5> 0 

7 m <2,6> 0 

8 k <3,4> 0  1 

9 n <5,5> 0  1 

10 t <6,6> 0  1 

11 w <6,7> 0 

12 q <7,7> 0 

13 c <8,1> 0  1 

14 d <11,0> 0  1 

15 h <11,1> 0  1 

16 e <13,0> 0  1 

17 f <14,1> 0  1 

18 g <14,2> 0  1 

19 v <16,3> 0 

Figure 7: MarkMatrix 
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minimize the graph to as small as possible around 

the shortest path especially when source and 

destination vertices are specifically indicated. More 

precisely, we save the effort of the algorithm in 

finding the shortest paths in irrelevant graph parts. 

 

Algorithm Shortest Path Using Candidates 

mainly uses the matrices Reverse Matrix, Weighted 

Graph Matrix, and Mark Matrix in Figures 4, 5, and 

7 respectively. The Reverse Matrix is generated 

from original unweighted directed Graph Matrix 

representation in Fig. 2. The two given source and 

destination nodes are assumed to exist in the graph 

G. An efficient algorithm called Path Existence 

Query that aids in finding the existence of the path 

in a directed graph from <s> to <t> is presented in 

ref. [1]. The algorithm proceeds by finding the 

candidate nodes starting from the destination node 

<t> visiting all predecessors towards the source 

node <s>. This is the main advantage of using the 

reverse representation in Fig. 4. Marking nodes is 

possible by updating Mark Matrix as shown in Fig. 

7. It starts by initializing marked vertices to unmark 

tag equals to zero. Then the algorithm finds the 

shortest path among the marked nodes as of 

Weighted Graph Matrix representation. The 

function keeps in each entry of the main values; 

Vertex, Dist, and Pred Node. These values are 

updated as the procedure proceeds. Specifically, it 

starts from the source node <s> checking the 

marked nodes and calculating the path distance 

horizontally then diagonally. The function stores in 

Dist (when first visit the node) the accumulated 

weight up to the Vertex, by adding the vertex 

weight from its predecessor Pred Node. The 

function keeps updating the Dist whenever reads a 

coordinates of revisited node. Similar to updated 

phases of Dijkstra’s algorithm [4], [5], it compares 

the last calculated weight with the new weight 

keeping the minimum value and the corresponding 

predecessor node. This assures the objective of 

finding the shortest path and can be done by 

updating and applying any known shortest path 

algorithm with slight updates. 

 

Shortest Path Using Subgraph's Heuristics 

The proposed algorithm benefits from the real 

candidate subgraphs and ignores other irrelevant 

graph parts looking for the shortest Path as 

illustrated in following algorithm. On the other 

hand, it finds the shortest path based on the 

exclusion of all nodes in the graph that do not lead 

to destination. This efficient procedure saves much 

work comparing to the functionality of known 

conventional algorithms, since the later works 

exhaustively in the whole graph structure. The key 

procedure in the algorithm it to structure the graph 

baths in the matrices where candidate paths are 

every path P(s,t)  having source vertex <s> and 

destination <t> as the P's head and end respectively. 

This implies that every sub bath P'(s',t') where s' 

 

Figure 9: Shortest Tree 

 

 

Figure 8: Candidate Shortest Tree Space 
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and t' belong to the path P' is also included in the 

candidate subgraph G'. 

 
 

Algorithm 
Shortest_Path_Using_Candidates(Graph, Mark, 

Reverse_Matrix) 

{    

   initialize Mark[i] to 0 

   Node=t 

   Mark[Node]=1 

   for every vertex next to Node in Reverse_Matrix 

      if vertex != coordinates_pointer 

          Node=vertex 

      else    

           Node=ReverseMatrix[coordinates_pointer] 

          Mark[Node]=1 

     end if 

  end for 

  dist= FindShortest(GraphMatrix, Mark, s) 

} 
 

  

 

 

Function FindShortest(GraphMatrix,Mark,s) 
{   

  for each vertex v in GraphMatrix  

        Initialize dist[v] = infinity    

        pred[v] = undefined  

  end for                                            

 dist[s] := 0   

 MarkQ = set of Marked nodes in GraphMatrix   

 ordered as of depth first search visits.  

while MarkQ is not empty and u != t                               

        u= vertex in MarkQ with smallest distance in     

        dist[ ];  

        remove u from MarkQ 

        if (u == t ||dist[u] == infinity)  then break  

        end if                                        

       for each neighbor v of u and v is in MarkQ 

          if v is coordinate pointer <a,b> 

                v=GraphMatrix[a,b]  

          end if  

          p = dist[u] + dist_between(u, v)  

         if p<dist[v]     

                dist[v] = p  

                pred[v] = u  

               update  v in MarkQ 

         end if 

      end for 

end while 

return dist 

} 
 

5. PERFORMANCE IMPROVEMENTS AND 

MEASUREMENTS 

 

An algorithm that finds the shortest path P(s,t) 

between two given vertices <s> and <t> in a 

directed weighted graph G(V,E,w) is presented.It 

clearly determines the candidate subgraph 

G'(V',E',w) corresponding to destination <t> 

ignoring all subgraphs that do not lead to 

destination from any source.  This obvious 

improvement excludes all disconnected parts that 

may form large parts of graphs and this lowers the 

cost. Each shortest path requires O((|V|+|E|)log |V|) 

using traditional algorithms making the cost 

extremely high.  

The proposed algorithm introduces more 

improvements comparing with some late studies 

such as the improvements introduced in [7].  

Moreover, our algorithm works in better and 

improved performance on sparse and dense 

networks. 

The experimental phase provides evidence that 

the proposed heuristic outperforms the conventional 

algorithms. The performance of the algorithm is 

compared with that of the conventional procedure 

and shows a considerable cost saving in random 

generated graphs with different sizes range from 

100 to 500 nodes. Savings in performance occur in 

dense graphs and more in sparse ones in most of the 

trials.  Table 1 shows the performance saving ratios 

as a result of the experiment.  

Figures 10 and 11 show the average performance 

of applying the improved Dijkstra's algorithm on 

set of random graphs with different density degrees. 

This shows that the proposed algorithm 

Table 1: Saving Ratio Of Performance In Sparse 

And Dense Graphs 

Nodes   Sparse (%)          Dense (%) 

100 0.8907436 0.7525469 

150 0.646433 0.6867926 

200 0.5183573 0.6371958 

250 0.5245072 0.6202232 

300 0.5218704 0.6107841 

350 0.5804231 0.4876443 

400 0.5880742 0.4801536 

450 0.5670171 0.4614253 

500 0.6200705 0.4900764 
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Figure 11: Performance Of Proposed Algorithm Vs. 

Improved Dijkstra’s Algorithm On Dense Graph 

 

Figure10: Performance Of Proposed Algorithm Vs. 

Improved Dijkstra’s Algorithm On Sparse Graph 

outperforms the improved procedures such as 

improved Dijkstra's algorithm. 

 

6. CONCLUSIONS  

 

An efficient and improved heuristic algorithm 

for finding shortest paths between a given source 

<s> and destination <t> using candidate subgraph 

in a weighted directed graph G(V,E,w) with 

weights as a function of |w(e)| is presented. In the 

practical phase, the algorithm outperforms the 

performance of improved Dijkstra's algorithm.  It 

shows obvious improved performance in set of 

random general applied graphs. As a new heuristic 

algorithm, the complexity will always be bounded 

by the complexity of known algorithms, i.e., it will 

not exceed O((|V|+|E|)log |V|) for each source <si> 

and each destination <ti> in graph G.  

 

The candidate nodes are identified as all nodes 

exist in paths lead to destination node <t>. The 

proposed heuristic determines the candidate 

subgraphs by marking the ancestors of the 

destination node using reverse matrix 

representation to enable backward traversals. 

Comparing with current conventional algorithms, 

this heuristic improves the shortest path algorithm 

significantly.  
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