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ABSTRACT 
 

Communities detection in graphs has been the subject of many algorithms. Recent methods seek to 

optimize a function of modularity indicating a maximum of relationships within communities and a 

minimum of inter-communities relations.  

This paper will be presented as follows, first, we present the state of the art in matters of detection methods 

of communities then we propose a method for detecting communities. This method works into two steps, 

the first step consist to split the graph into subgraphs by using the normalized covariance measurement and 

the second part allows to merge the sub-graphs by maximizing the modularity of the resulting graph.  
 
Keywords: Graph Theory, Complex Networks, Modularity, Clustering Coefficient, Assortativity.  

 

1. INTRODUCTION  
 

Recent advances in the field of complex 

systems have highlighted the central role that the 

graphs play in many phenomena. These large 

graphs are used to model the interactions 

between the different actors of these complex 

phenomena involved in very many fields: 

computer science, sociology, biology, physics, 

etc. , Surprisingly these graphs have nontrivial 

common structural properties which have been 

the subject of many recent studies [1, 6, 7, 12, 

21].  

These properties allow to consider a new 

algorithmic for large graphs.  
 

The work of this paper are part of this 

interdisciplinary context, focusing on the 

algorithmic method for communities detection, 

ie of the vertices of the graph can be easily 

grouped into sets of vertices such that each set of 

vertices is densely connected internally and 

weakly linked externally.  

We will first present the large graphs 

(complex graphs or complex networks). Then we 

introduce the communities detection problem. A 

several works related to this subject will be 

mentioned, implemented in parallel with the 

work carried out in this paper.  

 

2. TERMINOLOGIES 

 

Graph theory provides a modeling support 

complex networks by generalizing the structure 

whatever their origin : 

1. an element of the network (individual 

computer, proteins, .etc) is represented 

by a vertex or node of the graph;  

2. a relationship or connection between 

two elements is represented by an edge 

of the graph.  

This modeling allows to express the 

distinctive properties of complex networks, and 

to implement algorithms to solve the problems 

these ones raise.   

Graph: A graph G is a discrete structure 

consisting of nodes (vertices) and lines joining 

the nodes (edges). Two vertices are adjacent to 

each other if they are joint by an edge. The edge 

joining the two vertices is said to be an edge 

incident with them.  

We use 
V

G  (n = | V | is the order of the graph) 

and 
E

G  (m = | E |) is the size of the graph) to 

denote the set of vertices and edges of G 

respectively.  

Degrees of Vertices: The degree of a vertex is 

the number of edges incident with it, except that 
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a loop at a vertex contributes twice to the degree 

of that vertex. The degree of the vertex u is 

denoted by d(u).  

Subgraphs: A subgraph of a graph G is a graph 

H where 
HG VV ⊆  and 

HG EE ⊆   

Clique: a complete subgraph of a given graph is 

called a clique of the graph.  

Density:The density of a graph is defined as 

either 

2m

n (n− 1)
: The ratio between the number 

of edges and the maximum possible number of 

edges given the number of nodes of the graph.  

Adjacency Matrix: Let G be an graph. Suppose 

u
1
, u

2
, , . . ,u

n  are the vertices of G. Then the 

adjacent matrix with respect to this ordering of 

V
G  is the nxn  matrix 

M= [mij]  where 

 

Paths and Cycles: In a graph G, a path of length 

l from u to v is a sequence of l + 1 vertices 

v
1
, v

2
, , .. , v

l
, v

l+1  where 
v

1
=u

 and 

v
l+1

=v
, and 

v
i
v

j
∈E

G . 

A path is called a circuit when v=u   

A path or a circuit is simple if it does not contain 

the same edge more than once. 

Connected Graphs: A graph is connected if 

there is a path between every pair of distinct 

vertices of the graph. An edge uv  in a 

connected graph G  is called a bridge if 

G− uv , the graph obtained by deleting uv 

from G, is not connected. 

distance: The distance between two vertex is the 

length of the shortest path connecting them. 

Edge Betweenness Centrality: Betweenness 

centrality of an edge e is the sum of the fraction 

of all-pairs shortest paths that pass through e : 
 

where 

V  is 

the set 

of nodes, σ (s , t )  is the number of shortest 

(s , t ) -paths, and 
σ (s ,t∈e)

 is the number of 

those paths passing through edge e . 

 

 

Modularity Q : Modularity represents the 

difference between the value of adjacency 

between two nodes of the same community 
m

ij  

and the probability that those are connected. Q  

modularity of a graph is defined by: 

 

where m =| E | and n =| V |, 
m

ij  is equal to 1 if 

u
i  and 

u
j  are adjacent, 

m
ij
= 0

 otherwise. 

d(v i)  is the degree of the vertex ui and δ  is 

the Kronecker symbol equal to 1 if 
u

i  et 
u

j  

belong to the same community and 0  

otherwise. 
 
3. SIMILARITY & CLUSTERING 
 

In Mathematics and computing, similarity is 

an important criterion for the identification of 

subgroup in a group of objects, values 

(numerical or not), data (known or recognized) 

in a ”space” or a system In classification, it is 

called clustering (or clustering) to describe data 

partitioning, and a cluster is then a set of data or 

materials with similarities. 

There are several detection communities 

methods. We will present here those receiving 

the most interest from the scientific community: 

1. Hierarchical methods 

2. Methods based on optimization of an 

objective function 

3. Methods based on a model 

Before presenting these three methods, we 

will clarify the relationship between the problem 

of community detection and graph partitioning. 

Indeed, the graph partitioning is to group the 

nodes of a graph in a generally predetermined 

number of homogeneous subgraphs by 

minimizing the number of links between the 

different groups while the community detection 

does the same with or without requiring a priori 

knowledge of the number of communities. 

 

A. hierarchical methods 

Hierarchical classification algorithms seek to 

consolidate the nodes of a graph (network) in 

different communities, so that the nodes of the 
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same community as similar as possible so that 

nodes from different communities are the 

different possible. For hierarchical methods, we 

distinguish two distinct approaches namely the 

agglomerative algorithms and the divisive 

algorithms: 

 

1) Agglomerative algorithms: 

• The agglomerative approach starts with 

a structure in which each node of the 

graph represents a 

• community. We start with n 

communities (where n =| G |). 

• We begin by calculating the distances 

between communities and merge the 

two closest communities to form a new 

community. 

• At each step, we recalculate all 

distances between communities and we 

fuse two communities. 

• When there is only one graph 

representing the entire community, 

there is more distance to calculate. 

• the different stages of this process can 

be represented by a tree-form called 

dendrogram. The leaves are the 

communities with a single node and the 

root represents the entire graph. 

Walktrap is an example of agglomerative 

algorithm. 

 

2) divisive algorithms: The algorithms for 

division are to divide a network into 

communities by iteratively eliminating the links 

between nodes. they start with a single 

community until to obtain n communities with a 

single node representing the leaves of the 

dendrogram. 

In each iteration, all connected graph is 

considered a community. Existing methods differ 

in the choice of links to be removed and by the 

weight given to the links. 

Edge Betweenness is an example of divisive 

algorithm.  

To find the inter-community links, Edge 

Betweenness algorithm gives each link a 

measure of betweenness centrality (Edge 

Betweenness Centrality). 

 

B. Methods based on optimization of an 

objective function 

There are a number of algorithms based on 

heuristics to define the community structure of 

networks. This type of algorithm consist to 

define an objective function whose value varies 

according to the identified communities. The 

function is maximum for the best community 

structure. An example of this type of algorithm is 

Fast Greedy Newman. 

 

C. Methods based on a model 

The algorithms based on the model are 

unsupervised classification algorithms, using 

methods based on prototypes expressed in a 

model formalism. For each type of data, a 

learning model adapted to the nature of the data 

is proposed. 

Label Propagation is an example of methods 

based on a model. This algorithm is based on the 

principle that each node change the community 

according to the community containing its 

neighbors. A node is part of the community that 

contains the largest number of neighboring 

nodes. 

This process is the learning model for Label 

Propagation, which runs on all nodes in each 

iteration. At the beginning of the algorithm, each 

node is in one community. Then, the nodes 

change their communities while respecting the 

learning model. With this method, a group of 

nodes, strongly linked, ends up in the same 

community. 

 

Fast Greedy is not a hierarchical algorithm. It 

gives no score or setting links. Add to that it 

does not measure the distance or similarity 

between communities to merge. Similarly, the 

major drawback of this method is its 

classification quality that is less good compared 

with other algorithms using modularity eg Edge 

Betweenness. 

Label Propagation is the only one to be non-

deterministic because its execution with the same 

network can give several results. When the 

number of inter-community links is low, all these 

algorithms end up having the same communities 

structure. By increasing the ratio of links inter-

communities, community detection results will 

differ, and the quality of the clustering degrades. 

In summary, the most popular algorithms for 

communities detection are: 

• Edge betweenness (Girvan-Newman 

link centrality-based approach), 

• Walktrap (Pons-Latapy random walk-

based approach), 

• Leading Eigenvectors (Newman’s 

spectral approach), 

• Fast Greedy (Clauset et. al modularity 

optimization), 

• Label Propagation (Raghavan et. al), 
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• Louvain (Blondel et. al, modularity 

optimization), 

• Spinglass (Reichardt-Bornholdt, 

modularity optimization), 

• InfoMap(Rosvall-Bergstrom, 

compression-based approach). 

 

4. PROPOSED ALGORITHM 
 

The covariance is a meters to assess the 

direction of change of two random variables and 

qualify the degree of independence. So if the 

bigger (respectively smaller) values a variable 

correspond mainly to large (respectively smaller) 

values of the other variable, then the covariance 

is highthe two variables tend to show similar 

behavior. Otherwise, 

when the superior values of a variable 

primarily correspond to inferior values of the 

other, the variables tend to show opposite 

behavior, and the covariance is low (The 

covariance values are between -1 and 1). 

The higher the covariance will be close to 

zero more can say that the two sets of variables 

are independent. the contrary, the more this one 

will be high the more link Independence will be 

weak. 

We chose to use this measure of covariance on 

the links connecting the vertices of the 

graph(network). Indeed, if there is a connection 

between two vertices with a large number of 

common neighbors, then this link has a high 

covariance and represents intra-community link. 

Otherwise, if a connecting two vertices with a 

small number of common neighbors, then this 

link has a low covariance. This is called an inter-

community link. 

To calculate the covariance links, we must 

first calculate the adjacency matrix of the graph 

(network). If two vertices 
u

i  and 
u

j  of this 

graph are directly connected, 
M

ij  is equal to 

one and is zero otherwise. 

The covariance of a link 
e

ij  connecting nodes 

u
i  andis high if the ones and zeros of the vector 

M
i  (the ith of the adjacency matrix) 

correspond to ones and zeros of vector 
M

j  . in 

other words, the nodes 
u

i  and 
u

j  have the 

same neighbors and are probably in the same 

community). 

The covariance is low if the ones and zeros of 

M
i  correspond to the zeros and ones of 

M
j  . 

In the latter case, the nodes 
u

i  and 
u

j  have 

not the same neighbors and they are therefore in 

different communities. 

The covariance of a edge 

e
ij  is define as follow :  

 

Where                    is the average of the 

vector 
M

i  and n is the graph. 

 

The sign of the covariance therefore shows the 

tendency in the linear relationship between the 

variables. The magnitude of the covariance is not 

easy to interpret. The normalized version of the 

covariance, the correlation coefficient, however, 

shows by its magnitude the strength of the linear 

relation. For this reason we will use the 

normalized form of the covariance: 
Where                                              

 

is the standard deviation of 
M

i  (with Bessel’s 

correction). 

After several experiments, we used the 

covariance as a measure of similarity between 

two vertices and thus links. Indeed,  this measure 

has given good results and good performance.  

 

Interclass inertia: This measure is used to 

study a set of data, the grouping into several 

subsets so that the elements of the same group 

(community) are as similar and that two distinct 

groups are as heterogeneous as possible. We use 

this measure to determine the link aggregation: 

links with high covariance and links with low 

covariance. 

 

 

The inter-class inertia between C1 and C2 

communities is defined as follows: 
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•  | 
v

i
v

j
∈E

G  | and | 
1

 | are  respectively the 

number of links in both 
C

1  and 
C

2  

communities. 

• 
μ

1 , 
μ

2  and μ  are, respectively, the 

average covariance for 
C

1  , 
C

2  and all 

communities. 

 

The main idea of the algorithm is to remove a 

set of links in each iteration. This process of 

elimination is repeated until a number of sub 

networks greater than ξ=√n . ξ  number 

reflects a stop test for the algorithm. Indeed, 

Newman proved that modularity is maximal 

when the number of communities is close to ξ . 

At the beginning of the algorithm, the 

number of edges is | E  |. The number of 

subgraphs is equal to one. After, the algorithm at 

each iteration eliminates a set of edges, and 

calculates the number of subgraphs. If this 

number is less than ξ , it still eliminates other 

edges. Otherwise, the algorithm stops and returns 

the graph G=(V, E ),  The algorithm begins by 

calculating the covariance of all the edges and 

put them in 
Γ

covN  . Then the vector 
Γ

covN  is 

sorted in descending order. Then, the algorithm 

calculates different values of the inertia inter-

class 
I

ic . The index of the maximum value of 

I
ic  represents the number of edges not to 

eliminate. So the algorithm will remove | E | 

− I
ic
+1

 edges that have the lowest covariance 

values. 

 

Creation communities using covariance and 

inter-class inertia: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. 

Illustr

ative 

examp

le 

Let 

the 

graph 

of 

Fig.1 

compo

sed of 

n = | 

V  
|

= 12

 vertices 

and | E  

| = 17  

edges: 
Fig. 1. 

Graph 

initial 

G (V, E )
 

 

The 

adjacency 

matrix of 

graph 

(Fig.1) is: 
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Below the table summarizing the first iteration of 

the  algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The Structure Of The Graph After The First 

Iteration Of The First Part Of The Algorithm. 

 

At the end of the firth iteration, the number of 

subgraphs  
ζsg  is four and it exceeds ξ  which 

is 3.46 ( √12 ). So this is the end of the first 

part of the algorithm whose output is the graph 

G= (V , E ' )  with V  representing twelve nodes 

of the graph and E '  containing eleven edges 

that have not been eliminated.  

The resulting graph is shown in Fig.2 Before 

starting the second part of the algorithm ie the 

merging of sub graphs found, we must have a 

number of subgraphs greater than one. In our 

example, the end of the first part of the algorithm 

returned a set of 4 sub-graphs 
G1 , 

G2 , 
G3  

and 
G4  representing the detected communities 

and the modularity of G  is 0 ,30 . So we will 

calculate the Q  modularity for possible 

combinations (here 6) and we will hold the 

maximum values of  modularity. 

 During the first iteration of the second part of 

the algorithm,  the number of sub-graphs is equal 

to 4 . we calculated the modularity Q  for the 

possible combinations. A maximum value of Q  

equal to 0,35  is obtained by merging the 

subgraph that contains the vertices 8,10  and 

12  with the sub-graph that contains vertices 

9  and 11. The merger of these two sub -graph 

consist to add all links between nodes of these 

two subnets that are in the initial graph G . the 

modularity of the graph in Fig.2 is 0,30  while 

the modularity of the graph in Fig.3 is 0,35 . In 

this case, we keep the structure of the graph in 

Fig.3 because its modularity is much superior. in 

the end of the algorithm, the final structure of  

our graph will be that of Fig.3. 

 

 

Fig. 3. The Structure Of The Graph After The 

First Iteration Of The Second Part Of The 

Algorithm. 

 

Example of calcul of modularity (i= 1 , j= 2)  
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The vector of degree is : 

 

 

The matrix 
∆ (δ (vi ,v j))

 is: 

 

So modularity value in iteration (i= 1 , j= 2)  is 

Q= 0 ,30
 

 

5. SIMULATION AND RESULTS 

 

A. Simulation 1 

Let Barabasi graph with 150 vertices : 

Fig. 4. Barabasi graph with 150  vertices. 

 
Fig. 5. Barabasi graph with 150  vertices 

 

The following table summarizes the 

community structure of the graph Fig.4 

calculated with DCOMCOV algorithm and 

compared with five other algorithm. 

 

 

B. Simulation 2 

Let Watts graph with 500  vertices : 

Fig. 6. Watts graph with 500  vertices. 
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Fig. 7. Watts graph with 500  vertices. 

The following table summarizes the 

community structure of the graph Fig4 calculated 

with DCOMCOV algorithm and compared with 

five other algorithm. 
 

C. Simulation 3 

Let Lattice graph with 64  vertices : 

Fig. 8. lattice with  64  vertices 

 

Fig. 9. Communities of 64-Lattice graph. 
 

D. Simulation 4 

Let Karate graph with 44  vertices : 

 

Fig. 10 : 44 -karate graph. 
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Fig. 11. Communities of 44 - karate graph. 
 

6. CONCLUSION 
 

We have presented a novel method for 

detecting communities in complex networks (in 

the form of a graph). The algorithm proposed in 

this method is divided in two parts. 

In the first part, we used the normalized 

covariance measure to eliminate one or more 

inter-community edges and split the initial graph 

into sub-graphs. The second part is to find the 

optimal structure of communities keeping 

mergers between sub-graphs. In the last part, we 

used the concept of modularity, which is a 

measure of the quality of a partitioning vertices’s 

graph into communities. The main idea, here, is 

that a good partitioning graph involves a number 

of significant intra-communities edges and a 

small number of inter-communities edges. 

After several simulations on large graphs, we 

firstly constate, that the number of communities 

detected with the proposed algorithm is the 

average of the numbers found by the other fives 

methods. Secondly, the modularity is also the 

average modularities found by the cited methods. 

In add to the robust of our algorithm approach in 

their simplicity, we can also appreciate the 

considerable number of deleted links at each 

iteration conducting to a faster convergence. 

This algorithm is applicable on undirected and 

unweighted graphs. Due to this, a perspective of 

this work open a new reflexions and discussions 

to improve this method in order to resolve the 

detection communities in weighted graphs. 
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