
Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

EMPIRICAL STUDY OF GUI TO REUSE UNUSABLE

TEST CASES

ALBERT MAYAN. J
1
, LAKSHMI PRIYA. K

2
 , YOVAN FELIX. A

3

1,3Associate Professor, Department of Computer Science and Engineering, Faculty of
Computing, Sathyabama University

2 P.G Student, Faculty of Computing, Sathyabama University
E-mail: 1albertmayan@gmail.com , 2priya.k449@gmail.com, 3yovanfelix@gmail.com

ABSTRACT

Now-a-days it is more important to upgrade web applications which are provided by companies due to
changes in user requirements. In developing web applications the graphical user interface (GUI) plays vital
role. Due to frequent changes in application it varies from old version and modified version. Finally, it
makes some of the test cases as unfeasible in modified version. We mainly, focus in areas where modified
version is affecting the old test suite to make some of the test cases as unfeasible. To rectify this problem,
we used to make changes in input constraint values. Here, we consider regression testing to make testing
more flexible whenever changes occurred. Testing can be done manually and also by using tools. By this
technique we can make maximum number of unfeasible test cases to feasible in modified versions. By
reusing the unusable test cases it requires less time to make modified version as more efficient and also

reduces cost of regression testing.

Keywords: Regression Testing, Feasible And Unfeasible Test Cases, Constraint Values, Web Applications.

1. INTRODUCTION

 To develop any software for desktop
application the common approach is graphical
user interface (GUI). On web applications wide
numbers of companies arerelayed due to more
interactive to the users. Requirement of users
changes frequently so it makes differences
between versions. When varies occur it also
make changes in source code. Due to this when
testing occurs it forms some unfeasible test cases
which cannot give expected output. In this
regression testing for web applications developed
a technique as making changes in input values.
When the modification occurs it cannot reach the
expected output. So, to make them useful in
modified version we make changes in the
constrain values. When the implementation has
done, work of the testing will become
complicated because of changes in source code
testing has to be done frequently. So, we use
regression testing which can repair and make
unfeasible test cases as feasible test cases. Here,
we mainly concentrate on parts where it affected
due to modification. Then it can form test cases
and verifies whether it can give actual output or
not. This technique is used to reduce cost of

regression testing by making to reuse maximum

number of test cases.

2. PROBLEM FORMULATION

 It demonstrates a technique for test
cases where code was affected and result faults
in test cases. The complete code is taken in PHP
form. Their main goal is to concentrate on
affected part and they select such paths by
dividing whole program into sub parts. Finally,
they will test these test cases with different input
values [1].

They proposed steps to assure
modifications done according to user
requirements or not. It derived LQN models for
software’s by designing UML diagrams. It is a
step by step approach for converting software
models as specifying UML diagrams. Finally,
this is more useful for our approach to make
defects to be corrected [2, 3].

It demonstrates a programming
language works on server side to create web
application dynamically with PHP. At the
runtime many of errors are detected and these
errors are declared as dangling references. It
mainly, checks the paths of execution done in

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

programs where occurs at constrain paths by

having matches in constrains. [4].

It demonstrates a framework for testing
in PHP by focusing on language called
PRASPEL. They generate automatically data for
test cases which satisfy the conditions. For this
purpose they made implementation for solving
constrains with PHP which can make solutions

to diverse ensuring test cases randomly. [5].

They proposed a tool to support the
selections in test cases which mostly occurred in
program designs by using regression testing to
detect the defects. Here, they required unified
modeling languages (UML) to select test paths in
programs. By having tools called prototype
changes in design are feasible [6].

It demonstrates a technique where the
input value varies from old version and new
modified versions. It is used to identify constrain
values which are reusable in modified version
where reusable test cases are taken from previous
version. It can make less effort of regression
testing [7].

 They proposed a tool called CSCW for
supporting innovation of natura campus open.
The collaboration of systems is used for the test
cases for applications because new products
contain advanced customer requirements. This
approach is more useful for research purposes for
further enhancements [8].

It demonstrates a technique for model
based generation by using UML diagrams. More
effort of humans is need for representation of
action sequences for abstract models. Here,
active diagrams are implemented to apply on test

cases obtained in modified application[9].

It demonstrates a technique for common
constrains to make the length of keyword to be
shortened by making their distances to skip by
using pre filters. For this problem they made a
solution called skipping distance for these
keywords should be longer[10].

It proposed PHP scripts for protecting
the issues like unwanted, copying, and
modifying and so on. It also has a problem for
not having enhancing version. For overcome
these problems they developed a novel technique
which can provide high security by cryptology
[11].

It proposed a model called architectures
driven model which in one of the technique to
UML models for testing. It has high popularity
because here the faults are detected and
corrected. For this solution regression is best for
making designs perfect and also to set rules [12].

It demonstrates a methodology to
update and fix faults in test cases and also collect
information from area covered. Finally, the result
shows the range of hit range of cache. This is
more effective and accurate deals with simple
methodology for testing the system [13].

 The technique is proposed for
improvement in fault detection rate. They
introduce prioritization technique which is
powerful when modified versions are targeted.
They also experimented between granularities
where trade off exits between them [14].

 It demonstrates a technique for code
programming to reduce difficulties called as
interline power flow controller. This model
mainly deals with less power injections and
Jacobean matrix for making series to be
converted. This advanced version is used to point
faults in systems installed [15].

They proposed a technique for
programming language applications where they
have dynamic behavior it analyses this on
selected area. They proposed a system where the
changes in software contains variation in
versions so this is used to combine the two
techniques which are code based and model

based [16].

It demonstrates for software validation
to select the test cases by using regression testing
on the components which are updated on
applications. They introduced prototype for parts
where impacts occurred due to modifications.
This strategy is used for maintainence of
application [17].

3. METHODOLOGY

In our approach we deal with a strategy
to reuse old test cases by giving different inputs
and make use in modified versions. Existing
system shows if any modification has been done
in current application it may not satisfy all the
requirements needed by user. To overcome this
problem our work shows that instead of deleting
to reuse them in the new version.Actually,

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

complete code cannot be affected only some of
parts are only affected. So, in affected part the
designed test cases can become unfeasible
instead of avoiding them we reuse in modified
code. To show the technique we designed a
webpage where source code is written in PHP
and testing is done and test cases are designed.
For these test cases we check whether the
conditions required are satisfied or not. The test
cases which reach conditions can become
feasible and others cannot. So, instead of
avoiding we use them in modified code. This can
be done as, by having same constrains but we
make values which can be given are changed.

Fig 1: System Overview

 The above fig1 deals the overview of
our approach where we consider both original
and modified source codes and they can be
preprocessed. It means to handle PHP web
applications dynamic aspects and also to
maintain input values in different versions
because to hold all applications. We use a
compiler called PHP compiler. Then about
generation of test cases it contains test paths and
where has constrain test paths and where has
constrain value have usable and unusable and in
this we consider unusable cases as reusing. Total
information of test cases that can be analyzed
and updated in reusable constrains. It analyses
overall information available in test cases which
are to be reused. The reusing test case contains
information of the paths and what are the cases
can be reused. This all information was available
in constrains reusable. Finally, we have overall

execution of test cases.

A. Collection of input values to be reused

 It is difficult to generate test cases for
input values to be reused. Mainly, preprocessing
should be done then only generation of test cases
can be processed. In preprocessing analysis the
applications done in PHP format which can be
controlled and passed through the compiler. The
original and modified codes generate test cases
from test paths because it is used to collect all
the input variables together. Mostly,
automatically tool may or may not check all the
paths so in that case it should be done in manual
way. Finally, reuse of constrains depends on

complexity of recovery.

B. Algorithm to find input values to be reused

“Algorithm: Find Reusable Input Values

1. Input: old Path, new Path, old PDG,
new PDG

2. Output: reusable variables
3. New PathVarDefUseMap: mapping

variables to DefUse statement for the
new path

4. For (n<-0){
5. n<newPath.size(),n++,do
6. currentBlock<-

newPDG.getBlock(newPath.getBlockI
D(n))

7. If currentBlock.HasDefOrUse(){
8. UpdateDUM(currentBlock,newPathVar

DefUseMap)
9. }}
10. oldPathVarDefUseMap: mapping

variable to DefUse statements for the
old path

11. for(n<-0){
12. n<oldPath.size()
13. n++,do
14. currentBlock<-

oldPDG.getBlock(oldPath.getBlockID))
15. if(currentBlock.HasDefOrUse()){
16. UpdateDUM(currentBlock,oldPathVar

DefUseMap)
17. }}
18. reuseVars: list of variables whose input

values can be reused
19. for(n<-0){
20. newPathVarDefUseMap.getVars.Size(),

n++,do
21. curVar<-

newPathVarDefUseMap.getVars()[n]

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

22. if
(oldPathVarDefUseMap.getVars().cont
ains(curVar){

23. Is sim<-
chksim(curVar,oldPathVarDefUseMap,
newPathVarDefUseMap)

24. If(is sim){
25. reuseVars.Add(curVar)
26. }}}
27. Return reuseVars”

C. Explanation

 Above algorithm takes inputs like old
and new paths, old and new dependency graphs
for program. The formal process of algorithm is
to find test cases which are satisfying actual
outputs and to reuse them. For mapping variables
a new path is set and the program dependency
graphs are listed out and also identifying new
paths this was done in line3. To find the id’s for
block to path size and also each new path can be
loaded into program dependence graph nodes in
line7. Update def use map by considering
variables of new path and current block in 10th
line. From old path the variables are mapped to
def use and also increment of path size is done.

Now the further step is to reuse input
values and also make list of variables. Def use
map in new version program defines nodes and
they are extracted from source code. The def use
map in older version finds variables to make
source code to be extracted. Finally, the code
statements in both versions are compared. This
was done in different algorithm and both are
combined later and to be found match between
paths.

Mainly, the variables are to be same but

condition used is different. For example, if the
statement “if (b>=5)” is changed as “if
(b>=5&&a<=1)”. The above first statement has
been taken from modified version. Here the
variable ‘b’ contains values greater than and
equal to 5 but we are considering same variable
in new version and also we include new variable
‘a’ and it shows values less than and equal to 1
means it can also display negative values. The
only difference is variable ‘b’ is same in both
versions but condition used is here different.

D. Module Description

 The entire processof work can be sub
divided into modules and can be explained in
detail. The following modules of work are:

• Creating a website

• Assigning a database

• Testing the database

• Testing front end

• Performance evaluation

Creating a website:

 Our paper shows the difference between
old version and new version of thewebsite.
While change in features according to the
requirement of users. Some test cases in the old
versions may become unuseful and we may
ignore them. Instead of deleting these cases we
can reuse and can be used in modified version.
First we should develop a website which is more
useful for users. For example, we create a
website called stocks of books gallery.

Assigning a database:

 For creating a website we have shown
the entire view of process and contents present in
it. Now we need to assign a database which is
created by using mysql, apache and so on. In
database we include the details of customer,
product, performance and many things can be
added in future also. For example, in customer
table it contains customer id, date of purchasing
goods and complete details can be kept in tabular
form and so on.

Testing the database:

 After assigning the database there is
need to test the database because we have to be
accurate in designing of database. If any of
requirements are missing then entire process will
be waste. This is also used mainly where the
change is required only that part can be retrieved.

Testing of frontend:

 Now, we can test the front end process.
This can be done by giving the input values or
constrains and we check the exact value is
displayed or not. This testing is mainly done
because user can test the product and satisfy by
showing the exact results of required output. If

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

not then the data can be modified in the back end
and can be display in front end.

Performance evaluation:

 Then finally, after completion of all the
above steps then main important process which
is used to say about the overall view of the
process is evaluation of process. It can be
declared by comparing of old and new versions
of process. This can be displayed in the form of
graphs, charts, pictures, tabular formats and so
on.

4. DATA AND ANALYSIS

In this part we discuss about content of

data and analyze them. Suppose, we are
considering a web page of books gallery
containing customer, orders, shipping, and many
more. According to requirements of particular
website we should design a data flow which
shows overall structure of process. While
collecting data we should fix bugs and they
should not proceed in modified. Then only the
flow of data can reach expected output. Mainly,
it should focus on overall flow whether
satisfying conditions or not. The data flow is
represented below.

 Fig 2: Flow of Data

n fig 2 we show how data flows and the

way it proves to reach expected output. It mainly
consists of details of customer like they use to
order and receive them. While the agent of

supplier collects all information from customers
to maintain perfect software. In this we can show
some of requirements included and satisfied
more in modified version. So, such cases can be
reused in latest version by making minor
modifications like changes in input constrains.
So, testing can be done with less effort by
selecting the paths where modification occurred.

 Table I. Test Cases Template

The above template contains details

about test cases developed in our application and
this template is sample part of that. Actually, it
has several columns and rows where it has total
details of software. It has conditions before
testing and after testing where it contains test
case id here it shows in auto increment manner.
It shows expected output of particular test cases
and some steps are involved to fulfill condition
then data is entered successfully by covering
path coverage. Finally, it reaches the condition
and makes test cases successful or else it shows
failure.

5. DISCUSSION AND RESULT

By using regression testing our
approach proves whether it can generate efficient
test cases or not. We can compare results by
considering input values by taking usable and
unusable test paths. So, we collect data in three
forms they are: (1) how many reusable input
values are there andlist them. (2) Input
constrains to be required and should execute new
test paths. (3) Input values percentage to be
listed.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

 The modified versions also considered
to make above forms to conform the list of test
paths needed to be reused.Affected test paths to
be selected and on particular affected area should
be retested by using regression testing. Gather
over all percentage of reused constrains of both
versions and make a list. For each new
application it is mentioned in increment order of
versions because old versions have already
completed regression testing.

Mainly we concentrated on web
application because here number of changes will
be updated frequently. Main aim is to reuse the
test path by using different values without
changing constrains. We mostly concentrated on
part where code is affected and testing is done in
this manner. Many automatic tools are available
to do testing. Suppose, the tool fails to check all
test cases then we need to do in manual wayto
complete total work. By using manually we
should use more effort to fulfill our desire.

“n0.php (original version)

1. $a= $_POST[‘input 1’]
2. $b= $_POST[‘input 2’]
3. If($k<10){
4. $m=5;
5. $k=$k-4;}
6. $m= $m+6;
7. If($k>7){
8. If($m==5)
9. echo “k\n”;
10. else
11. $m=7;}
12. echo “m\n”;
13. echo “process is done\n”;”

Simple PHP program is considered and changes
made to prove the reusing of values. Example
program is the old version (n0.php). Here, the
modified paths are considered and checks
whether expected output is made or not.

“n1.php (modified version)

1. $a=$_POST[‘input 1’];
2. $b=$_POST[‘input 2’];
3. If($k<10){
4. $m=$m-1; // modified
5. $k=$k-2;}
6. $m=$m+6;
7. If($k>7){
8. If($m==5)
9. echo “k\n”;
10. else

11. $m=7;}
12. echo “m/n”;
13. echo “process is done\n”;”

Modified program (n1.php) shows the

changes done in old version. We can observe in
line4 modification is done as ($m=5) changed
into ($m=$m-1). So when the change is made
then increase of test paths also occurs. We can
also observe changes occurred in variables ‘k’
and ‘m’. The test paths vary in both new and old
versions.

 n0.php n1.php

 $ k<10
 $ k-4>7
 $ m==5

 $ k<10
 $ k-4>7
 $ m-1==5

Table 2: Input Values

In above table1 we can see the changes

made to show how the input values are differing.
Constrains are same but the conditions applied
here are different. By definition graph we can
collect the changes madein input values and also
we can take by comparing with old test paths.
We observe in the versions used variables ‘k’ is
neutral so we can reuse this in new version by
having different input values. But in the
variables ‘m’ we can see changes in conditions
made to reuse in both versions. So, it can make
differs in test paths and also can be seen in
definition graphs used in programs. By this
finally, we can find the test paths that can be
reused and make regression testing cost to
decrease to make less effort.

6. CONCLUSION AND FUTURE WORK

 Finally, reuse of unusable test cases can
be done in our approach. In modified version
instead of creating new test case and make work
more complicate we reuse the test cases by
having input constrains. We cannot assure of
complete reuse but maximum can be reused in
new versions. For GUI applications this
approach can be more useful to make less effort
on frequent changes. In future many technologies
can be implementing by using this ideology. It
can show partial results of reusing test paths. By
using regression testing our approach can be
effective and time complexity decreases. In
future, complete test cases can be reused by

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

making only changes in input constrain and

make applications more effective.

REFERENCES

[1] Aaran marback, Hyunsook Do, Nathan
Ehresmann, “An effective regression
testing approach for PHP web applications-
IEEE fifth International Conference on
software testing, verification and
validation,(2012), Page: 312 - 321”.

[2] B. Bharathi, “A simple method for deriving
LQN models from software models
represented as UML diagram – Indian
Journal of Science and Technology, vol5,
Issue-2, (2012), Page: 2148 to 2154”.

[3] B. Bharathi, “Step by Step Approach to
Convert Software Models Represent as
UML Diagrams with SPT Profile to LQN
Performance Models – National Journal on
Advance in Computing and Management ,
(2012), vol2, no-2, Page: 6 to 10”.

[4] Hung vietnguyen, Hoan ANH Nguyen, Tung
Thanh Nguyen, Tien N. Nguyen “DRC : A
detection tool for dangling references in
PHP – based web application – ICSE 2013,
Sanfransico, CA,USA formal
demonstration, Page: 1299 - 1302”.

[5] Ivan Enderlin, Alain Giorgetti, Fabrice
Bouquet, “A constrain solves for PHP
arrays – IEEE sixthinternational conference
on software testing, verification and
validation workshops, (2013), Page: 218 -
223”.

[6] L.C. Briand, Y. Labiche, G. Soccar,
“Automating impact analysis and
regression test selection based on UML
designs – IEEE international conference on
software maintenance (1CSM’02),
(2002),”.

[7] Md. Hossain, Hyunsook Do, Ravi Eda,
“Regression Testing for Web Applications
Using Reusable Constraint Values – IEEE
International conference on software
testing, verification, and validation
workshops, (2014),”.[8] Marcio geovani
jasinski, Luis Bernardes, Carla Diacui
Medeiros Berkenbrock, “A case study of
natura campus open innovation platform –
a collaborative system overview –
proceedings of IEEE 18th international
conference on computer supported

cooperative work in design,(2014), Page:
446 - 450”.

[9] Nam ye, xinchen, Peng Jiang, Wenxu Ding,
Xuandong Li, “Automatic regression test
selection based on activity diagrams – fifth
international conference on secure software
integration and reliability improvement
companion, (2011), Page: 166 - 171”.

 [10] Nai-lun huangl, Tsern-Huei Lee, “Solution
of skip distance constraint on sub - linear
time string – matching architecture – IEEE
conference, (2013),”.

[11] Nenad ristic, mladen veinovic, aleksandar
jevremovic, “ Improving protection of PHP
source code using cryptology models –
Telskis, NIS, Serbia, October 16-19, (2013)
, Page: 409 - 412”.

[12] Orestpilskalns, gunayuyan and anneliese
Andrews, “Regression testing UML
designs – 22nd IEEE international
conferences on software maintenance
(ICSM’06), (2006),”.

[13] Robert feldt, Greger Wikstrand, Jeevan
Kumar Gorantla, “Dynamic regression test
selection based on a file cache – an
industrial evaluation – International
conference on software testing verification
and validation,(2009), Page: 299 - 302”.

[14] Sebastian elbaum, Alexey G. Malishevsky,
Gregg Rothermel, “Test case prioritization:
A family of empirical studies - IEEE
transactions on software Engineering,
vol28, no.2, February 2002, Page: 159 -
182”.

[15] Suman bhowmick, Biswarup Das, Narendra
Kumar, “An advanced IPFC model to reuse
Newton power flow code – IEEE
transaction on power system, (2009), vol-
24, issue no.20, Page: 525 - 532”.

[16] Walid said abdel – hamid, Mohamed
hadhoud, “Regression test selection
technique based on dynamic behavior –
IEEE conference volume 3,(2010), Page:
346 - 350”.

[17] Yannick L.H.Llew yaw fung, Anjaneyulu
Pasala, Fady Akladios, Appala Raju G,
Ravi P Gorthi, “Selection of regression test
suite to validate software application upon
deployment of upgrades – 19th Australian
conference on software engineering,(2008),
Page: 130 - 138”.

