Journal of Theoretical and Applied Information Technology

<u>30th April 2015. Vol.74 No.3</u>

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

PORTFOLIO SELECTION USING THE CAT SWARM OPTIMIZATION

¹HAMZA KAMILI, ²MOHAMMED ESSAID RIFFI

¹Laboratory Of Mapi, Computer Science Dept. ²Laboratory of LAROSERI, Computer Science Dept ^{1,2}Faculty Of Sciences, Chouaib Doukkali University El Jadida, Morocco

E-mail: <u>hamza.kamili@gmail.com</u>, <u>said@riffi.fr</u>

ABSTRACT

The portfolio selection is a discipline in finance interested in the optimization of the investment represented by a mixed quadratic programming problem. The approach of this paper to studying the portfolio selection problem is the implementation of the metaheuristic cat swarm optimization, a method inspired from the behavior of different felines and characterized by two modes: the seeking and the tracing mode; the seeking mode is when a cat is at rest observing its environment, the tracing mode is when the cat is hunting. In this article, we have adapted this method to the cardinality constrained efficient frontier (UEF) for five indexes markets and we have obtained efficient results.

Keywords: Portfolio Selection Problem, Metaheuristic, Cat Swarm Optimization , Efficient Frontier, Cardinality Constrained Efficient Frontier.

1. INTRODUCTION

The cat swarm optimization (CSO)[1] technique is a new meta-heuristic proposed in 2006 by Shu-Chuan Chu and Pei-Wei Tsai It is characterized by two modes: the seeking and the tracing mode; the seeking mode is when a cat is at rest observing its environment ,the tracing mode is when the cat is hunting .The application of this method showed that it is more efficient than an important metaheuristic techniques .

This paper presents an adaptation of this method to the portfolio optimization problem (PO).

The PO consists of a selection of assets combinations having the best mean return and risk in order to help the investor to invest his money efficiently, and at the same time by investing we can help businesses grow their activities and create jobs. To illustrate that among the models used, the fundamental modern theory of portfolio MPT introduced by Harry Makowitz[2,3] by using statistical notion, the mean and the variance for computing the expected return and the risk of a portfolio, respectively. The principal study in this paper focuses on the CCEF[4,13,14] model inspired from the standard model of Markowitz; this model is used because, in practice, investing can confront some constraints like

the portfolio size or the limitation of the assets proportion and those constraints are not considered in the standard model of Markowitz.

Many metaheuristics have been adapted to solve this problem, namely the simulated annealing[4,5] tabu search[4], genetic algorithm[4,6,7] ,particle swarm optimization [8,9,10]ant colonies[11], neurons network[12].The contribution of this article is the application of the metaheuristic cat swarm optimization to the CCEF model and the achievement of efficient results compared to the UEF[4].

This paper is organized as follows: in the second section, we give a definition of the portfolio selection problem, in the third section, a presentation of the CSO algorithm, in the fourth section, CSO algorithm adapted to the portfolio problem, in the fifth section, the results obtained, and in the last section, a conclusion.

2. PORTFOLIO SELECTION PROBLEM

The model of unconstrained efficient frontier UEF is an optimization problem defined by introducing a parameter λ in order to simplify the optimization of the risk and the return. We have used in this paper the

Journal of Theoretical and Applied Information Technology

<u>30th April 2015. Vol.74 No.3</u>

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645	<u>www.jati</u>	t.org	E-ISSN: 1817-3195
data of 2000 couple mean return risk obtain	ed with the	CDC (counts of dimen	sion to change): the number of

data of 2000 couple mean return risk obtained with the UEF in order to have a clear comparison with the results programmed with the CCEF ,the UEF model is defined as follows:

 $\begin{array}{l} \mbox{Min } \lambda[X'MX] \mbox{-}(1 \mbox{-} \lambda)[X'\mu] \\ \sum_{i=1}^{n} x_i \mbox{=} 1 \\ 0 \le x_i \le 1, \ i \mbox{=} 1, ..., n \\ \lambda \in [0,1] \end{array}$

n: the number of assets

x_i: the proportion of the capital invested in i

M : covariance matrix,

μ: mean return of the portfolio

 λ : risk parameter

For $\lambda=0$ the return is maximal and for $\lambda=1$ the risk is minimal, if $0 < \lambda < 1$ the risk and return are optimal as possible. The solution of the UEF problem is represented by the couple (return/risk) with these two objectives the efficient frontier can be obtained increasing and continuous[3].

The model with constrained (CCEF) is defined by including some parameters like K representing the number of assets considered, the limitations of the assets proportions s_i and e_i , z_i for selecting the asset, the CCEF model is defined as follows :

 $\begin{array}{l} \operatorname{Min} \lambda[X'MX] - (1-\lambda)[X'\mu] \\ \operatorname{with} \sum_{i=1}^{n} x_i = 1 \\ \sum_{i=1}^{n} z_i = K \\ s_i z_i \leq x_i \leq e_i z_i , i = 1, .., n \\ z_i \in \{0,1\}, i = 1, .., n \end{array}$

K:the desired number of assets. if an asset i is held $z_i=1$

 s_i : the lower limit of the interval

 e_i : the upper limit of the interval.

with the solutions of this problem result a cardinality constrained efficient frontier curve.

3. CSO ALGORITHM

Cat swarm optimization is an evolutionary algorithm which is based on the observation of the behavior of these animals; for each one we associate a position, velocity and, depending on the parameter MR (mixte ratio), a proportion of cats is defined in tracing mode and the rest will be in seeking mode.

3.1 Seeking Mode

It is the phase where the cats are at the rest and at the same time on observation of their environments in order to prepare their next move. The seeking mode includes four parameters:

SMP (seeking memory pool): number of copies of the current position

SPC (self position consideration): if (SPC == 1) the current position is considerate candidate

CDC (counts of dimension to change): the number of elements that we will change from the current position SRD (seeking range of the selected dimension): parameter of mutation.

The seeking mode algorithm is as follows:

Step 1: take j copies of the cat i where j = SMP if (SPC== 1), then j = (SMP - 1) and the current position will be a candidate .

Step 2: for each copy according to CDC,

(SRD*the current position) is randomly added or removed to have a new combination

Step 3: calculation of the new positions values.

Step 4: calculation of the probabilities with (1) if the values are not equal ,otherwise the probabilities are all equal to 1

$$P_{i} = \frac{|FS_{i} - FS_{b}|}{FS_{max} - FS_{min}} \text{ ou } 0 \le i \le j \quad (1)$$

 $FS_b = FS_{max}$ if we look to minimize the objective function otherwise $FS_b = FS_{min}$

Step 5: randomly pick the next position.

3.2 Tracing Mode

It is characterized by a quick movement of cats while hunting. This phase can be described in three steps:

First step: calculation of the velocities for each dimension.

 $v_{i,d} = v_{i,d} + (r_1 * c_1) * (x_{best,d} - x_{i,d}) d = 1,....,M$ $x_{best,d}$: is the position of the cat having the best value in the dimension d, $x_{i,d}$ is the position of the cat i in the dimension d, c_1 is a constant r_1 is a random value between [0,1].

Second step: check if the velocity is maximal Third step: update the position:

 $\mathbf{x}_{i,d} = \mathbf{x}_{i,d} + \mathbf{v}_{i,d} \,.$

4. CSO ALGORITHM ADAPTED TO THE PROBLEM OF PORTFOLIO

For every cat are associated a proportion vector X and a decision vector Z defined in seeking mode, otherwise in tracing mode.

4.1 Definition Of The Optimization Function

 $f = \lambda^*((X)'^*M^*X) - (1 - \lambda)^*(X^*(R_bar)').$

The objective is to minimize this function with the method of cat swarm optimization. The movement can be defined in two modes: the tracing mode or seeking mode ; the tracing mode illustrates the movement of the cats depending on the best position of the group and the seeking mode is the selection of the position between a lot of combinations inspired from the present position.

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645	<u>www.jati</u>	E-ISSN: 1817-3195
4.2 Cats Movement As mentioned before, each of seeking mode, otherwise in tracing m movement of all the particles reinitialized. For each phase the mor as follows:	cat is initialized in node, and after the these latters are vement is defined	Algorithm1: Seeking Mode Movement step1: taking SMP copies of the current position if (SPC == 1) (SMP = SMP-1) and the current position is considered candidate. Step2: calculating (CDC * N) in order to get the number of assets for the mutation, the asset is
4.2.1 Tracing mode movement In this phase, for each dimension movement is defined as follows: $vZ_{ci}^{t+1}=vZ_{ci}^{t}+(r1^*c1)^*(GZ_{bi}, Z_{ci}^{t+1}=round(\frac{1}{1+e^{-\xi}}-\alpha))$ vZ_{ci}^{t} : the velocity of the decision t at the iteration t.	i and cat c, the -Z ^t _{ci}). o the dimension i	 randomly selected For i=1 to SMP copiX: copy of the current portfolio copiZ: copy of the current decision vector associated to the portfolio. V: indexes vector in {1,N} selected randomly , his size is (CDC*N). Step 3: SRD is a mutation value added or removed randomly as follows:
c_1 : constant is generally equal to 2.0)5.	For $j=1$ to size (V)
GZ_{bi} : the best decision to the dimension Z_{ci}^{t} : the decision to the dimension i and $\boldsymbol{\xi} = Z_{ci}^{t} + v Z_{ci}^{t+1}$.[9]	sion i at the iteration t	$copiZ(i,V(j))=copiZ(i,V(j))\pm(SRD*$ copiZ(i,V(j)))
α : is a parameter defined in order decision in some specific cases [9] the position is calculated as follows	er to arrange the	If (copiZ(i,V(j))==1) copiX(i,V(j))=copiX(i,V(j))±(SRD* copiX(i,V(j)))
$vX_{ci}^{t+1} = \begin{cases} vX_{ci}^{t} + (r_{1} * c_{1}) * (GX_{bi} - X_{ci}^{t}) \\ vX_{ci}^{t} \end{cases}$ $X_{ci}^{t+1} = \begin{cases} vX_{ci}^{t} + X_{ci}^{t} & \text{if } Z_{ci}^{t+1} = 1 \\ X_{ci}^{t} & \text{otherwise} \end{cases}$ $vX_{ci}^{t+1} + X_{ci}^{t} & \text{must be positive} \\ X_{ci}^{t} & \text{:The position to the dimension i} \\ vX_{ci}^{t} & \text{:The velocity of the position to th} \\ i & \text{at the iteration t} \end{cases}$ $GX_{bi} : \text{the best position of all the ground dimension i}.$ After the movement we have to array) $if Z_{ci}^{t+1} = 1$ otherwise at the iteration t he dimension p to the	End arrangement of the vectors copiZ and copiX (section 4.3) calculation of the fitness value. keep the optimal portfolio. End End step 4: calculation of the candidates fitness value, and the probabilities .section (3.1.1) step 5: choose the new portfolio with the algorithm (roulette wheel selection).
After the movement we have to arrar If $(Z_{ci}^{t+1}==0)$ the decision at the itera The movement was $(Z_{ci}^{t}=0)$ or (case we must arrange the vec arrangement we keep the best solution 4.2.2 Seeking mode movement This mode is characterized by the parameters defined in section 3 (S SPC) to the current position in ord portfolio as follows:	lige X and Z ation t before $(Z_{ci}^t=1)$, in this ctor Z, and after on. The application of MP, SRD, CDC, er to have a new	4.3 The Constrained of the Problem For every cat are associated a proportion X and a decision Z the first step is to verify that: -The number of assets held must be exactly equal toK. -The sum of the elements of X is equal to 1. - $s_i \le x_i \le e_i$ for each asset i selected In order to verify those constrained we use a function of arrangement as follows [4,9]: Z: the set of the assets indexes after a movement in tracing or seeking mode kr : the dimension of Z. First case: we suppose that (Kr < K) we generate a random number between [0,1] if it is less than 0.5 randomly choose an element not belonging to Z and
	37	6

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645	www.jatit.org					E-ISS	N: 181	7-3195
we added it otherwise If the number is g we choose the index of the maximum (defined below) not belonging to Z and Second case: if (Kr > K), if the random than 0.5 we randomly select an element remove it, otherwise we take the minimum value of C belonging to Z at we must to return in the initial velocit decision in this case. Finally we have We consider: $\theta_i=1+(1-\lambda)\mu_i$, $i=1,,N$ $\rho_i=1+\lambda(\frac{\sum_{j=1}^{N}M_{ij}}{N})$, $i=1,,N$ $\Omega=-1*min(0, \theta_1,,\theta_N)$ $\Psi=-1*min(0, \rho_1,,\rho_N)$. $C_i=\frac{\theta_i+\Omega}{\rho_i+\Psi}$, $i=1,,N$ <i>Algorithm2: Function Of Arrangement/</i> If (($\sum_{i\in Z} s_i \leq 1$) And ($\sum_{i\in Z} e_i \geq 1$)) B:the sum of the assets i such as i C. C:the sum of s_i such as i C. D=1-C $w_i = s_i + ((xi*D)/B)$ for each i C satisfying the limit s_i and the sum of equal to 1. $w_i=0$ otherwise. $E=\emptyset$, the set of assets i such as (w_i Repeat If they exist an assets i for such as ($w_i \geq e_i$) $E: E \cup \{i\}$ $G=\sum_{i\in(Z-E)} x_i$. $H=1-(\sum_{i\in(Z-E)} s_i+\sum_{i\in E} e_i)$. $wi = s_i+((x_i * H)/G)$. for each i E End End End	greater than 0.5 n value of C 1 we add it number is less in Z to index of the nd we delete it y and velocity (Kr = K). $\overline{4/}$ Z. Z// proportion of the elements $\geq e_i$) each i ε (Z-E) (Z-E)	Algorithm3: PortfolioBegin $\lambda = 0$; N,K; InitialisatioN,K; Initialisatior_1=rand(1) c_1=2.05; InitialisatioSMP,SPC,While ($\lambda \le$ initialisationFor p Initiali propor Arrang EndCalculation keeping that to the mini For c=1 T For i=1 If i seek keep Else trace keep EndFod PEnd Calculation keeping that to the mini For c=1 T For i=1 If i seek keep Else trace keep End EndEnd Table 1: CSe	c CSO Ada, c CSO Ada, on of the p); on of the p SR,MR,C ≤ 1) on of the p =1P isation of the v e proporti- imal value o 279 To P is initialis- cing mode o the best e bing mode o the best e f f f f f f f f	pred To parame parame DC,P particle the particle the particle ion of //P= sed in se solution e move solution e particle the particle solution e particle	eters (r eters (r eters ($($, $N_t = 1$) es mod rticles on ; f(p) ; the pa	problem mode t mode s MR*P le urticle g mod	Of racing seekin , N _s =1) g) P-N _t ;
		1		1	1	1	1	

SMP	SRD	CDC	MR	c1	r	w
5	0.2	0.8	0.3	2.05	[0,1]	0.729

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

5. RESULTS OBTAINED

Table 2: CSO Results

Index	Assets		CSO
		Mean	0.000212
		euclidian distance	
		Variance of	6.4806
Hang	31	return error	
Seng		Mean return	1.5745
		error	
		Time (s)	52
		Mean	0.000397
		Euclidian	
		Distance	
DAX	85	Variance of	31.2654
100		Return Error	
		Mean Return	1.7438
		Error	
		Time (s)	92
		Mean	0.000082
		Euclidian	
		Distance	
FTSE	89	Variance of	7.8
100		Return Error	
		Mean Return	0.5486
		Error	
		Time (s)	374
		Mean	0.000209
		Euclidian	
		Distance	
S&P	98	Variance of	7.8830
100		Return Error	
		Mean Return	2.3609
		Error	
		Time (s)	210
		Mean	0.0000497
		Euclidian	
		Distance	
Nikkei	225	Variance of	3.1372
		Return Error	
		Mean Return	1.0390
		Error	
		Time (s)	539

Risk

Figure 2: Comparison of CSO And the Unconstrained curves for The Dax 100 Index

Risk

Figure 3: Comparison of CSO And The Unconstrained curves For The FTSE Index

Figure 4: Comparaison of CSO And The Unconstrained curves For The S&P 100 Index

Risk

The graphs represent the curves of the optimal portfolios; the points below the curves are less efficient. The results of this study are obtained by the application of the CSO method on the CCEF and they are compared to the UEF; generally we obtain very approximate curve to the unconstrained model. For low risks, we have obtained returns very approximate to those with the unconstrained model but when risks reach a certain value , the return increase systematically though a bit lower than that obtained with the unconstrained model.

6. CONCLUSION

In this paper we have studied the problem of portfolio selection by tracing out the efficient frontier of CCEF problem applying the method CSO. The obtained results were compared with those of the UEF problem; these results illustrate an optimal strategy for investing, carefully using five indexes, of the stock exchange. In order to develop this work, we can apply a new metaheuristic to this problem to have better results.

REFRENCES

- S.C. Chu and P.W Tsai ," Computational Intelligence Based on The Behavior of Cats", *Int. J. Innov. Comp. Inf. Control*, Vol.3, No.1, 2007, pp.163-173.
- [2] H. Markowitz, "Portfolio Selection", *The Journal of Finance*, Vol.7, No.1, 1952, pp. 77-91.
- [3] H.Markowitz," Portfolio Selection Efficient Diversification Of Investements", *New York* :*Wiley*,1959.

© 2005 - 2015 JATIT & LLS. All rights reserved

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195
	Deceley and VM	
[4] I.J. Chang, N. Meade, J.E. E	for Cordinality	
Constrained Portfolio	Ontimization"	
Computers & Operations	Pasaarch Vol 27	
2000 pn 1271-1302	Research , Vol.27,	
[5] Y Crama and M Schyns "Si	mulated Annealing	
For Complex Portfolio Sel	ection Problems"	
European Journal of Ope	rational Research	
.Vol.150, 2003.pp. 546–571.		
[6] K.J. Oh, T.Y. Kim and S. Mi	n," Using Genetic	
Algorithm To Support Port	folio Optimization	
For Index Fund Managemen	t", Expert Systems	
With Applications, Vol.28, 2	005,pp. 371–379.	
[7] W.G. Zhang, W .Chen and	Y.L. Wang, "The	
Adaptive Genetic Algorith	ms For Portfolio	
Selection Problem", Interne	ational Journal of	
Computer Science and Netwo	ork Security,Vol.6,	
2006,pp 196-200.		
[8] G.F. Deng, W.T. Lin and C.C	C.Lo, "Markowitz-	
Based Portfolio Selection	With Cardinality	
Constrained Using Improve	d Particle Swarm	
Auguliantiana Val. 20, 2012 a	Systems With	
[0] T. Cura "Particle Swarm Ontir	p. 4538-4500 nization Approach	
[9] I. Cura, Farticle Swallin Optin To Portfolio Optimization?	² Export Systems	
With Applications Vol 10, 20	1000000000000000000000000000000000000	
[10] Z. Hanhong Y. Wang W	Kesheng V Chen	
"Particle Swarm Ontimiz	ration for the	
constrained Portfo	olio Optimization	
Problem", Expert	Systems With	
Applications, Vol.38, 2011, pr	o. 10161-10169.	
[11] K.F .Haqiqi and T. Kaz	zemi,"Ant Colony	
Optimization Approach	To Portfolio	
Optimization", Internation	nal Conference on	
Economics, Business	and Marketing	
Management, Vol.29, 2012, p	op. 292-296	
[12] A. Fernandez and S. G	iomez," Portfolio	
Selection Using Neural Netv	vorks", <i>Computers</i>	
& Operations Research	,Vol.34, 2007,pp.	
[12] N. L. Labet M. D. Lle emainer	C A Lucas and C	
[13] N J JODSL, M D Hoerminan,	C A Lucas and G	
nortfolio selection models in	n the presence of	
discrete asset choice constra	in the presence of	
<i>Finance</i> Vol 1 2001 pp 1-13	unds Quantitative	
[14] H Kellerer D Maringer "O	ptimization Of	
Cardinality Constrained Po	ortfolios With An	
Hybrid Local Search	Algorithm".OR	
Spectrum, Vol.25, 2003, pp.48	1-495.	