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ABSTRACT 

 

The  portfolio selection  is a discipline  in finance  interested  in  the  optimization  of  the  investment  

represented  by a  mixed    quadratic programming problem. The approach of  this paper to  studying  the 

portfolio selection  problem  is  the  implementation  of  the  metaheuristic  cat swarm optimization , a method  

inspired from  the behavior  of  different felines  and characterized by  two modes: the seeking and  the tracing 

mode; the seeking mode  is when a cat  is at rest observing  its environment ,the tracing mode is when the cat  is 

hunting. In this article, we have adapted    this  method  to the  cardinality constrained efficient frontier  (CCEF) 

compared  to  the data of  mean  return  and  risk obtained  by the  unconstrained efficient frontier (UEF) for  five 

indexes markets  and we have obtained efficient results. 
 

Keywords: Portfolio Selection Problem, Metaheuristic, Cat  Swarm  Optimization  , Efficient Frontier, 
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1. INTRODUCTION  

       The cat swarm optimization (CSO)[1] technique 

is a new meta-heuristic proposed  in 2006 by Shu-

Chuan Chu and Pei-Wei Tsai   It is characterized by 

two  modes: the seeking  and the tracing mode; the 

seeking mode  is when a cat  is at rest observing  its 

environment ,the tracing mode is when the cat is 

hunting .The  application of  this method  showed  that  

it is more  efficient  than  an  important metaheuristic 

techniques . 

 

This  paper  presents  an adaptation of  this method  to 

the portfolio optimization  problem (PO).   

The PO consists of a selection of assets combinations 

having the best mean return and risk in order to help 

the investor to invest his money efficiently, and at the 

same time by investing we can help businesses grow 

their activities and create  jobs. To illustrate  that  

among  the models used , the  fundamental modern 

theory of  portfolio MPT  introduced  by  Harry 

Makowitz[2,3]  by using statistical notion, the mean  

and  the variance for computing the expected  return 

and the  risk of a  portfolio, respectively. The principal 

study in this paper  focuses on the  CCEF[4,13,14] 

model  inspired from  the standard  model of   

 

 

Markowitz; this model is used because, in practice, 

investing can confront some constraints like  

 

the portfolio size or the limitation of  the assets 

proportion  and  those constraints  are not considered 

in the standard model of Markowitz. 

Many metaheuristics have been adapted to solve this 

problem, namely the simulated  annealing[4,5] tabu 

search[4], genetic algorithm[4,6,7] ,particle swarm 

optimization [8,9,10]ant colonies[11], neurons  

network[12].The contribution of this article  is the  

application of  the  metaheuristic cat swarm 

optimization  to the CCEF model  and  the 

achievement of efficient results compared to the 

UEF[4] . 

This paper is organized as follows: in the second 

section, we give a definition of  the portfolio selection 

problem, in the third section, a presentation  of  the 

CSO algorithm, in  the fourth section, CSO algorithm 

adapted to the portfolio problem, in the fifth section, 

the results obtained, and in the last section, a 

conclusion. 

2. PORTFOLIO SELECTION PROBLEM 

      The model of unconstrained efficient frontier UEF 

is an optimization problem defined by introducing a 

parameter λ in order to simplify the optimization of 

the risk and the return. We have used in this paper  the  
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data of 2000 couple mean return risk obtained with the 

UEF in order to have a clear comparison with the 

results programmed with the CCEF ,the UEF model is 

defined   as follows: 

      Min λ[X’MX]-(1-λ)[X’µ] 

      ∑ x����� =1 

      0 � x� �1,  i=1,..,n 

      λ Є [0,1]    

n : the number  of assets  x�: the proportion of the capital invested in i 

M : covariance matrix,  

µ: mean return of the portfolio 

λ : risk parameter 

For λ=0 the return is maximal and for λ=1 the risk is 

minimal, if 0<λ<1  the risk and  return are optimal as 

possible. The solution of the UEF problem is 

represented  by the couple (return/risk) with these two 

objectives the efficient frontier can be obtained 

increasing and continuous[3] . 

 

The model with constrained (CCEF) is defined by  

including some parameters like K representing the 

number of assets considered, the limitations of the 

assets proportions 
�  and  �� ,	��  for selecting the asset,  

the CCEF model is defined as follows : 

    Min λ[X’MX]-(1-λ)[X’µ] 

    with  ∑ ������ =1 

    ∑ ������ =K   

   	
��� � �� � ����  , i=1,..,n 

    �� 	 Є {0,1}  , i=1,..,n 

K:the desired number of assets. 

if an asset  i is held  ��=1 


�	: the lower limit of  the interval 

��	: the upper limit of  the interval. 

 with the solutions of this problem result a cardinality 

constrained efficient frontier curve. 

3. CSO ALGORITHM 

Cat swarm optimization is an evolutionary 

algorithm which is based on the observation of the 

behavior of these animals; for each one we associate a 

position, velocity and, depending on the parameter 

MR (mixte ratio), a proportion of cats is defined in 

tracing mode and the rest will be in seeking mode.  

 

3.1   Seeking Mode 

            It is  the phase where the cats are at the  rest 

and  at the same time on observation of their 

environments in order to prepare their next move. The 

seeking mode includes four parameters: 

SMP (seeking memory pool): number of copies of  the 

current position 

SPC (self position consideration): if (SPC == 1) the 

current position is considerate candidate  

CDC (counts of dimension to change): the number of 

elements that we will change from the current position 

SRD (seeking range of the selected dimension): 

parameter of mutation. 

The seeking mode algorithm is as follows: 

 

Step 1: take j copies of the cat i where j = SMP  if  

(SPC== 1), then j = (SMP - 1)  and the current 

position will be a candidate . 

Step 2: for each copy according to CDC,    

(SRD*the current position) is randomly added or 

removed   to have a new combination 

Step 3:  calculation of the new positions values. 

Step 4:  calculation  of  the probabilities with (1)  if  

the values are not equal  ,otherwise the probabilities 

are all  equal to 1  

 P�  = |�������|
����������� ou  0<i<j     (1)   

��� � �� !"  if we  look  to minimize the objective 

function otherwise  ��� � �� ��  

Step 5: randomly pick the next position. 

 

3.2  Tracing Mode 

It is characterized by a quick movement of 

cats while hunting. This phase can be described in 

three steps: 

First step: calculation of the velocities for each 

dimension. v�,%�v�,%+(r�*c�)*(	x,-./,%-x�,%)		d�1,……,M	��567,8 : is the position of the cat having the best value 

in the dimension d, ��,8 is the position of the cat i in 

the dimension d, 9� is a constant  :� is a random value 

between [0,1]. 

Second step: check if the velocity is maximal 

Third step: update the position: x�,% � x�,% + v�,%	.	
4. CSO ALGORITHM  ADAPTED TO THE 

PROBLEM OF PORTFOLIO 

For every cat are associated a proportion vector X 

and a decision vector Z defined in seeking mode, 

otherwise in tracing mode. 

 

4.1   Definition Of The Optimization  Function f�λ*((X)’*M*X)	–	(1-	λ)*(X*(R_bar)’).	
The objective is to minimize this function with the 

method of cat swarm optimization. The movement 

can be defined  in two modes:  the tracing mode or  

seeking  mode ; the tracing mode  illustrates the 

movement of the cats  depending  on the best position 

of the group and the seeking  mode is the selection of 

the position between  a lot of combinations inspired 

from the present position. 
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4.2  Cats Movement  
As   mentioned before, each cat is initialized in 

seeking mode, otherwise in tracing mode, and after the 

movement of all the particles these latters are 

reinitialized. For each phase the movement is defined 

as follows: 

 

4.2.1 Tracing mode movement 

In this phase, for each dimension i and cat c, the 

movement is defined as follows: vZF�/G��vZF�/ +(r1*c1)*(GZ,�-ZF�/ ).	ZF�/G��round( �
�G-LM	-α)	

 OPQ�7 	: the velocity of the decision to the dimension i 

at the iteration t . 

:�	: a random number in [0,1]. 

9�	:  constant is generally equal to 2.05. 

RP�� 	: the best decision to the dimension i 

PQ�7 	: the decision to the dimension i  at the iteration t 

and         S=PQ�7 	+OPQ�7G�.[9] 

α : is a parameter defined in order to arrange the 

decision in some specific cases [9]  

the position is calculated   as follows  : 

 

 

OTQ�7G� � UOTQ�
7 + (:� ∗ 9�) ∗ (	RT�� W TQ�7 )	 XY	PQ�7G� � 1				OTQ�7 		 otherwise  

 

XF�/G� � UvXF�
/ +	XF�/ if	ZF�/G� � 1	XF�/ 		 otherwise  

 

   OTQ�7G�+TQ�7    must be positive 			TQ�7   :The position  to the dimension i  at the iteration t 

		OTQ�7 	: the velocity of the position to the dimension         

   i  at the iteration t 

 RT�� 	: the best position of all the group to the     

 dimension i. 

After the movement we have to arrange X and Z 

If  (PQ�7G�==0) the decision at the iteration t before 

The movement was   (PQ�7 =0  ) or (PQ�7 =1  ) , in this 

case we must arrange the vector Z,and after 

arrangement we keep the best solution. 

 

4.2.2   Seeking mode movement 

This mode is characterized by the application of 

parameters defined in section 3 (SMP, SRD, CDC, 

SPC) to the current position in order to have a new 

portfolio as follows: 

 

 

 

 

 

Algorithm1: Seeking Mode Movement 

step1: taking SMP copies of the current position 

if (SPC == 1)  (SMP = SMP-1) and  the current 

position is considered  candidate . 

Step2: calculating (CDC * N) in order to get the 

number of assets for the mutation, the asset is 

randomly selected 

For  i=1 to  SMP 

copiX: copy of  the current portfolio 

copiZ: copy of  the current decision vector 

 associated  to the portfolio. 

V:    indexes vector  in {1,….N} selected 

randomly , his size is (CDC*N). 

Step 3:  SRD  is a mutation value  added or  

removed  randomly as follows:  

 

            For  j=1 to size (V) 

 

            copiZ(i,V(j))= copiZ(i,V(j)) ± (SRD*  

            copiZ(i,V(j))) 

             

                      If (copiZ(i,V(j))==1) 

 

                      copiX(i,V(j))=copiX(i,V(j))±(SRD*   

                      copiX(i,V(j))) 

                       

                      End 

 

            arrangement of  the vectors  

            copiZ and copiX (section 4.3) 

          calculation  of  the fitness value.      

            keep the optimal portfolio. 

           End 

End 

step 4:  calculation  of  the  candidates  fitness     

value, and   the  probabilities  .section  (3.1.1) 

step 5:   choose the new portfolio with  

the  algorithm (roulette wheel selection). 

 

 

4.3   The Constrained of the Problem 

           For every cat are associated a proportion X and    

 a decision Z the first step is to verify that: 

-The number of assets held must be exactly equal toK. 

 -The sum of the elements of  X  is equal to 1. 

- 
� � �� � �� for each asset i selected 

 In order to verify those constrained we use a function 

of arrangement as follows [4,9]: 

Z: the set of the  assets indexes after a movement in 

tracing or seeking mode 

kr : the dimension  of  Z. 

First case: we suppose that (Kr < K) we generate a 

random number between [0,1] if it is less than 0.5  

randomly choose an element not belonging to Z and 
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we added it otherwise If the number is greater than 0.5 

we choose the index of the maximum value of  C 

(defined below) not belonging  to Z  and we add it 

Second case: if (Kr > K) ,if the random number is less 

than 0.5 we randomly select an element in Z to 

remove it, otherwise we take the index of the 

minimum value of C belonging to Z and we delete it  

we must to return in the initial velocity and velocity 

decision in this case.  Finally we have   (Kr = K). 

 

We consider: θ�=1+(1- λ)	μ�      ,  i=1,…….N 

ρ�=1+ λ(∑ c�dedfg
h ) , i=1,…….N 

Ω=-1*min(0,	θ�,…….,	θh) 

Ψ=-1*min(0,	ρ�,…….,	ρh). 

C�=j�Gkl�Gm                , i=1,……..N 

 

Algorithm2: Function Of  Arrangement[4]   

If (( ∑ s��∈o ≤1) And  (∑ e��∈o ≥1))  

B:the sum of the assets i such as i ЄZ. 

C:the sum of  s� such as i ЄZ. 

D=1-C w�	=s�+((�X∗D)/B)   for each  i Є Z// proportion 

satisfying  the limit  s� and the sum of the elements  

equal to 1. w�=0 otherwise. 

 

      E=Ø, the set  of assets i such as ( w� >e�) 
Repeat If  they exist an  assets i for each  i Є(Z-E) 

such as ( w�>e� ) E : E U {i} 

G=∑ x��∈(o�q) . 

H=1-(∑ s��∈(o�q) +∑ e��∈q ). 

rX =s�+((x� ∗ H)/G) . for  each  i Є (Z-E)  rX=e� .  for each  i Є E 

End 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm3: CSO Adapted To The Problem Of    

       Portfolio 

Begin 

λ =0 ; 

N,K; 

Initialisation of the parameters (mode tracing) r�=rand(1) ; c�=2.05 ; 

Initialisation of  the parameters (mode seeking) 

SMP,SPC,SR,MR,CDC,P,	N/= MR*P,	N.= P-N/; 
 

While (λ ≤1 ) 

initialisation of the particles mode 

       For  p=1…….P 

       Initialisation of the particles 

       proportion and decision   ; 

       Arrange(p) ;  

      End 
Calculation of  the values  f(p) ; 

keeping the proportion of  the particle  b associated 

to the minimal value   Ru 
For c=1 To 279 

     For i=1 To P          //P=111 

           If  i is initialised in seeking mode do 

           seeking mode movement 

           keep the best solution 

           Else  

            tracing mode movement 

           keep the best solution 

           End 

     End 

reinitialisation of the particles mode 

End 

λ = λ+0.02; 

End 

End 

 
 

        Table 1: CSO Parameter[1] 

 

 

SMP 

 

 

SRD 

 

 

CDC 

 

 

MR 

 

 

c1 

 

 

r 

 

 

w 

 

 

5 

 

0.2 

 

0.8 

 

0.3 

 

2.05 

 

[0,1] 

 

0.729 
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5. RESULTS OBTAINED 

Table 2: CSO  Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

					Figure 1: Comparison of  CSO And the   	
     Unconstrained  curves for  The  Hang Seng   

     Index  

 

 
                Figure 2: Comparison of  CSO And the    

          Unconstrained curves for The  Dax 100                

          Index 
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Seng 

 

            

           

31 

Mean 

euclidian distance 

0.000212 

Variance of 

return error 

6.4806 

Mean return 

error 

1.5745 

Time (s) 52 

 

 

 

DAX 

100 

 

 

          

85 

Mean 

Euclidian 

Distance 

0.000397 

Variance of 

Return Error 

31.2654 

Mean Return 

Error 

1.7438 

Time (s)      92 

 

 

 

FTSE 

100 

 

 

         

89 

Mean 

Euclidian 

Distance 

0.000082 

Variance of 

Return Error 

7.8 

Mean Return 

Error 

0.5486 

Time (s)    374 

 

 

 

S&P 

100 

 

 

         

98 

Mean 

Euclidian 

Distance 

0.000209 

Variance of 

Return Error 

7.8830 

Mean Return 

Error 

2.3609 

Time (s) 210 

 

 

   

 Nikkei 

 

         

 

225 

Mean 

Euclidian 

Distance 

0.0000497 

Variance of 

Return Error 

3.1372 

Mean Return 

Error 

1.0390 

Time (s) 539 
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    Figure 3: Comparison of  CSO And The    

   Unconstrained  curves  For   The  FTSE  

   Index  

 

 

 

 

 
            Figure 4: Comparaison of  CSO And The    

            Unconstrained  curves  For  The  S&P 100            

            Index 

 

 

 

 

 

 

                  Figure 5: Comparison of  CSO And The    

            Unconstrained curves For the Nikkei Index 

 

 

The graphs represent the curves of the  optimal 

portfolios; the points below  the curves are less 

efficient .The results of  this study are obtained by the 

application of  the CSO method   on   the CCEF and 

they are compared to the UEF; generally we obtain 

very approximate curve to the unconstrained model. 

For  low  risks, we  have obtained  returns very 

approximate  to those  with the unconstrained  model 

but when  risks reach a certain value , the return 

increase systematically though a bit lower  than  that 

obtained with  the unconstrained model.    

6. CONCLUSION 

In this paper we have studied the problem of 

portfolio selection by tracing out the efficient frontier 

of  CCEF problem  applying the method  CSO . The 

obtained results were compared with those of  the 

UEF problem; these results   illustrate an optimal 

strategy for  investing, carefully  using five  indexes , 

of  the stock exchange.  In order to develop this work, 

we can apply a new metaheuristic to this problem  to 

have  better results. 
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