
Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

A FAULT TOLERANT ALGORITHME FOR MULTIPLE
RESOURCES SHARING IN DISTRIBUTED SYSTEMS

1
TAHAR ALLAOUI,

2
MOHAMED BACHIR YAGOUBI

Laboratory of mathematics and computer science, Computer science department, University of Laghouat,
Algeria

E-mail: 1t.allaoui@mail.lagh-univ.dz, 2m.yagoubi@mail.lagh-univ.dz

ABSTRACT

In this paper we present a fault tolerant algorithm to resolve the K mutual exclusion problem in distributed
systems. Our algorithm, which is a token based, ensures K mutual exclusion with an interesting message
complexity where the number of exchanged messages to satisfy each request is between 0 message in the
best case and K+2 messages in the worst case, where K denotes the system’ resources number. In this
algorithm, we introduce a fault tolerance mechanism that tolerates the likelihood crash of several nodes at
the same time and ensures the system well-functioning after messages loss without relying on complex
election algorithms to generate new tokens.

Key words: Mutual exclusion, K-mutual exclusion, Critical section, Distributed systems, Fault tolerance,

Tokens.

1. INTRODUCTION

A distributed system is a set of autonomous sites

interconnected by a communication network. In
such systems, there is neither global clock, nor
common memories, and the communication
between sites is ensured only by messages
exchange.

The mutual exclusion (or simply ME) problem is
one of the most known problems in distributed
systems. ME ensures the access of the system sites
to a single shared resource in a mutually exclusive
manner, which means that at any given time only
one site at most can execute a part of code named
the critical section (CS) which manipulates the
resource. The proposed solutions to this problem
can be classified into two categories of algorithms;
Permission-Based [1-4] and Token-Based [5, 6] as
an example. In the first category, the requesting site
must ask for authorization from other sites, then
waits for their permissions to access the CS. In the
second category, a particular message called token
is used to ensure ME, only the possession of the
token allows a site to use the shared resource.

The K-Mutual Exclusion problem (KME for
short) is a generalization of the ME problem, where
K identical copies of the same resource are
available in the system, thus K sites at most can
access simultaneously their CS. The algorithms
resolving this problem can be also classified as

permission based [7, 8] and token based algorithms
[9].

The sites of a distributed system may likely be
affected by an adverse event with a negative impact
on the well-functioning of the system; this event is
the failure of one or several sites simultaneously.
Usually, the cause of the failure is unknown in
advance. In the KME problem, the failure of the
token-holding site leads to the token loss which
affects the system’s coherence, and calls for
complex election algorithms to designate a site that
generates the lost token. For this reason fault
tolerant KME algorithms were proposed to ensure
smooth operation continuity even in the presence of
case failures. In these algorithms, two main
requirements have to be satisfied. First, reducing
exchanged messages for each entry to the CS to
avoid network overload. Second, avoiding complex
election algorithms to generate new tokens in case
of token loss.

In this paper, we propose a fault tolerant KME
algorithm in distributed systems, this algorithm is
token based, and ensures KME by an interesting
message complexity that varies between 0 message
-favorable case- and K+2 -worst case-. The fault
tolerance method that we use in our algorithm
overcomes the failure of several sites
simultaneously. It also permits the generation of the
lost tokens without the use of complex election
algorithms.

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

The rest of the paper is organized as follows.
Section 2 briefly presents related work and the most
known algorithms in the field. Section 3 describes
our initial algorithm. Section 4 explains fault
tolerant algorithm’s principle. Section 5 shows
correctness proof. Section 6 considers algorithm’s
performance. Section 7 discusses simulation results.
Section 8 concludes the paper and gives some
perspectives.

2. RELATED WORKS

The mutual exclusion problem has been well

treated by many algorithms [1-6], that can be
considered as the corner stone of the field. Since the
KME is an extension of the ME problem, it was
also treated by several algorithms, the first proposed
algorithms [7, 8] can be considered as
improvements of the ME algorithms. Raymond’s
algorithm [7] was the first attempt to solve the
KME problem. The algorithm is permission-based
extending Ricart and Agrawala’s principle [2]. The
requesting in [7] site sends request messages to the
(n-1) other sites and waits for at least (n-k)
permissions, 2n-k-1 messages are sufficient to
access the CS. Srimani and Reddy proposed a
Token-Based Algorithm [8] based on Suzuki and
Kasami’s solution [5], the message complexity is
between 0 and n+k-1. The use of k-coterie in
Kakugawa et al. algorithm [10] ensures the KME
with a complexity of O (n log n). The algorithm of
Naimi [9] is a Token-Based and uses the directed
graphs, in which the number of messages
exchanged per CS is between 0 and 2(n-1). Baldoni
et al proposed in [11] a KME algorithm in
prioritized systems.

The research was not limited to the ME and the
KME problems, but it was extended to treat other
problems such as the Group Mutual Exclusion [12],
the ME in grid applications [13], and the KME in
Mobile Ad hoc networks (Manet)[14-19].

The fault tolerant ME and KME algorithms are
reported in the literature [20-25], in these
algorithms not only the consistency of the resources
use is ensured, but also the proper functioning in
presence of failures. The algorithm of Ming et al
[20] uses a distributed queue strategy and maintains
alternative paths at each site to provide a high
degree of fault tolerance. Hélary and Mostefaoui
have proposed a hybrid algorithm [21] based on the
use of the open-cube structure which offers
symmetric proprieties that facilitate the
implementation of the fault tolerance. The
algorithm of Agrawal and El Abbadi [22] uses a

dynamic tree which gets updated after the sending
of a token; its fault tolerance mechanism is based
on the use of Lamport’s logical clocks [26]. Jiang
[23] uses a mechanism that allows more nodes to be
in the CS concurrently, and reduces the message
overhead. In [24], Loallemi et al. used clusters.
They consider that there is at least one node that
does not crash in the cluster, this node has the token
and the token requests are transmitted through
broadcasts between clusters. Bouillageut et al.
proposed in [25] a method that detects and tolerates
f number of failures in a constant grid.

We proposed in [27] an initial algorithm that
ensures KME with an interesting message
complexity; however, it was vulnerable to nodes
failures and tokens loss. Therefore, we propose a
fault tolerant KME algorithm (FT algorithm) as an
improvement of the initial algorithm (NFT
algorithm). In the next section we will introduce
the principle of the initial algorithm, then we will
present the mechanism of the fault tolerance used in
the improvement.

3. THE NFT ALGORITHM

Since the number of exchanged messages is a

major concern for the KME algorithms, we used in
our algorithm a logical structure that ensures the
KME through the use of reduced number of
messages for each entry to the CS.

3.1 The logical structure

In the system, there are N sites numbered from 1
to N, and K available resources. The logical
structure divides the N sites into K groups. The
belonged sites of any group address their requests to
a leader which is a particular site in the group
designated to play the role of a coordinator.
Initially, each leader holds a free token. The leaders
are interconnected with each other via a
bidirectional ring that allows the tokens passing
between them.

The creation of this structure involves two steps

1. Creating groups: which is based on the
identity of the sites, for example, if K = 3,
and the sites are numbered from 1 to 14,
sites 1, 4, 7, 10 and 13 will be in the same
group, sites 2, 5, 8, 11 and 14 will be in
the second group, and finally, 3, 6, 9 and
12 will be in the third group. The leaders

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

of the groups will be the sites 1, 2 and 3
respectively.

2. Connecting the groups: Only the K
leaders will be connected to each other via
a bidirectional ring as for a leader J, J-1 is
its left neighbor and J+1 is its right
neighbor.

3.2 Principle of the NFT algorithm

In order to ensure KME, we should use as many
tokens as the available resources in the system.
Initially, each leader holds a free token, this token is
used to serve the requests in the group, if an
additional token is needed, it will be asked from a
neighbor leader, hence, a leader can hold up to K
free tokens at a time. A requesting site in a group
sends its demand to the group leader, this latter will
grant the request by sending a free token if it is
available, otherwise the request will be saved in a
queue, and the leader will ask for an additional
token from its neighbors via the ring. The leader
that receives the request from a neighbor will
respond positively to this request by sending a
token if it holds free ones. Otherwise it will
propagate the request to another neighbor.

Receiving a token by a leader permits to serve
the first request in the queue, therefore, the
requesting site that receives the token can access the
CS. After releasing CS, the token is sent back to the
leader.

A judicious method has been created to avoid
costly message exchange between leaders through
the use of a mechanism that allows sending tokens
via the shortest path between sender and receiver.
As a result of such method the number of messages
used decreases in each entry to the CS.

3.3 Local variables

In our NFT algorithm, we have two types of
sites, the leaders and the simple sites.

For a simple site

Status: Refers to the status of the site, it belongs to
{Out, Requesting, In_CS}. Initially set to Out.
Leader: The identity of this site's group leader.

For a leader

Status: Refers to the status of the site, it belongs to
{Out, Requesting, In_CS}. Initially set to Out.

Leader: at the beginning is initialized to Nil.
Right_neighbor: the identity of right neighbor in the
ring.
Left_neighbor: the identity of left neighbor in the
ring.
Free_Tokens: an integer variable indicates the
number of free tokens held by the leader, initialized
to 1.
Present_Tokens: an integer variable which specifies
the number of tokens used in the group, which is
initialized to 1.
Requesting: a queue used to store requests it
contains the identity of the requesting sites, initially
it is empty.

4. THE FAULT TOLERANT ALGORITHM

NFT algorithm was vulnerable to nodes failure
and tokens loss. So we present a fault tolerant
version of the algorithm aiming to solve node
failure, especially the failure of nodes holding
tokens which causes the tokens loss.

The fault cases that may cause serious problems
in our algorithm are as follows.

• The failure of a leader: The local variables
held in the leader such as the requesting
sites queue, the number of free tokens and
used tokens in the group are necessary for
the proper functioning of the algorithm,
when a leader fails, all its variables will be
lost, hence, tokens will be lost and the
requesting sites can never access their CS.

• The failure of a site holding a token: In
this case, the token is lost, so the number
of tokens in the system is decreased and
will not reflect the correct number of
resources, and as a result there will be
lesser sites in CS than the available
resources in the system. It is obvious that
this case affects the proper functioning of
the algorithm.

• The failure of a requesting site: The
identity of a requesting site is stored in the
requesting sites queue. When a free token
is available it will be sent to the first site in
the queue, and if this site is already
crashed, then the token will be lost, and

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

consequently we face the same problem as
the failure of a site holding a token.

The token loss is the common feature and the

main disadvantage of the 2nd and the 3rd case. So in
order to ensure well-functioning of the system we
must use complex algorithms of election to
designate a site that will generate lost tokens. We
aim in our algorithm to avoid the use of such
algorithms.

4.1 Basic idea

The basic idea of the fault tolerance mechanism

used in our FT algorithm is inspired by far from the
algorithms [28,29] that use the principle of
supervisor, which is a particular site designated to
play a specific role whenever a failure occurs.

Since leaders are very important to ensure the
well-functioning of the algorithm, we have
appointed a supervisor to each leader which will be
the site with the smallest identity in the group. Each
supervisor will keep a copy of all variables of its
leader and when the leader’s variables are updated,
the supervisor’s variables must be updated as well.
In the case of a leader failure, its supervisor would
take its place, so the variables would not be lost and
the system continue to function properly.

Depending on the nature of the site, we can
distinguish four cases of failure, in which every
case the algorithm must apply specific actions.

• The failure of a requesting site: The
leader removes the identity of the
requesting site from the queue and informs
the supervisor.

• The failure of a site holding a token: The
leader generates a new token, updates its
local variables and informs the supervisor.

• The failure of a supervisor: The leader
must choose a new supervisor; this new
supervisor must be informed by all the
values of the leader’s local variables.

• The failure of a leader: In this case the
supervisor must act as a leader, first it
must inform the neighbors of the old
leader and the members of the group of its
identity by sending a particular message,
second it chooses a new supervisor, and
then updates its local variables and
informs the new supervisor.

In the FT algorithm, we assume:

• Message delays are bounded.

• Communication links are reliable and do
not fail.

• When a site fails, its failure can be
detected by the other nodes in the system.

• Failed sites may eventually recover.

• A leader and its supervisor don’t fail in the
same time.

4.2 Local variables

The likelihood failure of some leaders or
supervisors may set any site belongs to the group as
a candidate to play the role of a supervisor or a
leader, and for this reason the site needs the same
variables of the lost leader, but the difference lies in
the initialization. The variables used at each site
will be the same variables of the leader that have
been mentioned in section 3.3. In addition to these
variables another two more variables are required:

Supervisor: for a leader, this variable contains the
identity of the supervisor, for the other sites the
value is nil.

IN_CS: a list containing the identities of sites
holding tokens in the same group (the sites that are
executing their CS). The usefulness of this variable
appears in the cases of failure, when a site in the list
fails it gets detected by the leader and a new token
gets generated, and the identity of the failed site
gets removed from the list.

4.3 Messages used by the algorithm

In order to update the supervisor’s local

variables, the leader must send the new value of
each variable whenever it changes, so we can use a
single message containing all the variables: the left
neighbor, the right neighbor, the number of free
tokens, the present tokens in the group, the
requesting sites queue, and the sites’ list in CS.

Two problems may appear with the use of such a
message. First, the size of the message could be
very large, especially when there is a large number
of requesting sites, so the exchange of this message
would be difficult. Second, the frequency change of
the different values in the message is not the same,

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

for example, the requesting queue must be updated
with every new request and the supervisor must be
informed, however the value of the variable left
neighbor for example could remain unchanged, thus
it would be unnecessary to send it each time.

For this reason we will use a distinct message for
each variable.

Update_Left_neighbor (x): x is the identity of the
left neighbor.
Update_right_neighbor (x): x is the identity of the
right neighboring
Update_free_tokens (x): replaces the old value of
free token by x
Update_present_tokens (x): replaces the old value
of present tokens by x
Update_requesting (Q): replaces the old requesting
queue by Q
Update_In-CS (Q): replaces the old list by Q.
In addition to those messages, another message will
be used when a supervisor takes the place of its
leader:
New_Leader (i, j): sent by the supervisor j in the
case of the failure of the leader i. By this message,
the members of a group and the neighbors of the
old leader are informed that the old leader i has
failed, and a new leader j takes its place.

5. CORRECTNESS PROOF

Theorem 1. The algorithm guarantees K Mutual
Exclusion.

Proof: To ensure KME we must ensure that at
any given time K sites at most simultaneously
execute the CS. Since our algorithm is a token
based, thus only the possession of a token allows a
site to access the CS, and because we use K tokens
in the algorithm the KME is granted. However, a
problem may arise if a token holding site fails, the
token will be lost as a consequence, and we end
with at most K-1 sites in CS. To avoid this problem,
in our algorithm when a token is lost the leader will
generate a new one and serves the next request,
therefore, the KME is ensured by the algorithm.

Theorem 2. The algorithm is starvation free.

Proof: Starvation may occur when a requesting
site cannot access the CS in the presence of free
resources, while other sites would do. This
situation may happen with the failure of a leader, in
such a case all the requesting sites belonging to the
failed leader group will wait indefinitely because of

the loss of their queue, even in the existence of free
resources in the system. The fault tolerance
mechanism used in our algorithm ensures that this
situation would never take place, because the
supervisor keeps a copy of the queue, and whenever
the leader fails, the supervisor takes its place and
serves all the requests in a finite time.

Theorem 3. The algorithm is deadlock free.

Proof: The deadlock appears if there is a circular
waiting chain between sites, which may be caused
by the failure of a token holding site. In our
algorithm, the leader generates a token whenever it
detects the failure of a token holding site in the
belonged group, so the next request in the queue
will be served, and the circular waiting chain
between sites may never occur. Thus, the algorithm
is deadlock free.

6. PERFORMANCE OF FT ALGORITHM

The fault tolerance mechanism of our algorithm

overcomes the simultaneous failure of several sites.
It can tolerate:

• The fail of K sites holding the tokens
simultaneously, in this case, the leaders
can detect the failure of these sites, so each
leader will generate new tokens according
to the number of failing sites in its group,
the identity of the failing sites will be
removed from the queue, and the
supervisors will be informed.

• The fail of K supervisors in the same time,
in this case, each leader will choose a new
supervisor among the sites in its group, the
new supervisors will receive the values of
the local variables.

• The fail of K/2 non-adjacent leaders in the
same time, the supervisors of the failing
leaders will take place; the failing leaders
mustn’t be adjacent in order to avoid the
conflicts that may occur when the
supervisors take place of the failing
leaders.

In all these cases, our algorithm ensures that the
system does not cease to function smoothly,
moreover, the lost tokens will be generated by the
leaders, avoiding the use of complex election
algorithms to identify the site that will generate the

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

lost tokens, our principle makes easier this task and
minimizes the number of exchanged messages
while ensuring KME and fault tolerance.

7. SIMULATION RESULTS

The performance of the NFT algorithm was
shown in [27], the behavior of the algorithm
compared to some well known algorithms [7, 8] in
the field is very interesting with a better message
complexity.

In this section we present the simulation results
of the proposed FT algorithm. We compared its
behavior with that of the NFT algorithm by causing
intentionally some faults in the system. In order to
create different scenarios, we varied one of the
metrics each time: the number of resources the
number and the number requesting sites. The
simulation compares the message complexity and
the waiting delay between the proposed algorithm
and the NFT algorithm.

In Figure 1 we notice that the number of
messages for each entrance to CS decreases with
the increase of the number of resources for both
algorithms, however, the FT algorithm requires
more messages comparing with the NFT algorithm
due to the exchange of messages between new
leaders and other sites when a fault occurs.

 Figure 1. Number Of Messages Against Number Of

resources

In Figure 2 the waiting time curve has the same
direction of change with that of Figure 1 because
the increase of the number of resources minimizes
the load on leaders and thus requests will be
satisfied in shorter time. We notice that the
difference between the NFT curve and the FT curve
is not considerable because the extra exchanged
messages haven't an influence on the waiting time.

 Figure 2. Waiting Time Against Number Of Resources

In Figure 3 we notice a light increase of the
number of message with increasing of the
requesting nodes, for the same reason of the
precedent curves, the FT algorithm requires a little
more exchanged messages. Curves in Figure 4 are
practically identical.

In all figures we notice that the FT algorithm has
the same behavior with the NFT algorithm in spite
of a light inevitable difference of the messages
number because of the necessary exchange of
information between the new leaders and the other
sites in case of fault. we conclude that the fault
tolerance mechanism that we use in our algorithm
keeps the same behavior and performance of the
initial algorithm, the waiting time remains
practically the same, and the difference in the
number of exchanged messages has no influence on
the interesting performance of the algorithm.

Figure 3. Number Of Messages Against Number Of

Requests

Figure 4. Waiting Time Against Number Of Requests

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

8. CONCLUSION

In this paper we have presented an efficient fault

tolerant K mutual exclusion algorithm in distributed
systems, the algorithm ensures the K mutual
exclusion by using K tokens, and each access to the
critical section is guaranteed by the exchange of 0
to K+2 messages.

In this algorithm we used the supervisor
mechanism to make the algorithm fault tolerant, this
mechanism resists several nodes crashes, and resists
the loss of the tokens as well, without using the
complex election algorithms.

Compared with the initial algorithm, our
proposed algorithm ensures KME by the same
number of exchanged messages per CS, 0 messages
is sufficient in the best case, and K+2 messages in
the worst case. However, a light increase of
messages for the FT algorithm comparing with the
NFT algorithm was noticed in our study, this
increase is inevitable due to the necessity of extra
messages in case of faults, but this increase didn't
affect the behavior of the algorithm and has no
considerable influence on the FT algorithm
performance.

The main contribution of this paper is the
development of a fault tolerant algorithm that
ensures the KME and overcomes the likelihood of
token loss. Simulation results show that message
complexity between FT and NFT algorithms has no
significant difference. However, our study was only
limited to token loss, thus the algorithm needs to
be more improved to deal with other fault types
such as messages loss and communication link
failure. These two problems can be considered in
future improvements. Despite these shortcomings,
the future work may involve the implementation of
the algorithm's principle and fault tolerance
mechanism in other systems such as mobile ad hoc
networks (Manet), and vehicular ad hoc networks
(Vanet).

REFERENCES

[1]. Saxena, P.C.; Rai, I. : "A survey of permission-
based distributed mutual exclusion algorithms" ,
Computer Standards & Interfaces. 25, 2003, pp.
159-181.

[2]. Ricart, G.; Agrawala, A.K.: "An Optimal
Algorithm for Mutual Exclusion in Computer
Networks", Comm. ACM, Vol. 24, N°.1, 1981,
pp. 9-17.

[3]. Carvalho, O.S.F.; Roucairol, G.: "On mutual
exclusion in computer networks", Comm.
ACM, Vol. 26, N°. 2, 1983, pp. 146-147.

[4]. Maekawa, M.: "An √n Algorithm for Mutual
Exclusion in Decentralized Systems" , ACM
Trans. Computer Systems,Vol. 3, N°. 2, 1985,
pp. 145-159.

[5]. Suzuki, I.; Kasami, T.: "A distributed mutual
exclusion algorithm", ACM Trans. Computer
Systems, Vol. 3, N°. 4,1985, pp. 344-349.

[6]. Naimi, M. ; Trehel, M.: "A log(n) distributed
mutual exclusion algorithm based on the path
reversal", Journal of Parallel and Distributed
Computing, Vol. 34, 1996, pp. 1–13.

[7]. Raymond, K.: "A Distributed Algorithm For

Multiple Entries to a Critical Section",
Information Processing Letters 30, 1989, pp.
189-193.

[8]. Srimani, P.K.; Reddy, R.L.N.: "Another
distributed algorithm for multiple entries to a
critical section", Information Processing Letters
41, 1989, pp. 51-57.

[9]. Naimi, M: "Distributed algorithm for K-entries
to a critical section based on the directed
graphs", ACM, Op. Systems Review, (Oct
1993).

[10]. Kakugawa, H. ; Fujita, S.; Yamashita, M.; Ae,
T.: "A distributed k-mutual exclusion algorithm
using k-coterie", Information Processing letters,
Vol. 49, 1994, pp. 213-218.

[11]. Baldoni, R.; Ciciani, B.: "Distriuted algorithms
for multiple entries to a critical section with
priority", Information processing Letters, Vol.
50, 1994, pp.165-172.

[12]. Atreya, R.; Mittal, N: "A quorum-based group
mutual exclusion algorithm for distributed
system with dynamic group set", IEEE
transaction on parallel and distributed systems,
18, 2007, pp. 1345-1360.

[13]. Bertier, M.; Arantes, L.; Sens, P: "Distributed
mutual exclusion algorithms for grid
applications : A hierarchical approach", Journal
of Parallel and Distributed Computing, 66,
2006, pp. 128-144.

[14]. Walter, J.; Welch, J.; Vaidya, N.: "A mutual
exclusion algorithm for ad hoc mobile
networks", Wireless Networks, 9, 2001, pp.
585–600

[15]. Walter, J.; Cao, G.; Mohanty, M.: "A k-mutual
exclusion algorithm for wireless ad-hoc
networks", in : Proc of the first annual

Journal of Theoretical and Applied Information Technology
 20

th
 May 2015. Vol.75. No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

Workshop on Principles of Mobile Computing
(POMC 2001, pp. 171-180

[16]. Baldoni, R.; Virgillito, A.; Petrassi, R.: "A
distributed mutual exclusion algorithm for
mobile ad-hoc networks", in : Proceedings of
the Seventh IEEE International Symposium
Computers and Communications, 2002, pp.
539-544.

[17]. Chen, Y.; Welch, J.: "Self-stabilizing mutual
exclusion using tokens in ad hoc networks", in :
Proc. Of IALM’02, ACM, 2002, pp. 34-42.

[18]. Derhab, A.; Badache, N.: "A distributed
mutual exclusion algorithm over multi-routing
protocol for mobile ad hoc networks",
International journal of parallel, emergent and
distributed systems. 23, 2008, pp. 197-218

[19]. Masum, S.M.; Akbar, M.M.; Ali, A.A.;
Rahman, M. A.: "A consensus-based ℓ-
Exclusion algorithm for mobile ad hoc
networks", Ad Hoc Networks, Vol. 8, 2010, pp.
30-45.

[20]. Liu, M. T.; Chang, Y. I.; Singhal, M.: "An
Improved O (log N) Mutual Exclusion
Algorithm for Distributed Systems", ICPP (3),
1990, pp. 295-302.

[21]. Hélary, J. M.; Mostefaoui, A.: "A O(log 2 n)
fault-tolerant distributed mutual exclusion
algorithm based on open-cube structure", 14th
International Conference on Distributed
Computing Systems (ICDCS), 1994, pp. 89-96
(1994)

[22]. Agrawal, D.; El Abbadi, A.: "A token-based
fault-tolerant distributed mutual exclusion
algorithm", Journal of Parallel and Distributed
Computing. 24, 1995, pp. 164-176.

[23]. Jiang, J.: "A fault tolerant h-out-of-k mutual
exclusion algorithm using cohorts coteries for
distributed systems", in : proceedings of 5th
international conference on parallel and
distriuted computing, application and
technologies PDCAT , 2004, pp. 267-273.

[24]. Loallemi, M.; Mansouri, Y.; Rasoulifard, A.;
Naghibzadeh, M.: "Fault tolerant hierarchical
token-based mutual exclusion algorithm", In
International Symposium in Communications
and Information Technologies , 2006, pp.171-
176.

[25]. Bouillageut, M.; Arantes, L.; P. Sens: "A
Timer-Free Fault Tolerant K-Mutual Exclusion
Algorithm", Fourth Latin-American Symposium
on Dependable Computing LADC 09, 2009, pp.
41-48 .

[26]. Lamport, L.: "Time, clocks , and the ordering
of events in distributed system",
Communications of the ACM, Vol. 21, 1978,
pp. 558-565

[27]. Allaoui, T.; Yagoubi, M.B; Djoudi, M.;
Ouinten, Y: "A fast token based algorithm for
multiple resources sharing in distributed
systems", in proceedings of The International
Conference on Innovations in Information
Technology, IIT 2008, pp. 24-28.

[28]. Bouabdallah, A.; König, J. C.; Yagoubi, M.B.:
"A fault tolerant algorithm for the mutual
exclusion in real time distributed systems",
Journal of computing and Information, Vol. 1,
1995, pp. 438-454

[29]. Bouabdallah, A.; König, J. C.; Yagoubi, M.B.:
"An improvement of O(log N) mutual exclusion
algorithm to make it fault tolerant", 10th
International Conference On parallel and
distributed computing systems, 1997.

