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ABSTRACT 

 
In elliptic curve cryptosystem (ECC), scalar multiplication is the major and most costly operation. Scalar multiplication 

involves with point operations such as point addition, point doubling, and point tripling. Scalar multiplication can be 

improved by using efficient point operations. This research focuses on point tripling operation for elliptic curves over 

the binary field in Lopez-Dahab (LD) model. Currently, there is no existing tripling formula for this model. 

Traditionally, tripling is computed using one doubling followed by one addition (i.e. 3P=2P+P) with cost of 18M+8S, 

where M is field multiplication and S is field squaring. In this paper, we proposed tripling formulae with cost of 

12M+7S. We proved the formulae and proposed its algorithm. The tripling saved 6M+1S which contribute to cost 

reduction in multiplication and squaring by 33% and 12.5% respectively when compared with the traditional method. 

For National Institute of Standards and Technology (NIST) curve (i.e. where a = 1), the cost of the tripling is further 

reduced to 10M+7S which saved 8M+1S from the traditional one. Further cost reduction in multiplication and squaring  

by 44% and 12.5% respectively. 
 

Keywords: Elliptic curve over binary field, scalar multiplication, point tripling, Lopez-Dahab. 

 

1.   INTRODUCTION  

 

Elliptic curve cryptosystem (ECC) is a 

public key cryptosystem and independently 

introduced in 1985 by Victor Miller [1] and Neal 

Koblitz [2]. Another well-known public key 

cryptosystem is the Rivest, Shamir, and Adleman 

(RSA) cryptosystem. Public key cryptosystem is 

also called asymmetric cryptosystem which 

requires a public and a private key that should 

correspond to each other. The security of ECC is 

based on the difficulty of the Elliptic Curve 

Discrete logarithm Problem (ECDLP). ECC has the 

advantage of having smaller key sizes for 

equivalent security level with its competitor, the 

RSA cryptosystem. For example, a 160-bit ECC 

has equivalent security strength of 1024-bit RSA. 

Also, 160-bit key requires 1/6
 
of the space that 

required by the RSA. It uses smaller memory and 

processor requirement than that of the RSA and 

also suitable for wireless devices which have 

limited bandwidth and processing power. ECC is an 

important cryptosystem in electronic banking and 

financial institutions [3]. ECC uses the properties of 

elliptic curves to provide the same functionality as 

other public key cryptosystem such as encryption, 

decryption, key generation, and digital signature. 

Most ECC implementation demands for  high 

performance and low power ECC architectures [4]. 

 

In ECC, scalar multiplication is the major 

operation of the cryptosystem. The main challenge 

in ECC research is to perform efficient scalar 

multiplication. The implementation of ECC scalar 

multiplication is the most time consuming 

operation [5]. The scalar multiplication is achieved 

by repeatedly doing elliptic curve point operations: 

point addition, point doubling, point tripling and 

etc. In the literature, some researcher optimizing the 

scalar multiplication operation by improving the 

efficiency of the point operations. Generally, the 

cost of the scalar multiplication depends on the 

selection of elliptic curve parameters, 

representation of a scalar k, point operations and 

field operations. This research mainly focuses on 

improving the efficiency of point operation for 

elliptic curves over the binary field in the Lopez-

Dahab Model. 

 

Generally, point operation can be done in 

various coordinate representations. Traditionally, 

point operations use affine coordinates which 

involved with expensive inversion operations. 

Many ECC implementations using projective 

coordinates like Jacobian and Lopez-Dahab (LD), 

in order to represent the points on the curve by 

reducing inversion/division to one [4]. Different 

coordinate system gives different cost for point 

operations [6][7][8][9]. LD coordinate gives the 

best performance for elliptic curve over the binary 

field [10]. Certain coordinate system may be 
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superior when performing doublings, but not when 

performing addition [11]. Hybrid or mixed 

coordinates can be very efficient in improving 

performance of scalar multiplication [12][13]. 

Mixed coordinates means that different coordinate 

systems are used for inputs and outputs. Sometimes 

two different coordinates are used for input and 

another coordinate system for output. 

 

In this paper, we propose a new tripling 

formulae and algorithm in LD coordinates for 

elliptic curves over the binary field. Related work is 

presented in Section 2 and a brief introduction on 

Lopez-Dahab coordinates are in Section 3. 

Proposed tripling formula, algorithm and proofs of 

the formula is in Section 4. Concluding remarks are 

in Section 5. 

 

2.   RELATED WORK 
 

Table 1: Cost of Point Operation in Lopez-Dahab vs. 

Jacobian Coordinates for Elliptic Curve Over Binary 

Field 

Point 

Operation 
Lopez-Dahab Jacobian 

Point 

Addition 

 

14M+6S [14] 

13M+4S [16] 

 

16M+3S [15] 

 

Point 

Doubling 

 

5M+5S [14] 

5M+4S [17] 

 

5M+5S [15] 

 

Mixed 

Addition 

9M+5S [18, 19] 

Affine-Lopez 

 

11M+3S [15] 

Affine-

Jacobian 

 

General 

Tripling 

 

18M + 8S 

(Traditionally, 

compute point 

doubling followed 

by point addition) 

 

15M+7S [20] 

 

Table 1 shows estimated cost of point 

operation for LD and Jacobian coordinates for 

elliptic curve over binary field. The costs are 

measured by counting the number of field operation 

performed: Multiplication (M) and Squaring (S). 

Traditionally, point addition and point doubling are 

proposed by [14]. Improved point addition 

proposed by [16] and improved point doubling 

proposed by [17]. Al-Daoud et al [18][19] proposed 

a mixed addition formulae using affine and LD 

coordinates with better computation cost than the 

traditional addition. No existing tripling formula for 

LD coordinates and it is traditionally computed 

using one doubling operation then followed by one 

addition for the cost of 18M+8S. 

 

Point addition and point doubling for 

Jacobian have cost of 16M+3S and 5M+5S 

respectively. Mixed addition using affine and 

Jacobian coordinates has cost of 11M+3S. Dimitrov 

et al [20] proposed efficient tripling formula in 

Jacobian with cost of 15M+7S. He also proposed 

tripling formula in affine for elliptic curve over 

binary field [21]. The tripling operation is using 

3P=2P+P where a doubling operation is computed 

first then followed by an addition. Meloni [22] 

proposed special addition formula that can be used 

for efficient scalar multiplication. Moon [23] 

proposed point quadruple (4P) operation to 

accelerate the quad-and-add scalar multiplication 

algorithm. Edward [24] introduced new coordinates 

of elliptic curves. Hisil et al [25] proposed  new 

doubling and tripling formula for Jacobian 

coordinates. Mishra and Dimitrov [20] proposed 

quintupling (5P) formulas in Jacobian coordinates 

for elliptic curves over prime fields. The 5P 

formula is used to speed up the scalar 

multiplication algorithm. 

 

3. ELLIPTIC CURVE OVER BINARY FIELD 

IN LOPEZ-DAHAB (LD) MODEL 

 

Affine coordinates are represented by two 

coordinates x and y. The scalar multiplication in 

affine coordinates involves with expensive 

inversion operations. Whereas LD is a projective 

coordinates that omits inversion operation. LD 

coordinate is in the form (X, Y, Z) where (Z≠0) 

corresponding to the point (X/Z, Y/Z
2
) in the affine 

coordinate [14]. LD projective equation is given 

below: 

Y 
2
 + XYZ = X 

3
Z + aX 

2
Z 

2
 + bZ 

4
.         (1) 

 

The triple (X1: Y1: Z1) represents the affine 

point (X1/Z1, Y1/Z1
2
) when Z1 ≠ 0. The point at 

infinity P∞ corresponds to (1:0:0), while the 

negative of (X1: Y1 : Z1) is (X : XZ +Y : Z). LD 

point doubling and addition formulae can be 

derived by substituting x = X/Z and y = Y/Z
2 

in the 

affine formulae and clearing the denominators. 

Lopez-Dahab [14] proposed a general addition 

formula which costs 14M+6S where M denotes 

multiplication, and S is a squaring. Higuchi and 

Takagi [16] improved the LD addition formula 

which costs 13M+4S. Al-Daoud et. al [19] 

proposed mixed addition using affine-LD 

coordinates. In this research, this formula is used to 
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derive the tripling formulae. Mixed addition is as 

follows: 

 

Consider P = (X1, Y1, 1) , Q = (X2, Y2, Z2) such that 

P ≠ ± Q. P is an affine and Q is in LD coordinates, 

then, P ⊕ Q = (X3, Y3, Z3) is given by 

 

A=Y2+Y1Z2
2
 

B = X2+X1Z2  

C = BZ2  

Z3=C
2
 

D=X1Z3 

X3=A
2
+C(A+B

2
+aC) 

     Y3=(D+X3)(AC+Z3)+(Y1+X1)Z3
2
  (2) 

 

Mixed addition costs 9M+5S which is 

cheaper than the general addition. If a ∈{0, 1} then 

only eight general multiplications are required. 

Lopez Dahab [14] proposed doubling formula 

which costs 5M+5S. Lange [17] improved LD 

doubling formula which costs 5M+4S. In this 

research, this formula is also used to derive a 

tripling formula and as shown below: 

 

Consider P=(X1:Y1:Z1) then 2P =(X2:Y2:Z2) 

 

S = X1
2
 , 

U = S + Y1, 

T = X1Z1, 

R = UT 

Z2 = T
2
, 

X2 = U
2
 + R + aZ2, 

Y2 = (Z2 + R)X2 + S
2
Z2          (3) 

 

4.   PROPOSED TRIPLING FORMULAE IN  

LOPEZ  DAHAB MODEL 

 

In this research, the tripling operation is 

computed as 3P=2P+P using one doubling 

(Equation 3) and followed by one mixed addition 

(Equation 2). The expected tripling cost for one 

doubling and one mixed addition is given below: 

 

 (5M+4S) + (9M+5S) = (14M+9S).          (4) 

 

3.1  Proposed  Tripling Formulae 
In this research, we proposed a tripling 

formula with cost 12M+7S. Consider P=(X1,Y1,1), 

then,  3P=(X3,Y3,Z3). Then, (X3,Y3,Z3)   is as 

follows: 

 

A = (Z2 + E)X2 +Z2
2
U, 

B = X2 + X1Z2 , 

C = BZ2, 

Z3 = C
2
 , 

D = X1Z3 , 

Z2 = X1
2 

E=UX1, 

X2 = U
2
+E+aZ2, 

X3 = A
2
 + C(A + B

2
) + aZ3 , 

Y3 = (D + X3)(AC + Z3) + (Y1 + X1)Z3
2
  (5) 

 

As in Table 1, the traditional tripling has cost 

(18M+8S). The tripling cost in Equation 5 is better 

than the traditional tripling. 

 

3.2  Proof of the Proposed Tripling Formula 

To prove the tripling, we use affine 

coordinates. In affine, a nonsupersingular elliptic 

curve over binary field, E( mF
2

) is defined by 

parameter mFba
2

, ∈  consists of the set of 

solutions or points P(x, y) where mFyx
2

, ∈  for 

the equation .232 baxxxyy ++=+  

 

Addition of two points, ),( PP yxP  and 

),( QQ yxQ , are distinct points such that 

QP ±≠ , then 

   ),(),(),( RRQQPP yxRyxQyxP =+     

where  

axxx QPR ++++≡ λλ2
 in mF

2
;   

PPRPR yxxxy +++≡ )(λ  in mF
2

  

and  
)(

)(

QP

QP

xx

yy

+

+
≡λ   in mF

2
      (6) 

 

Doubling a point, provided that 0≠Py , then 

),(),(),( RRPPPP yxRyxQyxP =+  

where  

axR ++≡ λλ2
 in mF

2
 

RPPRRPR xxyxxxy )1()( 2 ++=+++≡ λλ

  in mF
2

 

and  
)(

)(

P

P
P

x

y
x +≡λ   in mF

2
         (7) 

 

Firstly, let P=(x1, y1), from (Equation 7), then 

2P=(x2, y2) is as the following: 
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(8)                                       

)(

1

2

11
1

121212

1

2

12

x

xy

yxxxy

ax

+
=

+++=

++=

λ

λ

λλ

 

 

Secondly, use x2, y2, and 1λ  from (Equation 8) 

compute point tripling as 

),(),(),(23 331122 yxyxyxPPP =+=+= . 

Then, from (Equation 7), (x3,y3) is as the following: 

 

(9)                                         

)(

21

21
2

132313

212

2

23

xx

yy

yxxxy

axxx

+

+
=

+++=

++++=

λ

λ

λλ

 

                

Thirdly, using (Equation 5) and (Equation 9), need 

to prove that 

3

3

Z

X = x3 and 
2

3

3

Z

Y = y3. The process is 

shown below:  

 

a
ZZXX

ZXX

ZZXX

ZYY

ZZXX

ZYY

a
ZZXX

ZXX

ZZXX

UZXEZ

ZZXX

UZXEZ

a
C

B

C

A

C

A

C

aZBACA

Z

X

+
+

+
+

+

+
+

+

+
=

+
+

+
+

+

++
+

+

++
=

+++=
+++

=

2212

2

212

2212

212

2

2

2

212

2

212

2212

2

212

2212

2

222

2

2

2

212

22

222

2

2

2

2

3

22

3

3

)(

)(

)(

)(

)(

)(

)(

)(

)(

])[(

)(

])[(

)(

 

 

Use Z1 = 1, also 

21

21
2

xx

yy

+

+
=λ , then, 

)(

)(

)(

)(

)(

)(

)(

212

2

23

21

2

21

21

21

2

21

2

21
3

provenaxxx

a
xx

xx

xx

yy

xx

yy
x

++++=

+
+

+
+

+

+
+

+

+
=

λλ

  

[ ]

[ ]

[ ]
112

2

2

212

331

3

2

3

212

2

212331

114

2

4

212

3331

4

2

4

212

2

2

212331

4

2

4

212

2

31132

2

212331

2

3

2

31133

2

3

3

)(

)(

)(

)()(

)(

)(

)(

)()(

)(

)()()(

)())((

XY
ZZXX

XZX

ZZXX

ZYYXZX

XY
ZZXX

ZXZX

ZZXX

BZZYYXZX

ZZXX

ZXYZBZZYYXZX

Z

ZXYZACXD

Z

Y

++
+

+
+

+

++
=

++
+

+
+

+

++
=

+

+++++
=

++++
=

 

Use X3 = x3 . Z3, then substitute Z2=1 and Z3=1, 

 

)()(

)(

))((

132313

1131

21

2131
3

provenyxxxy

xyxx
xx

yyxx
y

+++=

++++
+

++
=

λ
 

 

Thus, x3, y3 and λ2 are the same as (Equation 9). 

 

3.3 Proposed Tripling Algorithm Based on The 

New Tripling Formulae 

We also proposed a tripling algorithm based 

on our formula. The algorithm is as follows: 

 

Algorithm: Tripling with Mixed Addition 

 

Input:Two points )1,,( 11 YXP = and 

),,(2 222 ZYXP =  where P is in affine and 

2P is in LD coordinates. 

 

Output: Point ),,(3 333 ZYXP =  

1. 
11 XT ←  

2. 
12 YT ←  

3. 2

12 )(TZ ←  

4. 
223 TZT +←  

5. 
134 *TTT ←  

6. aT ←5
 

7. 2

32 )(TX ←  

8. )*( 25422 ZTTXX ++←  

9. 2

26 )(ZT ←  

10. 
366 *TTT ←  

11. )*)( 24266 XTZTT ++←

)*( 2124 ZTXT +←  

12. 
242 * ZTZ ←  

13. 2

63 )(TT ←  

14. 2

44 )(TT ←  

15. )*( 25644 ZTTTT ++←

244 * ZTT ←  

16. 
343 TTX +←  

17. 2

23 )(ZZ ←  

18. 
314 * ZTT ←  

19. 
3266 )*( ZZTT +←  

20. 
344 XTT +←  

21. 
466 *TTT ←  

22. 2

33 )(ZT ←  

23. 
3213 *)( TTTT +←  
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24. 
363 TTY +←  

25. return (3P) 

 

5.   CONCLUSION  

 

As in Table 1, the traditional tripling has 

cost (18M+8S). The tripling (Equation 5) has cost 

(12M+7S). This tripling saved (2M+2S) from the 

traditional tripling, which saved 14% multiplication 

cost and 22% squaring cost from the traditional 

method. If National Institute of Standards and 

Technology (NIST) curve is used, the value of a is 

equal to 1, and the new tripling cost is further 

reduced to (10M+7S) which saved 28.6 % 

multiplication cost and 22% squaring cost from the 

traditional method. 

 

For future work, the tripling might be 

further improved in time. These tripling can be used 

in Double Base Number System (DBNS) scalar 

multiplication and promotes efficient 

implementation of DBNS based scalar 

multiplication. The tripling can also be used for 

{0,1,3}-NAF scalar multiplication [26]. 
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