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ABSTRACT 

 

In this paper we present a fault tolerant algorithm to resolve the K mutual exclusion problem in distributed 
systems. Our algorithm, which is a token based, ensures K mutual exclusion with an interesting message 
complexity where the number of exchanged messages to satisfy each request is between 0 message in the 
best case and K+2 messages in the worst case, where K denotes the system’ resources number. In this 
algorithm, we introduce a fault tolerance mechanism that tolerates the likelihood crash of several nodes at 
the same time and ensures the system well-functioning after messages loss without relying on complex 
election algorithms to generate new tokens. 
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1. INTRODUCTION 

 
A distributed system is a set of autonomous sites 

interconnected by a communication network. In 
such systems, there is neither global clock, nor 
common memories, and the communication 
between sites is ensured only by messages 
exchange.  

The mutual exclusion (or simply ME) problem is 
one of the most known problems in distributed 
systems. ME ensures the access of the system sites 
to a single shared resource in a mutually exclusive 
manner, which means that at any given time only 
one site at most can execute a part of code named 
the critical section (CS) which manipulates the 
resource. The proposed solutions to this problem 
can be classified into two categories of algorithms; 
Permission-Based [1-4] and Token-Based [5, 6] as 
an example. In the first category, the requesting site 
must ask for authorization from other sites, then 
waits for their permissions to access the CS. In the 
second category, a particular message called token 
is used to ensure ME, only the possession of the 
token allows a site to use the shared resource. 

The K-Mutual Exclusion problem (KME for 
short) is a generalization of the ME problem, where 
K identical copies of the same resource are 
available in the system, thus K sites at most can 
access simultaneously their CS. The algorithms 
resolving this problem can be also classified as 

permission based [7, 8] and token based algorithms 
[9].  

The sites of a distributed system may likely be 
affected by an adverse event with a negative impact 
on the well-functioning of the system; this event is 
the failure of one or several sites simultaneously. 
Usually, the cause of the failure is unknown in 
advance. In the KME problem, the failure of the 
token-holding site leads to the token loss which 
affects the system’s coherence, and calls for 
complex election algorithms to designate a site that 
generates the lost token. For this reason fault 
tolerant KME algorithms were proposed to ensure 
smooth operation continuity even in the presence of 
case failures. In these algorithms, two main 
requirements have to be satisfied. First, reducing  
exchanged  messages for each entry to the CS to 
avoid network overload. Second, avoiding complex 
election algorithms to generate new tokens in case 
of token loss. 

In this paper, we propose a fault tolerant KME 
algorithm in distributed systems, this algorithm is  
token based, and ensures KME by an interesting 
message complexity that varies between 0 message 
-favorable case- and K+2 -worst case-. The fault 
tolerance method that we use in our algorithm 
overcomes the failure of several sites 
simultaneously. It also permits the generation of the 
lost tokens without the use of complex election 
algorithms. 
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The rest of the paper is organized as follows. 
Section 2 briefly presents related work and the most 
known algorithms in the field. Section 3 describes 
our initial algorithm. Section 4 explains fault 
tolerant algorithm’s principle. Section 5 shows 
correctness proof. Section 6 considers algorithm’s 
performance. Section 7 discusses simulation results. 
Section 8 concludes the paper and gives some 
perspectives. 

  
2. RELATED WORKS 

 
The mutual exclusion problem has been well 

treated by many algorithms [1-6], that can be 
considered as the corner stone of the field. Since the 
KME is an extension of the ME problem, it was 
also treated by several algorithms, the first proposed 
algorithms [7, 8] can be considered as 
improvements of the ME algorithms. Raymond’s 
algorithm [7] was the first attempt to solve the 
KME problem. The algorithm is permission-based 
extending Ricart and Agrawala’s principle [2]. The 
requesting in [7]  site sends request messages to the 
(n-1) other sites and waits for at least (n-k) 
permissions, 2n-k-1 messages are sufficient to 
access the CS. Srimani and Reddy proposed a 
Token-Based Algorithm [8] based on Suzuki and 
Kasami’s solution [5], the message complexity is 
between 0 and n+k-1. The use of k-coterie in 
Kakugawa et al. algorithm [10] ensures the KME 
with a complexity of O (n log n). The algorithm of 
Naimi [9] is a Token-Based and uses the directed 
graphs, in which the number of messages 
exchanged per CS is between 0 and 2(n-1).  Baldoni 
et al proposed in [11] a KME algorithm in 
prioritized systems. 

The research was not limited to the ME and the 
KME problems, but it was extended to treat other 
problems such as the Group Mutual Exclusion [12], 
the ME in grid applications [13], and the KME in 
Mobile Ad hoc networks (Manet)[14-19]. 

The fault tolerant ME and KME algorithms are 
reported in the literature [20-25], in these 
algorithms not only the consistency of the resources 
use is ensured, but also the proper functioning in 
presence of failures. The algorithm of Ming et al 
[20] uses a distributed queue strategy and maintains 
alternative paths at each site to provide a high 
degree of fault tolerance. Hélary and Mostefaoui 
have proposed a hybrid algorithm [21] based on the 
use of the open-cube structure which offers 
symmetric proprieties that facilitate the 
implementation of the fault tolerance. The 
algorithm of Agrawal and El Abbadi [22] uses a 

dynamic tree which gets updated after the sending 
of a token; its fault tolerance mechanism is based 
on the use of Lamport’s logical clocks [26]. Jiang 
[23] uses a mechanism that allows more nodes to be 
in the CS concurrently, and reduces the message 
overhead. In [24], Loallemi et al. used clusters. 
They consider that there is at least one node that 
does not crash in the cluster, this node has the token 
and the token requests are transmitted through 
broadcasts between clusters. Bouillageut et al. 
proposed in [25] a method that detects and tolerates 
f number of failures in a constant grid. 

We proposed in [27] an initial algorithm that 
ensures KME with an interesting message 
complexity; however, it was vulnerable to nodes 
failures and tokens loss. Therefore, we propose a 
fault tolerant KME algorithm (FT algorithm) as an 
improvement of the initial algorithm (NFT 
algorithm).  In the next section we will introduce 
the principle of the initial algorithm, then we will 
present the mechanism of the fault tolerance used in 
the improvement.  

 
3. THE NFT ALGORITHM 

 
Since the number of exchanged messages is a 

major concern for the KME algorithms, we used in 
our algorithm a logical structure that ensures the 
KME through the use of reduced number of 
messages for each entry to the CS. 

 
3.1 The logical structure 
 

In the system, there are N sites numbered from 1 
to N, and K available resources. The logical 
structure divides the N sites into K groups. The 
belonged sites of any group address their requests to 
a leader which is a particular site in the group 
designated to play the role of a coordinator. 
Initially, each leader holds a free token. The leaders 
are interconnected with each other via a 
bidirectional ring that allows the tokens passing 
between them. 

The creation of this structure involves two steps 

1. Creating groups: which is based on the 
identity of the sites, for example, if K = 3, 
and the sites are numbered from 1 to 14, 
sites 1, 4, 7, 10 and 13 will be in the same 
group, sites 2, 5, 8, 11 and 14 will be in 
the second group, and finally, 3, 6, 9 and 
12 will be in the third group. The leaders 
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of the groups will be the sites 1, 2 and 3 
respectively. 

2. Connecting the groups: Only the K 
leaders will be connected to each other via 
a bidirectional ring as for a leader J, J-1 is 
its left neighbor and J+1 is its right 
neighbor.  

 

3.2  Principle of the NFT algorithm 

 

In order to ensure KME, we should use as many 
tokens as the available resources in the system. 
Initially, each leader holds a free token, this token is 
used to serve the requests in the group, if an 
additional token is needed, it will be asked from a 
neighbor leader, hence, a leader can hold up to K 
free tokens at a time. A requesting site in a group 
sends its demand to the group leader, this latter will 
grant the request by sending a free token if it is 
available, otherwise the request will be saved in a 
queue, and the leader will ask for an additional 
token from its neighbors via the ring. The leader 
that receives the request from a neighbor will 
respond positively to this request by sending a 
token if it holds free ones. Otherwise it will 
propagate the request to another neighbor.  

Receiving a token by a leader permits to serve 
the first request in the queue, therefore, the 
requesting site that receives the token can access the 
CS. After releasing CS, the token is sent back to the 
leader. 

A judicious method has been created to avoid 
costly message exchange between leaders through 
the use of a mechanism that allows sending tokens 
via the shortest path between sender and receiver. 
As a result of such method the number of messages 
used decreases in each entry to the CS. 

 
3.3  Local variables 

 

In our NFT algorithm, we have two types of 
sites, the leaders and the simple sites. 

 
For a simple site 

Status: Refers to the status of the site, it belongs to 
{Out,  Requesting, In_CS}. Initially set to Out. 
Leader: The identity of this site's group leader. 
 
For a leader 

Status: Refers to the status of the site, it belongs to 
{Out,  Requesting, In_CS}. Initially set to Out. 

Leader: at the beginning is initialized to Nil. 
Right_neighbor: the identity of right neighbor in the 
ring. 
Left_neighbor: the identity of left neighbor in the 
ring. 
Free_Tokens: an integer variable indicates the 
number of free tokens held by the leader, initialized 
to 1. 
Present_Tokens: an integer variable which specifies 
the number of tokens used in the group, which is 
initialized to 1. 
Requesting: a queue used to store requests it 
contains the identity of the requesting sites, initially 
it is empty. 
 
4. THE FAULT TOLERANT ALGORITHM 

 

NFT algorithm was vulnerable to nodes failure 
and tokens loss. So we present a fault tolerant 
version of the algorithm aiming to solve node 
failure, especially the failure of nodes holding 
tokens which causes the tokens loss. 

The fault cases that may cause serious problems 
in our algorithm are as follows. 

• The failure of a leader: The local variables 
held in the leader such as the requesting 
sites queue, the number of free tokens and 
used tokens in the group are necessary for 
the proper functioning of the algorithm, 
when a leader fails, all its variables will be 
lost, hence, tokens will be lost and the 
requesting sites can never access their CS. 

• The failure of a site holding a token: In 
this case, the token is lost, so the number 
of tokens in the system is decreased and 
will not reflect the correct number of 
resources, and as a result there will be 
lesser sites in CS than the available 
resources in the system. It is obvious that 
this case affects the proper functioning of 
the algorithm. 

• The failure of a requesting site: The 
identity of a requesting site is stored in the 
requesting sites queue. When a free token 
is available it will be sent to the first site in 
the queue, and if this site is already 
crashed, then the token will be lost, and 
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consequently we face the same problem as 
the failure of a site holding a token. 

 
The token loss is the common feature and the 

main disadvantage of the 2nd and the 3rd case. So in 
order to ensure well-functioning of the system we 
must use complex algorithms of election to 
designate a site that will generate lost tokens. We 
aim in our algorithm to avoid the use of such 
algorithms. 

 
4.1  Basic idea 

 
The basic idea of the fault tolerance mechanism 

used in our FT algorithm is inspired by far from the 
algorithms [28,29] that use the principle of 
supervisor, which is a particular site designated to 
play a specific role whenever a failure occurs. 

Since leaders are very important to ensure the 
well-functioning of the algorithm, we have 
appointed a supervisor to each leader which will be 
the site with the smallest identity in the group. Each 
supervisor will keep a copy of all variables of its 
leader and when the leader’s variables are updated, 
the supervisor’s variables must be updated as well. 
In the case of a leader failure, its supervisor would 
take its place, so the variables would not be lost and 
the system continue to function properly. 

Depending on the nature of the site, we can 
distinguish four cases of failure, in which every 
case the algorithm must apply specific actions. 

• The failure of a requesting site: The 
leader removes the identity of the 
requesting site from the queue and informs 
the supervisor. 

• The failure of a site holding a token: The 
leader generates a new token, updates its 
local variables and informs the supervisor. 

• The failure of a supervisor: The leader 
must choose a new supervisor; this new 
supervisor must be informed by all the 
values of the leader’s local variables. 

• The failure of a leader: In this case the 
supervisor must act as a leader, first it 
must inform the neighbors of the old 
leader and the members of the group of its 
identity by sending a particular message, 
second it chooses a new supervisor, and 
then updates its local variables and 
informs the new supervisor. 

 
In the FT algorithm, we assume: 

• Message delays are bounded. 

• Communication links are reliable and do 
not fail. 

• When a site fails, its failure can be 
detected by the other nodes in the system. 

• Failed sites may eventually recover. 

• A leader and its supervisor don’t fail in the 
same time. 

 

4.2  Local variables 

 

The likelihood failure of some leaders or 
supervisors may set any site belongs to the group as 
a candidate to play the role of a supervisor or a 
leader, and for this reason the site needs the same 
variables of the lost leader, but the difference lies in 
the initialization. The variables used at each site 
will be the same variables of the leader that have 
been mentioned in section 3.3. In addition to these 
variables another two more variables are required: 

 
Supervisor: for a leader, this variable contains the 
identity of the supervisor, for the other sites the 
value is nil. 
 
IN_CS: a list containing the identities of sites 
holding tokens in the same group (the sites that are 
executing their CS). The usefulness of this variable 
appears in the cases of failure, when a site in the list 
fails it gets detected by the leader and a new token 
gets generated, and the identity of the failed site 
gets removed from the list. 
 
4.3  Messages used by the algorithm 

 
In order to update the supervisor’s local 

variables, the leader must send the new value of 
each variable whenever it changes, so we can use a 
single message containing all the variables: the left 
neighbor, the right neighbor, the number of free 
tokens, the present tokens in the group, the 
requesting sites queue, and the sites’ list in CS. 

Two problems may appear with the use of such a 
message. First, the size of the message could be 
very large, especially when there is a large number 
of requesting sites, so the exchange of this message 
would be difficult. Second, the frequency change of 
the different values in the message is not the same, 
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for example, the requesting queue must be updated 
with every new request and the supervisor must be 
informed, however the value of the variable left 
neighbor for example could remain unchanged, thus 
it would be unnecessary to send it each time. 

For this reason we will use a distinct message for 
each variable. 

Update_Left_neighbor (x): x is the identity of the 
left neighbor. 
Update_right_neighbor (x): x is the identity of the 
right neighboring 
Update_free_tokens (x): replaces the old value of 
free token by x 
Update_present_tokens (x): replaces the old value 
of present tokens by x 
Update_requesting (Q): replaces the old requesting 
queue by Q 
Update_In-CS (Q): replaces the old list by Q. 
In addition to those messages, another message will 
be used when a supervisor takes the place of its 
leader:  
New_Leader (i, j): sent by the supervisor j in the 
case of the failure of the leader i. By this message, 
the members of a group and the neighbors of the 
old leader are informed that the old leader i has 
failed, and a new leader j takes its place. 
 

5. CORRECTNESS PROOF 

 

Theorem 1. The algorithm guarantees K Mutual 
Exclusion. 

Proof: To ensure KME we must ensure that at 
any given time K sites at most simultaneously 
execute the CS. Since our algorithm is a token 
based, thus only the possession of a token allows a 
site to access the CS, and because we use K tokens 
in the algorithm the KME is granted. However, a 
problem may arise if a token holding site fails, the 
token will be lost as a consequence, and we end 
with at most K-1 sites in CS. To avoid this problem, 
in our algorithm when a token is lost the leader will 
generate a new one and serves the next request, 
therefore, the KME is ensured by the algorithm. 

Theorem 2. The algorithm is starvation free. 

Proof: Starvation may occur when a requesting 
site cannot access the CS in the presence of free 
resources,    while other sites would do. This 
situation may happen with the failure of a leader, in 
such a case all the requesting sites belonging to the 
failed leader group will wait indefinitely because of 

the loss of their queue, even in the existence of free 
resources in the system. The fault tolerance 
mechanism used in our algorithm ensures that this 
situation would never take place, because the 
supervisor keeps a copy of the queue, and whenever 
the leader fails, the supervisor takes its place and 
serves all the requests in a finite time. 

Theorem 3. The algorithm is deadlock free. 

Proof: The deadlock appears if there is a circular 
waiting chain between sites, which may be caused 
by the failure of a token holding site. In our 
algorithm, the leader generates a token whenever it 
detects the failure of a token holding site in the 
belonged group, so the next request in the queue 
will be served, and the circular waiting chain 
between sites may never occur. Thus, the algorithm 
is deadlock free. 

 
6. PERFORMANCE OF FT ALGORITHM 

 
The fault tolerance mechanism of our algorithm 

overcomes the simultaneous failure of several sites. 
It can tolerate:  

• The fail of K sites holding the tokens 
simultaneously, in this case, the leaders 
can detect the failure of these sites, so each 
leader will generate new tokens according 
to the number of failing sites in its group, 
the identity of the failing sites will be 
removed from the queue, and the 
supervisors will be informed. 

• The fail of K supervisors in the same time, 
in this case, each leader will choose a new 
supervisor among the sites in its group, the 
new supervisors will receive the values of 
the local variables. 

• The fail of K/2 non-adjacent leaders in the 
same time, the supervisors of the failing 
leaders will take place; the failing leaders 
mustn’t be adjacent in order to avoid the 
conflicts that may occur when the 
supervisors take place of the failing 
leaders. 

 

In all these cases, our algorithm ensures that the 
system does not cease to function smoothly, 
moreover, the lost tokens will be generated by the 
leaders, avoiding the use of complex election 
algorithms to identify the site that will generate the 
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lost tokens, our principle makes easier this task and 
minimizes the number of exchanged messages 
while ensuring KME and fault tolerance. 

 
7. SIMULATION RESULTS 

The performance of the NFT algorithm was 
shown in [27], the behavior of the algorithm 
compared to some well known algorithms [7, 8] in 
the field is very interesting with a better message 
complexity. 

In this section we present the simulation results 
of the proposed FT algorithm. We compared its 
behavior with that of the NFT algorithm by causing 
intentionally some faults in the system. In order to 
create different scenarios, we varied one of the 
metrics each time: the number of resources the 
number and the number requesting sites. The 
simulation compares the message complexity and 
the waiting delay between the proposed algorithm 
and the NFT algorithm. 

In Figure 1 we notice that the number of 
messages for each entrance to CS decreases with 
the increase of the number of resources for both 
algorithms, however, the FT algorithm requires 
more messages comparing with the NFT algorithm 
due to the exchange of messages between new 
leaders and other sites when a fault occurs. 

 
 Figure 1. Number Of Messages Against Number Of 

resources 

In Figure 2 the waiting time curve has the same 
direction of change with that of Figure 1 because 
the increase of the number of resources minimizes 
the load on leaders and thus requests will be 
satisfied in shorter time. We notice that the 
difference between the NFT curve and the FT curve 
is not considerable because the extra exchanged 
messages haven't an influence on the waiting time. 

 
 Figure 2. Waiting Time Against Number Of Resources 

In Figure 3 we notice a light increase of the 
number of message with increasing of the 
requesting nodes, for the same reason of the 
precedent curves, the FT algorithm requires a little 
more exchanged messages. Curves in Figure 4 are 
practically identical. 

In all figures we notice that the FT algorithm has 
the same behavior with the NFT algorithm in spite 
of a light inevitable difference of the messages 
number because of the necessary exchange of 
information between the new leaders and the other 
sites in case of fault. we conclude that the fault 
tolerance mechanism that we use in our algorithm 
keeps the same behavior and performance of the 
initial algorithm, the waiting time remains 
practically the same, and the difference in the 
number of exchanged messages has no influence on 
the interesting performance of the algorithm. 

 

 
Figure 3. Number Of Messages Against Number Of 

Requests 

 

 
Figure 4. Waiting Time Against Number Of Requests 
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8. CONCLUSION 

 
In this paper we have presented an efficient fault 

tolerant K mutual exclusion algorithm in distributed 
systems, the algorithm ensures the K mutual 
exclusion by using K tokens, and each access to the 
critical section is guaranteed by the exchange of 0 
to K+2 messages. 

In this algorithm we used the supervisor 
mechanism to make the algorithm fault tolerant, this 
mechanism resists several nodes crashes, and resists 
the loss of the tokens as well, without using the 
complex election algorithms. 

Compared with the initial algorithm, our 
proposed algorithm ensures KME by the same 
number of exchanged messages per CS, 0 messages 
is sufficient in the best case, and K+2 messages in 
the worst case. However, a light increase of 
messages for the FT algorithm comparing with the 
NFT algorithm was noticed in our study, this 
increase is inevitable due to the necessity of extra 
messages in case of faults, but this increase didn't 
affect the behavior of the algorithm and has no 
considerable influence on the FT algorithm 
performance. 

The main contribution of this paper is the 
development of a fault tolerant algorithm that 
ensures the KME and overcomes the likelihood of 
token loss. Simulation results show that message 
complexity between FT and NFT algorithms has no 
significant difference. However, our study was only 
limited to token loss, thus the  algorithm  needs to 
be more improved to deal with other fault types 
such as messages loss and communication link 
failure. These two problems can be considered in 
future improvements. Despite these shortcomings, 
the future work may involve the implementation of 
the algorithm's principle and fault tolerance 
mechanism in other systems such as mobile ad hoc 
networks (Manet), and vehicular ad hoc networks 
(Vanet). 
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