
Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

321

INTENSIVE FIXED CHUNKING (IFC) DE-DUPLICATION

FOR SPACE OPTIMIZATION IN PRIVATE

CLOUD STORAGE BACKUP

1
M.SHYAMALA DEVI,

 2
V.VIMAL KHANNA,

 3
M.SHAHEEN SHAH

1
Assistant Professor, Department of CSE, R.M.D. Engineering College, Chennai

 2
FINAL YEAR B.E Student, Department of CSE, R.M.D. Engineering College, Chennai

3
FINAL YEAR B.E Student, Department of CSE, R.M.D. Engineering College, Chennai

E-mail:
1
shyamalapmr@gmail.com,

2
vimalkhanna93@gmail.com,

3
shaheen0106@gmail.com

ABSTRACT

Cloud Storage provides users with abundant storage space and make user friendly for immediate data

access. But there is a lack of analysis on optimizing cloud storage for effective data access. With the

development of storage and technology, digital data has occupied more and more space. According to

statistics, 60% of digital data is redundant, and the data compression can only eliminate intra-file

redundancy. In order to solve these problems, De-Duplication has been proposed. Many organizations

have set up private cloud storage with their unused resources for resource utilization. Since private cloud

storage has limited amount of hardware resources, they need to optimally utilize the space to hold

maximum data. In this paper, we are going to discuss the flaws in the existing de-duplication methods and

introduce new methods for Data De-Duplication. Our proposed method namely Intensive Fixed Chunking

(IFC) De-duplication which is the enhanced File level de-duplication that provides dynamic space

optimization in private cloud storage backup as well as increase the throughput and de-duplication

efficiency

Keywords: Cloud Computing, Private Storage Cloud, Cloud Backup, Data De-Duplication, Chunking,

Redundancy

1. INTRODUCTION

 Cloud computing delivers flexible applications,

web services and IT infrastructure as a service over

the internet using utility pricing model. Public

clouds are run by third party service providers and

applications from different customers are likely to be

mixed together on the cloud’s servers, storage

systems, and networks. Private clouds are built for

the exclusive use of one client and can be built and

managed by the organization’s own administrator.

Hybrid clouds combine both public and private

cloud models.

1.1 Cloud Storage

Cloud storage is a service model in which

data is maintained, managed and backed up

remotely and made available to users over a

network. Cloud storage provides users with storage

space and make user friendly and timely acquire

data, which is foundation of all kinds of cloud

applications [3]. Public cloud storage such as

Amazon's Simple Storage Service (S3) provides a

multi-tenant storage environment [19]. Private

cloud storage services provide a dedicated

environment protected behind an organization’s

firewall. Private clouds are appropriate for a user

who need customization and more control over

their data and is shown in fig 1. Hybrid cloud

storage is a combination of at least one private

cloud and one public cloud infrastructure. Cloud

storage backup [3] is a strategy for backing up data

that involves removing data offsite to a managed

service provider for protection.

Figure 1: Private Cloud Storage

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

322

1.2 Overview of De-duplication

Data De-duplication identifies the

duplicate data to remove the redundancies and

reduces the overall capacity of data transferred and

stored. De-duplication often called as "intelligent

compression" or "single-instance storage" which is

the method of reducing storage needs by

eliminating redundant data [10]. For example, if an

organization webmail system might contain 50

instances of the same one megabyte (MB) file

attachment. If the webmail platform is backed up or

archived, all 50 instances are saved, requiring 50

MB storage space. With data de-duplication, only

one instance of the attachment is actually stored.

Each subsequent instance is just referenced back to

the one saved copy. In this example, a 50 MB

storage demand could be reduced to only one MB.

1.3 De-Duplication Techniques

The optimization of backup storage

technique is shown in figure 2. The Data de-

duplication can operate at the whole file, block

(Chunk), and bit level [1, 2, 5]. Whole file de-

duplication finds the hash value for the entire file

which is the file index. If the new incoming file

matches with the file index, then it is regarded as

duplicate and it is made pointer to existing file

index. If the new file is having new file index, then

it is updated to the storage.

Figure 2: De-Duplication Methods

Block De-duplication [4, 5] divides the

files into fixed-size block or variable-size blocks.

For Fixed-size chunking, a file is partitioned into

fixed size chunks for example each block with 8KB

or 16KB. In Variable size chunking, a file is

partitioned into chunks of different size. Both the

fixed size and variable size chunking creates unique

ID for each block using a hash algorithm such as

MD5 or SHA-1 or MD5. The unique ID is then

compared with a central index. If the ID exists, then

that data block has been processed and stored

before. Therefore, only a pointer to the previously

stored data needs to be saved. If the ID is new, then

the block is unique. The unique ID is added to the

index and the unique chunk is stored. Block and Bit

de-duplication looks within a file and saves unique

iterations of each block or bit.

The rest of the paper is organized as follows. In

Section II, we analyze the existing methods of de-

duplication with its advantages and disadvantages.

In Section III, we discuss about our proposed

system and its functions. In Section IV, we

conclude our design of DWFD and prove that our

scheme greatly increases the de-duplication

efficiency. We show our implementation analysis in

Section V.

2. ANALYSIS OF EXISTING METHODS

2.1 Advantages of Existing Methods

i) Indexes for whole file de-duplication are

significantly smaller, which takes less

computational time and space when duplicates are

being determined. Backup performance is less

affected by the de-duplication process.

ii) Fixed-size chunking is conceptually simple and

fast since it requires less processing power due to

the smaller index and reduced number of

comparisons.

iii) In variable size chunking, the impact on the

systems performing the inspection and recovery

time is less. The efficiency of identifying the

duplicate is high.

iv) Bit De-duplication done exact de-duplication

and it is more efficient since it eliminates

redundancy.

2.2 Disadvantages of Existing Methods

i) Whole File de-duplication is not a very efficient,

because a little change within the file causes the

whole file to be saved again. For example, if 500

identical attachments are sent by a insurance

coordinator, this method will find all those 500

attachments that are exactly the same, but it would

not find the exact duplicate copies that we have

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

323

saved (i.e) Insure.Aug, Insure.Sep, Insure.Oct etc.

This de-duplication checks only the size of the file

regardless of the file content.

ii) In Fixed-size chunking, when a small amount of

data is inserted into a file or deleted from a file, an

entirely different set of chunks is generated from

the updated file.

iii) The indexes for both fixed and variable size

chunking are large which leads to larger index table

and more number of comparisons which leads to

low throughput and takes more processing time to

identify the duplicate

2.3 Methods of Block Level De-Duplication

 The block level de-duplication divides the

incoming file into fixed size chunks or variable size

chunks. Depending on the duplicate detection of

incoming chunk, the variable size chunk de-

duplication can be divided into Chunk level de-

duplication and File level de-duplication.

2.4 Chunk Level De-Duplication – DDDFS

When a file has to be written, then every chunk

of that file is checked for duplicate with chunks of

all files. This method of detecting duplicates is

Chunk level de-duplication. Data Domain De-

duplication File System DDDFS is a file system

which performs chunk level de-duplication [5]. It

supports multiple access protocols. Whenever a file

to be stored, it is managed by the interfaces such as

Network File System (NFS), Common Internet File

System (CIFS) or Virtual Tape Library (VTL) to a

generic file service layer. File service layer

manages the file metadata using Namespace index

and forwards the file to the content store. Content

store divides the file into variable sized chunks.

Secure Hash Algorithm SHA-1or MD5 finds the

hash value for each variable size chunk, which is

ChunkID. Content store maintains the File

Reference Index (FRI) which contains the

sequence of ChunkID constituting that file. Chunk

store maintains a chunk index for duplicate chunk

detection. Chunk index is the metadata that

includes ChunkID and the address of actual chunks

in storage. Unique chunks will be compressed and

stored in the container.

2.5 File Level De-Duplication – Extreme

Binning
When a file has to be written, then every

chunk of that file is checked for duplicate with all

the chunks of the similar files. This method of

detecting duplicates is File level de-duplication.

Extreme Binning uses this approach by dividing the

chunk index into two tiers namely Primary index

and Bin [4]. Primary Index contains the

representative ChunkID, Whole file hash and

pointer to bin. The disk contains bin, Data chunks

and the File recipes. The file recipes contain the

sequence of chunked for that file. Refer [4] for

knowing the structure of a backup node in extreme

binning de-duplication. When a file has to be

backed up, it performs variable size chunking and

finds the representative ChunkID and the hash

value for the entire file. The Representative

ChunkID is checked in the primary index and if it is

not there, then the incoming file is new one and a

new bin is created with all ChunkID, chunksize and

a pointer to the actual chunks are added to the disk.

Then Representative ChunkID, file hash value and

the pointer to bin of a newly created bin are added

to the primary index. If the representative ChunkID,

file hash of the incoming file is already present in

the primary index, then the file is a duplicate and it

is not loaded into disk and the bin is not updated. If

the representative ChunkID of the incoming file is

already present in the primary index but the hash

value of the whole file does not match, then the

incoming file is considered to be nearly similar to

the one that is already on the disk. Most of the

chunks of this file will be available in the disk. The

corresponding bin is loaded to RAM from the disk,

and now searches for the matching chunks of the

incoming file. If the ChunkID is not found in the

bin, then its metadata of the chunk is added to the

bin and the corresponding chunk is written to the

disk. The whole file hash value is not modified in

the primary index and the updated bin is written

back to the disk. Here every incoming chunk is

checked only against the indices of similar files,

this approach achieves better throughput compared

to the chunk level de-duplication. Since non-

traditional backup workload demands better de-

duplication throughput, file level de-duplication

approach is more suited in this case.

3. OUR CONTRIBUTION

3.1 Proposed System

Generally the backup of the private storage

cloud belongs to the non-traditional backup.

Traditional backup contains data streams with

locality of reference. But the non-traditional backup

contains the individual files that owns by the

individual users of the organization with no locality

of reference. The storage of the private cloud

should be optimized as there is physical limitation

on the storage space. Here we try to enhance the

File level de-duplication since it provides high de-

duplication throughput. However a single primary

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

324

index is used for de-duplication that takes more

time in merely checking the representative

ChunkID of the file. This leads to low de-

duplication throughput. So we try to refine file level

de-duplication further to increase the throughput

and de-duplication efficiency. So we propose a new

method for de-duplication namely Intensive Fixed

Chunking (IFC) File De-duplication which is the

modified File Level de-duplication that provides

grouping of files of individual users.

3.2 Intensive Fixed Chunking(IFC) File De-

duplication

The existing File Level de-duplication (Extreme

Binning) is shown in figure 3.

Figure 3: Backup Node in Extreme Binning

The single Primary index contains representative

ChunkID, whole file hash and bin pointer which

points to the bin of the backup node which is used

for finding the duplication regardless of the users of

the private cloud which leads to low de-duplication

throughput. Private storage cloud consists of

personal documents of the individual users

belonging to organization. If we use Extreme

Binning, then there will be only one primary index

for all user files. So all the incoming files that

belong to the different user’s merely waste time for

checking the representative chunkID of the single

primary index that reduce the throughput and de-

duplication efficiency. In our Intensive Fixed

Chunking (IFC) File De-duplication, the users

accessing the private cloud storage are identified by

their unique user-id. Here the chunk index is

divided into File Index, Chunk Index and Bin. We

create separate file index, Chunk Index and bin for

each user and each file belonging to an individual

user is grouped with their folders and is shown in

figure 4. With this method, it is possible to group

the files of each users of the organization.

Figure 4: Intensive Fixed Chunking File De-duplication

4. DESIGN OF INTENSIVE FIXED

CHUNKING (IFC) FILE DE-

DUPLICATION

 Before we start our design, we have the

following assumptions: i) Users of private cloud are

provided with separate user id. ii) The files of the

individual users are collected in separate folders in

the cloud backup

Our new Intensive Fixed Chunking (IFC) File

De-duplication scheme has the following modules,

i) Cloud Service Providing Module

ii) Cloud Storage Initiation Module

iii) Cloud Storage Controller Module

iv) Intensive Fixed Chunking Module.

 v) Cloud Backup De-duplication Module

4.1. Cloud Service Providing Module

The user authentication is done in this module.

If the user is new, then the registration process is

done in this module and is shown in figure 5.

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

325

Figure 5: Cloud Service Providing Module

4.2. Cloud Storage Initiation Module

After the user authentication is done in the

private cloud, then he / she can start viewing,

editing and saving their personal files into their

folders and it is shown in figure 6. In this module,

the authenticated user can perform their own work

and they may also try to upload the files from

online.

Figure 6: Cloud Storage Initiation Module

4.3. Cloud Storage Controller Module

This module performs the function of

integrating the files of the individual users. This

module groups the files of all users and is shown in

figure 7.

Figure 7: Cloud Storage Controller Module

4.4. Intensive Fixed Chunking Module

The chunk index for each user is created in this

module and it is shown in figure 8. The file index

and chunk index for each user is created in this

module. The file index has three field’s namely

Fixed ChunkID, File hash and Binptr. First the files

for each user are divided into fixed sized chunks.

Then each fixed chunkID is palced in the File Index

with their size. Now each fixed chunk is again

divided into variable sized chunks. The hash value

is found for all the different sized chunks. The

minimal chunkID of those variable sized chunks is

found for all the files. The ID with minimum hash

value is choosen to be the minimal ChunkID for the

file index. The minimal chunkID is found using

Broder’s theorem [16]. The purpose of finding the

minimal ChunkID is that according to Broder’s

theorem, the probability that the two sets S1 and S2

have the same minimum hash element is the same

as their Jaccard similarity coefficient [17]. In other

words, if two files are highly similar they share

many chunks and hence their minimum chunk ID is

the same with high probability. The file hash is

found by SHA-1 or MD5. The Binptr provides

pointer to the corresponding bin. Each bin contains

two fields as chunkID and the chunksize. The hash

value of the chunk is found and it named as

ChunkID.

Create Separate folders for each user

Intensive Fixed

Chunking Module

Saved files From Memory

Get the User Files

Group files of each user in their folders

Provide Viewing, Editing and saving the file

Cloud Storage Controller Module

Authenticated user request

Get the User request

No

Yes

No

Providing

User Access

Cloud Storage

Initiation Module

Login Request from User

Get the Login

User Name

Get the Login

Password

Verify

User

Yes

New

User

New User

Registration

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

326

Figure 8: Intensive Fixed Chunking Module

4.5. Cloud Backup De-duplication Module

This module performs the function of de-

duplication detection by comparing the incoming

file index with the backup node file index. It starts

by checking the whole file hash. If the match is

found with the hash value along with the file type,

then the file is a duplicate one. If the file is

identified as duplicate, then it is not saved into the

disk. If the match is not found with the hash value,

then the file assumed as new file and it is updated

into backup node. So here the file is assumed to be

duplicate if and only if both the hash value and the

file type matches thereby increasing the de-

duplication efficiency and it is shown in figure 9.

 Figure 9: Cloud Backup De-Duplication Module

5. IMPLEMENTATION

We have implemented this by creating the

cloud server, cloud controller and multiple clients

on WINDOWS platform. Any number of clients

can be registered to the cloud server. The coding is

done by using visual studio.Net and back end as

Microsoft SQL server. The cloud server node is

executed followed by the users’ registration. All the

users can have their individual username and

password. They can upload any type of files. Our

No

Yes

Perform Multithreading for parallel
comparison of file index

End

File Index from Cloud Storage
Controller for Backup

Get the File Index

of all the users

Compare the fixed ChunkID of file Index
of CSC with the backup file index

Detection of Duplicate file

Discard the file for backup and
create the pointer with the

previous file

Compare

Minimal

ChunkID

Create a new bin with

chunkID, chunk size

Yes

Compare

the whole

file hash

Update the Backup Chunk Index
with Minimal ChunkID, file hash

Update the File Index,

Chunk Index and Bin into Disk

Save the new file

into Backup Disk

Update the data chunks and file

recipes in to the disk

Update the Backup File

Index with FixedChunkID,

file hash

Create Separate Chunk

Index for each user

Cloud Backup
De-duplication Module

Files of the individual users

Get the User Files

and their folders

Find the minimal chunkID

using Borders theorem

Find the hash value for each
file using SHA-1 or MD5

Update the minimal chunkID

and hash value in the file Index

Create a Bin pointer

Find the hash value for each chunk
of the file using SHA-1 or MD5

Find the chunk size

Update the chunkID and

chunk size in the Bin

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

327

Intensive Fixed Chunking is compared with the

Extreme Binning file de-duplication. Our analysis

is showing that our proposed system will have

efficiency based on the number of files being stored

in the backup node. Our result analysis is shown in

the figure 10, 11 and 12.

Figure 10: Registering Client To CC

Figure 11: Making Backup For Client

Figure 12: Performance Analysis

6. CONCLUSION

In this paper, we have designed our new

scheme namely Intensive Fixed Chunking (IFC)

File De-duplication that effectively removes

duplication. It is highly desirable to improve the

private cloud backup storage efficiency by reducing

the de-duplication time. Our future enhancement is

to use chunk level de-duplication in the private

cloud storage by overcoming the negative factors in

its efficiency

REFRENCES:

[1] Jaehong Min, Daeyoung Yoon, and Youjip

Won,” Efficient De-duplication techniques in

modern backup operation” IEEE

TRANSACTIONS ON COMPUTERS, VOL.

60, NO. 6, JUNE 2011

[2] Wei, et al,”Mad2: A scalable High-throughput

exact de-duplication approach for network

backup services, Mass Storage Systems and

Technologies, IEEE / NASA Goddard

Conference.

[3] Abeet al,”Towards better integration of parallel

file systems into cloud storage. In Cluster

Computing Workshops and Posters

(CLUSTER WORKSHOPS), IEEE

International Conference, pp. 1 –7.

[4] Bhagwat, D., Eshghi, K., and Lillibridge, M.

2009. Extreme binning: Scalable, parallel de-

duplication for chunk-based file backup

[5] Zhu, B., Li, K., and Patterson, H. 2008.

“Avoiding the disk bottleneck in the data

domain de-duplication file system”. In

Proceedings of the 6th USENIX Conference on

File and Storage Technologies, FAST’08,

Berkeley, CA, USA. USENIX Association, pp.

18:1–18:14,

[6] P. Kulkarni, F. Douglis, J. LaVoie, and J.

Tracey, Redundancy Elimination within Large

Collections of Files,” Proc. USENIX

Ann.Technical Conf., General Track, pp. 59-

72, 2004.

[7] B. Hong and D.D.E. Long, “Duplicate Data

Elimination in a San File System,” Proc. 21st

IEEE / 12th NASA Goddard Conf. Mass

Storage Systems and Technologies (MSST),

pp. 301-314, Apr. 2004.

[8] C. Dubnicki, L. Gryz et al, “HYDRAstor: a

Scalable Secondary Storage,” in Proceedings

of the 7th USENIX Conference on File and

Storage Technologies (FAST), San Francisco,

CA, USA, Feb. 2009.

Journal of Theoretical and Applied Information Technology
 30

th
 April 2015. Vol.74 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

328

[9] C. Policroniades and I. Pratt, “Alternatives for

Detecting Redundancy in Storage Systems

Data,” Proc. Conf. USEXNIX ’04, June 2004.

[10] W.J. Bolosky et al, “Single Instance Storage in

Windows 2000,” Proc. Fourth USENIX

Windows Systems Symp., pp. 13-24, 2000.

[11] L.L. You, K.T. Pollack, and D.D.E. Long,

“Deep Store: An Archival Storage System

Architecture,” Proc. Int’l Conf. Data

Engineering (ICDE ’05), pp. 804-8015, 2005.

[12] M. Lillibridge et al,”Sparse Indexing: Large

Scale, Inline Deduplication Using Sampling

and Locality,” Proc. Seventh USENIX Conf.

File and Storage Technologies (FAST ’09),

2009.

[13] D.R. Bobbarjung, S. Jagannathan, and C.

Dubnicki, “Improving Duplicate Elimination in

Storage Systems,” ACM Trans. Storage, vol. 2,

no. 4, pp. 424-448, 2006.

[14] Zeng W, Zhao Y, Ou K and Song W, 2009,

Research on cloud storage architecture and key

technologies, ICIS ’09: Proceedings of the

second International Conference on Interaction

Sciences, pp.1044-1048.

[15] Policroniades, C. and Pratt, I. 2004.

Alternatives for detecting redundancy in

storage systems data, ATEC ’04: Proceedings

of the annual conference on USENIX Annual

Technical Conference, pp. 1-15.

[16] A. Z. Broder, “On the resemblance and

containment of documents,” in SEQUENCES

’97: Proceedings of the Compression and

Complexity of Sequences 1997, pp. 21–29.

[17] P. Jaccard, “ Etude comparative de la

distribution orale dans une portion des Alpes et

des Jura,” In Bulletin del la Soci´et´e Vaudoise

des Sciences Naturelles, vol. 37, pp. 547–579,

1901.

[18] G. Forman, K. Eshghi, and S. Chiocchetti,

“Finding similar files in large document

repositories,” in KDD ’05: Proceeding of the

Eleventh ACM SIGKDD International

Conference on Knowledge Discovery in Data

Mining, 2005, pp. 394–400.

[19] Amazon Web Services LLC, “Amazon Simple

Storage Service,” http://aws.amazon.com/s3/,

2009.

[20] Amazon’s Elastic Block Storage. Elastic Block

Storage,[Online]

Available:http://aws.amazon.com/ebs/.

