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ABSTRACT 

 

Multiple sequence alignment (MSA) is a cornerstone process in computational biology and bioinformatics 

and it is necessary for sequence analysis. Through decades of extensive research to solve the MSA problem, 

numerous methods have been proposed and developed. Dynamic programming-based methods suffer from 

the high computational cost in building MSA. Therefore researchers tend to solve MSA problem using 

heuristic methods as they attempt to reach optimal results in a reasonable time. Progressive alignment 

method is the most used method for constructing MSA. In this paper we present an extensive analysis for 

the leading methods and top performing methods in MSA. The leading methods of MSA are discussed 

individually to highlight the differences in methods and techniques they use beside the progressive 

alignment. Also, we present a critical analysis for MSA leading methods based on experimental results 

where BaliBASE database is used as a benchmark. Results show that MSAProbs algorithm has the superior 

accuracy performance over all leading methods while MUSCLE and Clustal W are the fastest. Although 

numerous algorithms have been proposed for MSA, producing an efficient MSA with high accuracy 

remains a huge challenge. 

Keywords: Multiple sequence alignment, MSA leading methods, Progressive alignment, Sequence 

alignment, Guide tree, and Computational biology. 

 

1. INTRODUCTION 

MSA plays an essential role in identifying 

sequences and collecting information about them 

[1]. It is used for several purposes, with varying 

degrees of importance and motives. Representing 

and identifying sequence families is the most 

significant role of MSA. Indirectly, MSA helps 

in predict the structure and function of sequences 

by relating them to their closest similar families. 

It also helps build the phylogenetic tree to 

represent the evolutionary history of species and 

study the evolution of molecules [2].  

Optimal MSA is considered as an NP-hard 

problem because the size of the problem 

increases radically when the number and length 

of sequences increase [3-9]. On the other hand, 

to reach optimal results using dynamic 

programming (DP) is an NP-complete problem 

[10]. The length and number of sequences are 

important factors to consider in MSA methods. 

Dynamic programming method considers 

impractical for MSA, as the number of 

sequences in the alignment file increase, because 

of the high computational cost. On the other 

hand, many attempts is done to solve the 

problem using heuristic method, such as 

progressive alignment [11, 12], probabilistic and 

statistics-based alignment [13-19], iterative 

alignment [20, 21], and alignment based on 

population-based metaheuristic methods [22-32]. 

Progressive alignment method is widely used 

method for building MSA. Recent MSA methods 

are tend to combine progressive alignment with 

other heuristic-based methods to achieve optimal 

results. Also, it is used with many approaches 

beside the heuristic approach to find the optimal 

alignment in a reasonable time. 
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Benchmark databases have encouraging effects 

toward developing MSA methods. Many 

benchmark databases are built to facilitate 

improving the performance of MSA methods by 

measuring the alignment quality such as 

BaliBASE [33-36], OXBench [37], IRMBase 

[38], and SABmark [39].  

In this paper we provide an extensive analysis 

for the top performance and leading methods of 

MSA. Next we give a definition for MSA 

Problem, guide tree, and progressive alignment 

method. After that we provide an extensive 

review for MSA leading methods. 

2. PROBLEM DEFINITION 

MSA is a process of aligning more than two 

DNA, RNA, or protein sequences. It analyzes the 

relationship between these sequences to 

determine their shared lineage or common 

ancestors. The results from MSA can provide 

information on homologous sequences and can 

be used to conduct phylogenetic analysis. The 

process of manually aligning multiple sequences 

is complex and time consuming. These 

challenges encourage researchers to contribute 

by constructing MSA computationally in order to 

help simplify and speed up the process of 

constructing MSA. 

Say we have 'n' number of sequences	��, ��, ....., 

and ��. The MSA of ��, ��, ....., and �� is a 

matrix ���, 
�, where i is the number of 

sequences and j is the number of residues in each 

sequence. 

3.  GUIDE TREE 

Guide tree is a binary tree that represents the 

relations among a group of sequences based on 

distance matrix scores. It is a basic process in 

progressive alignment methods to guide the 

alignment process because the sequences are 

organized in the tree according to their 

resemblance score. Sequences are branched in 

the tree according to the amount of similarity 

they share, that is, the most similar are the closer 

to each other. Each leaf in the tree represents a 

different sequence, while nodes show how far 

these sequences are from each other. Building a 

guide tree requires (1) a pre-computed distance 

matrix, which can be built by applying all-to-all 

pair-wise alignment, and (2) a clustering method 

to arrange the sequences in a tree according to 

the distances in the distance matrix. 

Guide trees offer a pre-computed map that can be 

used as a compass to direct the progressive 

alignment. Progressive alignment starts 

constructing the alignment by aligning two 

sequences, and then continues aligning 

sequences to the previous aligned sequences. 

This process makes guide trees a great support to 

enhance the alignment score and reduce the 

running time. 

4. PROGRESSIVE ALIGNMENT 

Progressive alignment is a widely used method 

for building MSA. It manages the alignment by 

passing the sequences through two main phases: 

(1) tree construction phase, where the sequences 

are arranged according to the amount of 

similarity they share in a tree-like shape called 

guide tree, and (2) MSA construction phase. The 

second phase is carried out by aligning the most 

similar pair of sequences as a core for the 

alignment, and then adding sequences gradually 

to the previously aligned sequences depending 

on the similarity they share using the guide tree 

as a leading compass. 

The alignment is built progressively starting with 

the closest pair of sequences moving towards 

aligning the next similar sequences to those 

already aligned. Progressive alignment handles 

the alignment by passing the sequences through 

various steps. The first step is pair-wise 

alignment, which requires an (n-1) × n/2 pair-

wise alignment to align n sequences. Then, the 

pair-wise alignments are scored to identify the 

highly matched sequences. After the closest pair 

of sequences are identified, their gaps get filled 

using neutral elements. Next, the second closest 

sequence or group of sequences gets added to the 

original pair, and then a new alignment is 

established for them. Finally, after scoring the 

last alignment, the tree plot is constructed [12]. 
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5. MSA LEADING METHODS 

MSA leading methods are the top performing 

algorithms in the MSA research field, as well as 

the most commonly used methods for comparing 

and measuring the performance of new 

algorithms in the field. All MSA leading 

methods are based on progressive alignment. 

Progressive alignment method mainly constructs 

the MSA in three steps: (1) constructing the 

distance matrix, (2) building the guide tree, and 

(3) building the MSA progressively. 

Although all of the leading methods use 

progressive alignment to build MSA, they vary 

by the other techniques they use. To construct 

the distance matrix, some methods use pair-wise 

alignment while others use approximate method. 

Using pair-wise alignment to construct the 

distance matrix improves the accuracy of the 

alignment but compromises the execution time. 

On the other hand, using approximate distance 

method to construct the distance matrix speeds 

up the process of building the alignment but 

compromises the of accuracy.  Furthermore, two 

different clustering methods are used by the 

leading methods to build the guide tree out of the 

distance matrix: UPGMA and NJ. UPGMA 

method is used for its simplicity and speed in 

constructing the tree, while NJ method is used 

for its robustness because it does not assume that 

all species have the same mutation rate. The last 

step in progressive alignment method is 

progressively constructing MSA out of the guide 

tree. Some leading methods applied a refinement 

process to the final step of progressive alignment 

in order to improve the alignment score, while 

others do not in order to avoid its overhead on 

execution time.  

In this section, we describe the leading methods 

of protein MSA, which include Clustal-W, T-

Coffee, MAFFT, MUSCLE, ProbCons, 

Probalign, DIAlign-TX, and MSAProbs. 

5.1 Clustal-W 

Clustal-W [40] is a progressive alignment 

algorithm proposed in 1994 to improve the 

alignment of divergent protein sequences. 

Clustal-W is one of the many extensions to the 

Clustal algorithm [41], along with Clustal V [42, 

43] and Clustal X [44]. Alignment improvement 

using Clustal-W algorithm includes (1) assigning 

weights to the sequences regarding the shared 

similarity to mark the sequences that share high 

similarity from other sequences, (2) using 

different substitution matrices according to the 

shared similarity of the target sequences to refine 

the alignment and maximize the alignment score, 

(3) adding potential loop region gaps raised by 

the gap penalties of residue-specific and locally 

reduced gaps. Clustal-W algorithm is among the 

fastest algorithms when compared with the 

leading methods of MSA, but it sacrifices 

accuracy because it is among the lowest 

performing algorithm compared with other MSA 

leading methods. 

5.2 T-Coffee 

T-Coffee (Tree-based Consistency Objective 

Function for alignment Evaluation) algorithm 

[45], is an extension to the Coffee algorithm [46] 

proposed in 2000 to build MSA. T-Coffee 

algorithm is proposed to overcome the accuracy 

weaknesses of the original Coffee algorithm. It 

improves the accuracy of the Coffee algorithm 

by pre-processing the datasets and building a 

library of alignment information. On the other 

hand, T-Coffee algorithm sacrifices the run time 

compared with the leading methods. 

Two main features of T-Coffee algorithm have 

contributed the most toward improving the 

accuracy of the original algorithm (Coffee). The 

first feature is the simplicity and flexibility of 

multiple alignment construction. T-Coffee 

algorithm constructs a library of pair-wise 

alignments that are generated by multiple 

systems and are applied to heterogeneous 

sources. The second feature is the use of 

optimization method to detect the finest pair-

wise alignment from the pre-computed library. 

The pre-computed library is built in several 

steps: (1) generating a primary library of pair-

wise alignments by using two different pair-wise 

alignments [Clustal-W and Lalign[47]] applied 

to the same pair of sequences, (2) deriving of the 
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primary library weights where each aligned pair 

of residues is assigned a weight, (3) combining 

the libraries by combining the alignments that 

are gathered using the two pair-wise methods, 

and (4) extending the library by assigning weight 

constraints to the alignment. Afterward, the 

algorithm builds the guide tree using NJ method 

out of the distance matrix. Finally, progressive 

alignment method is used to build the MSA. 

5.3 MAFFT 

MAFFT algorithm is a progressive method for 

building MSA proposed by Kazutaka Katoh in 

2002 [48]. Katoh then has proposed two versions 

of the MAFFT algorithm [49] which is an 

improvement to the accuracy of the original 

algorithm and [50] uses the MAFFT algorithm to 

build multiple alignments of DNA sequences. 

Basically, MAFFT algorithm applies two 

techniques to build the alignment: (1) fast 

Fourier transformation (FFT) to identify 

homologous regions, (2) simplified scoring 

system to reduce the run time and, at the same 

time, improve the accuracy. MAFFT algorithm 

outperforms Clustal-W and MUSCLE algorithms 

in terms of accuracy, but still has low accuracy 

compared with the leading method of MSA. 

Furthermore, it suffers from high execution time 

compared with the leading methods, especially 

Clustal-W and MUSCLE algorithms. 

Before the refinement process, the MAFFT 

algorithm generally includes two main stages. 

The first stage is building the MSA1, which 

includes all-to-all pair-wise alignment to build 

the distance matrix1, UPGMA clustering method 

to build the guide tree1, and progressive 

alignment to build MSA1 out of guide tree1. The 

second stage is to improve MSA1 by taking it as 

an input. This stage builds MSA2 by building the 

distance matrix2 out of MSA1 depending on the 

6-tuples that the target pair of sequences share, 

building the guide tree2 using UPGMA method, 

and using progressive alignment method to build 

MSA2. 

 

 

5.4 MUSCLE 

MUSCLE (MUltiple Sequence Comparison by 

Log-Expectation) algorithm is a progressive 

MSA method proposed by Robert C. Edgar in 

2004 [51]. Another version of MUSCLE 

algorithm is proposed in [52] , in which the focus 

is on improving the run time of the original one. 

Generally, MUSCLE algorithm consists of three 

stages: draft progressive to build the MSA, 

improved progressive to enhance the first MSA 

draft, and refinement for additional accuracy 

improvement. Although MUSCLE algorithm is 

among the fastest methods compared with the 

leading methods of MSA, many leading methods 

still outperform it in terms of accuracy. 

As a MAFFT algorithm, MUSCLE algorithm 

builds the MSA twice but has a different 

refinement technique. MUSCLE algorithm starts 

with a draft progressive alignment (MSA1), 

which it then uses MSA1 as an input to build an 

improved MSA2. Then it starts a refinement 

stage to enhance the accuracy. Refinement stage 

begins with splitting tree2 (the one produced in 

MSA2) into two trees by choosing an edge that 

starts decreasing from the root. Next, the two 

sub-trees are aligned using profile alignment and 

then scored using the SP score function. If the 

new alignment is better than the previous one, 

then the new alignment replaces the previous 

one; otherwise, it is rejected.  

5.5 ProbCons  

ProbCons (Probabilistic consistency) is a 

progressive probabilistic method used to build 

MSA for protein sequences [53]. It proposes an 

objective function based on probabilistic 

consistency, which applies to the progressive 

method to build the alignment. To build the 

alignment using ProbCons algorithm, the 

sequences should pass through several processes, 

including calculating posterior probability 

matrices, computing the expected accuracies of 

pair-wise alignments, transforming the 

probabilistic consistency, calculating the guide 

tree, achieving progressive alignment, and 

finally, obtaining iterative refinement. ProbCons 

algorithm has a competitive accuracy 
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performance, but it still suffers from high 

computational cost especially with long 

sequences. 

To compute posterior probability matrices, 

ProbCons algorithm uses HMM model to build 

the alignment, computes pair-wise alignments, 

and then maximizes the expected accuracy 

alignment. While most alignment methods 

attempt to reach optimal pair-wise alignment by 

aiming for the best probability alignment using 

Viterbi algorithm [54], ProbCons attempts to 

find and maximize the alignment a with high 

accuracy by following Equation (1): 

�
∗�����������, �∗�|�, �� � 	
1

����|�|, |�|�	 � ����	~�! 	"	�∗|�, �#
$%	~&'	(	)

																	* 

where, a is the alignment, a* is the targeted 

alignment, and x, y are the target pair of 

sequences. 

5.6 Probalign  

Probalign algorithm [55] is a progressive 

probabilistic MSA method that combines pair-

wise posterior probabilities technique with 

partition function technique. It is a modified 

version of the Probcons method. To build the 

alignment using Probalign, sequences should 

pass through several steps, including computing 

posterior probability, combine posterior 

probabilities with partition function, and 

maximal expected accuracy alignment. Probalign 

algorithm has a competitive accuracy 

performance compared with Probcons algorithm 

and is faster than Probcons, but still slower than 

Clustal-W and MUSCLE. 

To compute the posterior probability, Probalign 

algorithm follows the equation described in [53]. 

Then, the algorithm computes the maximal 

expected accuracy alignment out of the given 

posterior probability matrix by using the 

equation described in [56]. Probalign algorithm 

next uses the partition function to estimate the 

posterior probabilities. Afterward it uses the pre-

computed posterior probability matrix to build 

the alignment. 

5.7 DIalign-TX 

DIalign-TX [57], an extension to the DIalign and 

DIalign-T algorithms, is an MSA method 

proposed in 2008. DIalign-TX is a progressive 

segment-based method that uses greedy approach 

along with the progressive alignment to build the 

alignment. The accuracy is improved compared 

to the original algorithm DIalign without 

increasing the time and space requirement. 

Furthermore, DIalign-TX inherits the direct 

greedy approach sensitivity to spurious pair-wise 

similarities, which bring the alignment score 

down while maintaining the average time 

performance. 

DIalign-TX algorithm builds the MSA by 

passing the sequences through several processes, 

including pair-wise alignment, guide tree 

construction, and progressive alignment. To 

compute the distance matrix, two rounds of pair-

wise alignment are applied. Unlike most pair-

wise methods, DIalign-TX algorithm uses three 

inputs to build the alignment: the two sequences 

to be aligned and a consistent fragment set. To 

enhance the pair-wise alignment, a second pair-

wise alignment round is applied using greedy 

alignment. The guide tree is built using UPGMA 

clustering method. Finally, progressive 

alignment method is used to build the MSA out 

of the guide tree.  

5.8 MSAProbs 

 MSAProbs is a progressive probabilistic MSA 

method proposed in 2010 by Yongchao Liu et al 

[1]. It uses a combination of pair-HMM and 

partition function to compute the posterior 

probabilities. To improve the accuracy of the 

alignment, MSAProbs algorithm uses two 

techniques: (1) weighted probabilistic 

consistency transformation and (2) weighted 

profile–profile alignment. MSAProbs algorithm 

shows an improved accuracy performance 

compared with to the leading methods of MSA, 

but it is outperformed by many methods such as 

Clustal-W and MUSCLE in terms of time 

performance. 
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Building MSA using MSAProbs algorithm can 

be concluded in six steps: posterior probability 

calculation, distance matrix building, guide tree 

construction, weighted probabilistic consistency 

transformation, progressive alignment, and 

iterative refinement. The probability matrix is 

built by combining two probability matrices as a 

root mean square of the two matrices. The two 

probability matrices are built based on pair-

HMM and partition function. 

A comprehensive analysis is shown in Table 1. It 

provides a summary description of MSA leading 

methods.

 

6. RESULTS AND MEASUREMENTS 

6.1 Performance Measurements 

To measure and compare the results of MSA 

leading methods, two performance metrics were 

involved: execution time and accuracy. Score 

function tools are used as accuracy 

measurements to calculate the quality of an 

existing alignment. Two commonly used scoring 

methods are applied to assess the accuracy of the 

alignments: sum-of-pairs score (SPS) and 

column score (CS). SPS can be defined as the 

total number of aligned pairs of residues in the 

test alignment (the alignment we want to score) 

that matches the correspondence pair of residues 

in the reference alignment divided by the total 

number of aligned pairs in the reference 

alignment. To compute the score for an 

alignment using SPS, two input alignments 

should be provided: the target alignment (test 

alignment) and the reference alignment provided 

by the benchmark. CS is used to evaluate the 

quality of an alignment by counting the number 

of correctly aligned columns. It is defined as the 

total number of aligned columns in the test 

alignment (the alignment we want to score) that 

matches the correspondence columns in the 

reference alignment divided by the total number 

of aligned columns in the reference alignment. 

CS method uses the same inputs as SPS method. 

To assess MSA leading methods we use 

Benchmark Alignment dataBASE (BaliBASE) 

benchmark [33-36]. It is a benchmark 

specifically intended for MSAs with big scale. It 

is designed to point out all the potential problems 

faced in MSA in order to give a better evaluation 

for a set of aligned sequences. BaliBASE is a 

manually refined benchmark with huge diversity 

reference sets of MSAs. These reference sets 

characterize many challenges in MSAs, such as 

small number of sequences involved in the 

alignment, large N/C-terminal extension 

sequences, and sequences with unequal 

evolutionary rate. Basically, BaliBase 3.0 dataset 

consists of 386 alignment groups distributed into 

Table 1: Summary of MSA Leading Methods  
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six reference sets, namely, RV11 (76 alignment 

files), RV12 (88 alignment files), RV2 (82 

alignment files), RV3 (60 alignment files), RV4 

(49 alignment files), and RV5 (31 alignment 

files). 

6.2 Results 

Tables 2-5 show the average SPS, CS, and 

execution time results for MSA leading methods 

on BaliBASE 3.0 benchmark. Table 2 shows the 

execution time of MSA leading methods on 

BaliBASE 3.0 benchmark reference datasets. 

Table 3 and Table 4 show the SPS and CS scores 

of MSA leading methods on BaliBASE 3.0 

benchmark reference datasets. Finally, Table 5 

shows the overall average values of SPS, CS, 

and execution time on BaliBASE benchmark. 

 

 

 

 

 

 

 

  

  RV11 RV12 RV2 RV3 RV4 RV5 

Clustal-W 19 45 455 576 202 112 

MAFFT 580 920 6924 6714 5043 3430 

MUSCLE 31 46 262 299 352 117 

TCoffee 1755 2491 29221 7423 1230 697 

ProbCons 82 269 4623 7482 2749 1368 

Probalign 47 200 3355 5101 1968 917 

MSAProbs 82 286 5285 8182 2087 1382 

DIAlign-TX 50 100 1461 2039 581 307 

  RV11 RV12 RV2 RV3 RV4 RV5 

Clustal-W 0.5822 0.8840 0.8879 0.7714 0.7894 0.7691 

MAFFT 0.6841 0.9356 0.9357 0.8708 0.9119 0.8977 

MUSCLE 0.6575 0.9232 0.9151 0.8424 0.8648 0.8529 

T-Coffee 0.7297 0.9436 0.9343 0.8711 0.8919 0.9017 

ProbCons 0.7400 0.9459 0.9370 0.8754 0.9003 0.9015 

Probalign 0.7127 0.9465 0.9354 0.8645 0.9221 0.8912 

MSAProbs 0.7459 0.9487 0.9436 0.8820 0.9254 0.9090 

DIAlign-TX 0.5401 0.8830 0.8901 0.7684 0.8340 0.8218 

Table 2: Execution Time Results on Balibase [the bold values represent the shortest 

execution time (in seconds)] 

Table 3: SPS Score On Balibase (The Bold Values Represent The Highest Score) 
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RV11 RV12 RV2 RV3 RV4 RV5 

Clustal-W 0.3253 0.7559 0.3386 0.3817 0.3982 0.3650 

MAFFT 0.4754 0.8426 0.4891 0.6007 0.5861 0.5904 

MUSCLE 0.4332 0.8200 0.4222 0.4768 0.4532 0.4750 

T-Coffee 0.5143 0.8585 0.4874 0.5637 0.5424 0.6016 

ProbCons 0.5276 0.8682 0.5080 0.6005 0.5361 0.5952 

Probalign 0.4857 0.8677 0.4669 0.5972 0.6123 0.5436 

MSAProbs 0.5365 0.8746 0.5408 0.6342 0.6251 0.6143 

DIAlign-TX 0.3172 0.7600 0.3469 0.3992 0.4517 0.4567 

 

 

 

SPS CS Time 

Clustal-W 0.7807 0.4274 1409 

MAFFT 0.8700 0.6048 23611 

MUSCLE 0.8426 0.5134 1107 

T-Coffee 0.8787 0.5947 42817 

ProbCons 0.8833 0.6059 16573 

Probalign 0.8787 0.5956 11588 

MSAProbs 0.8924 0.6376 17304 

DIAlign-TX 0.7896 0.4553 4538 

 

 

Table 2 shows that Clustal-W and MUSCLE 

have the shortest execution time among all MSA 

leading methods. Although Clustal-W and 

MUSCLE algorithms are superior to all leading 

methods in terms of time performance, their 

accuracy results are not competitive compared to 

the rest of MSA leading methods. On the other 

hand, T-Coffee and MAFFT algorithms have the 

longest execution time compared to MSA 

leading methods.  

Even though MSAProbs algorithm does not 

compete with the other MSA leading methods in 

terms of time performance as it is among the 

longest execution time algorithms, but as shown 

in Tables 3-5 it has the highest accuracy among 

all MSA leading methods. The overall results 

shown in Table 5 show the superiority of 

MSAProbs algorithm over all MSA methods in 

terms of accuracy while MUSCLE algorithm is 

the fastest among all methods. Table 6 below 

presents a critical analysis of MSA leading 

methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: CS Score on BaliBASE (the bold values represent the highest score) 

Table 5: Overall Average SPS and CS Scores and 

Overall Run Time (in seconds) on BaliBASE 3.0 
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Method Description 

Clustal-W, 

MUSCLE  

Two of the fastest algorithms on most datasets among the leading methods 

in terms of execution time, but they sacrifice their accuracies, which are 

among the lowest performing algorithms. 

T-Coffee  Improves the accuracy of Coffee algorithm but sacrifices the run time. 

MAFFT More accurate than the Clustal-W and MUSCLE algorithms but still has low 

accuracy compared with the leading method, and its execution time has a 

high computational. 

ProbCons Has competitive accuracy performance but still has high computational cost. 

Probalign An extension to the ProbCons algorithm, it has competitive accuracy 

performance compared with ProbCons algorithm. It is faster than ProbCons 

but still slower than Clustal-W and MUSCLE. 

DIAlign-TX Inherits the direct greedy approach sensitivity of spurious pair-wise 

similarities, which bring the alignment score down while maintaining the 

average time performance. 

MSAProbs Improved accuracy performance over the leading methods since it 

outperforms them on most of datasets, but is slower than Clustal-W and 

MUSCLE in terms of time performance. 

  

Despite the variety of proposed methods and the 

huge amount of algorithms that have been 

proposed to solve the MSA problem, building an 

efficient and accurate MSA Remains a challenge. 

Furthermore, building MSA using progressive 

alignment is time consuming, especially when it 

is applied on large datasets where it can last for 

hours. Faster algorithms are needed because 

sequence databases are growing very fast. 

7. CONCLUSION 

In this paper we present an extensive review for 

MSA leading methods. Even though all leading 

methods applied progressive alignment, they use 

different methods to build the guide tree. Also 

they use different techniques to perform the 

refinement process. The results on BaliBASE 

benchmark show that the fastest algorithms of 

MSA leading methods are among the lowest 

accuracy performance, and the highest accuracy 

algorithms are among the lowest time 

performance. Clustal-W and MUSCLE take the 

lead in time performance while MSAProbs gains 

the highest accuracy among all leading methods. 

Although MSA leading methods show improved 

accuracy and a tremendous development in 

building MSA, an optimal MSA remains a big 

challenge. Furthermore, maintaining high 

accuracy without sacrificing time performance is 

in need.  
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