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ABSTRACT 

 

This paper presents a new strategy to improve the performances of speed control of a Double-Fed Induction 

Machine (DFIM), whose stator and rotor windings are connected to a voltage inverter PWM (Pulse Width 

Modulation) independently. This work shows the robustness of the adaptive Backstepping control strategy 

applied to the DFIM. The main objective of this work is to stabilize the speed of the machine to be used in the 

Aeolians systems. The overall stability of the system is shown through using Lyapunov technique. 

Therefore, this paper presents the study and analysis of the Backstepping control. Finally, the simulation 

results of the Backstepping technique are valid on Matlab / Simulink, followed by a detailed analysis and 

clearly show that the proposed system provides good static and dynamic performance. 

 

Keywords: Double-fed Induction machine (DFIM); Backstepping control non-adaptive; PWM; 

Robustness. 

 

1. INTRODUCTION  

 

In the recent times, in the industrial areas, the 

Current Alternative rotating machines are more 

usable especially double-fed Induction machine 

(DFIM), because of its many advantages over other 

types of rotating electrical machines. Its advantages 

can be summarized as following variable speed, its 

construction is simple, low cost, dependability, 

durability, and especially its maintenance is simple 

and economical. These benefits have made it the 

target of a lot of research, mainly as far as the 

realization of robust controls and its operation with 

or without a speed sensor. Double-Fed Induction 

machine (DFIM), is the nonlinear machine, fed by 

two voltage source the stator and rotor, strongly 

Torqued (the coupling between the electromagnetic 

Torque and flux), they function as multivariate 

machines, hence the complexity and difficulty of 

operation and control. With the evolution and 

development of new technologies of electronics and 

computers, the problems inherent in the control and 

the operation of various applications of variable 

speed DFIM are solved and simplified; it gives 

opportunities for speed control with or without 

mechanical sensors, as well as flux control for the 

characteristics regimes hypo-synchronous and 

hyper-synchronous.  

In this context, for a good and correct operation 

of the variable speed DFIM, the power converter 

(inverter / rectifier) PWM must be inserted to allow 

the design and performance of synchronization 

between DFIM machine and electrical network.  

With the use the development of modern control 

methods, such as the vector control flux oriented, 

DTC and Backstepping nonlinear control can 

control and stabilizes the system.  

In this article, we present the non-adaptive 

Backstepping nonlinear control, as a method of 

recursive control and represents a tool for the 

research of dynamic stability, whose objective is to 

regulate the speed of the machine to the reference 

value regardless of external disturbances, we then 

apply this technique successfully to the DFIM, 

which gives a powerful tool for its control. In this 

technique we have to make sure that its parameters 

are constant and known. The disadvantage of this 

control is the sensitivity to changes in electrical and 

mechanical parameters of temperature, the skin 

effect, the magnetic saturation and the measurement 

errors. For this, in another study we estimate the 

state variables of the machine and make it more 
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stable and powerful to all instant changes DFIM 

machine system. The performance of this control 

will be shown by simulation results and 

performances. First, DFIM modeling system in 

Reference Park (d-q) and presentation of electronic 

power components. Second, the analysis and the 

development of non-adaptive Backstepping control 

nonlinear speed of DFIM are studied.  

Finally, there will be a discussion of 

interpretations of simulation results.  In the below 

sample we provide a definition of general structure 

of an electric engine control, which is shown in 

Fig.1: 

 

Figure 1: General Structure Of The DFIM Motor With The Backstepping Control Of Speed Regulation 

2. MODEL OF DFIM CONTROL SYSTEM 

The study and analysis of DFIM in the reference 

to PARK (d-q) allows us to state the following 

electrical equations: 
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With:   
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The equations of the magnetic flux in relation to 

the electric current are as follows: 
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The electromagnetic Torque of the DFIM is:    

)..( sdrqsqrdem PC ϕϕϕϕ −=          (4)

 

By applying of the fundamental principle of 

dynamics, we find the following Torque: 

Ω+
Ω

+= .. f
dt

d
JCC rem

             (5)

 

With: 

d, q : Indices components direct axis and  

quadrature axis. 

S, R : Indices of the stator and rotor. 

θs , θr : Angle tracking of the stator flux and rotor 

relative to the benchmark. 

ψ : mechanical rotor frequency (rad/s). 

J : Moment of inertia. 

f : Coefficient of viscous friction 
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Id, Iq : two-phase stator currents and rotor in a 

rotating frame.  

Vd, Vq : two-phase stator voltages and rotor in a 

rotating frame. 

φsd,q, φrd,q: stator and rotor resistances and Flux two-

phase in a rotating frame. 

Rs, Rr : stator and rotor resistances. 

Ls, Lr : stator and rotor cyclic coefficient of 

inductance. 

Msr : coefficient of mutual inductance cyclic 

stator / rotor. 

σ : dispersion coefficient. 

P : number of pole pairs of the machine. 

ws, wr : angular speed (pulsation) electrical stator 

and rotor. 

Cr : load Torque. 

Cem : Electromagnetic Torque. 

Ω : Speed of rotation of the machine. 

3. BACKSTEPPING CONTROL DFIM 

NONLINEAR NON-ADAPTIVE  

3.1. Principle of Backstepping control non-

adaptive 

The principle of Backstepping control non-

adaptive is to analyze the stability of the system, 

without solving non-linear differential equations in 

the following form: 
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 With: 

[ ]Txx 21 : is the state vector. 

u: is the control vector. 

x1=0 and x2=0 : is the equilibrium point of the 

system (the origin). 

Lyapunov methods are a very powerful tool for 

testing and finding sufficient stability of dynamical 

system conditions. 

The stability depends only on the variations 

(sign of the derivative), or a function which is 

equivalent, along the trajectory of the system. 

The research of the stability system (6) 

characterized by a state vector [x1  x2]
T
, consists of 

finding a function V(x) of definite sign, In order to 

illustrate the recursive procedure of backstepping 

method, considering that the output of the system  

follows the reference signal. The system (6) is of 

order 2 , the implementation is done in two stages. 

3.1.2. Step 1: 

We define the tracking error e1 such as: 

111 xxe d −=           (7) 

With x1d: Output a desired trajectory. 

Its derivative (7) is: 

21111 )( xxfxxxe dd −−=−= &&&&      (8) 

For such a system (6), we first construct the first 

Lyapunov function V1 as a quadratic form: 

2
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1
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The derivative of the function is written: 
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To ensure the stability of the system (6), we 

search to ensure the negativity of the Lyapunov 

function V1 (9), from which the error convergence 

to 0 (7). For this we define a positive constant K1 

such that:  
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With K1> 0 is a constant design. 

In order to ensure the stability of the system (11), a 

virtual control is defined as follows: 

)( 11112 xfxeKx dk −+= &             (12) 

With x2k is the error value of x2. 

The derivative is: 
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&&&&& −+=             (13) 

This implies: 

0
2

111 ≤−= eKV&              (14) 

3.1.3. Step 2: 

Now the new desired reference variable will be 

the previous virtual control, it is a new regulation 

error e2 defined by the following equation: 

111
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Its derivative is: 

21111221 )( xxfxeKxxe dk
&&&&&&&& −−+=−=      (16)   

With: 

2xu &=  

So: 

uxfxeKe d −−+= )( 11112
&&&&&         (17)   

To take account of this error (15), the Lyapunov 

function V2 is in the form: 
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Its derivative is: 
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To ensure the negativity of the Lyapunov 

function (18), it is necessary that the expression in 

brackets (19) be equal to K2e2 with K2>0, in this 

case the command u is: 
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With K2> 0 is a constant design. 

This ensures that the negative of the derivative 

of the Lyapunov function scope: 

0
2
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2

112 ≤−−= eKeKV&        (21)  

The equation (18) is a Lyapunov function in the 

system (6), which proves the asymptotic stability to 

the origin. 

The overall advantage of the Backstepping 

control is its flexibility, by a correct choice of the 

gains K1 and K2, the equation (19) gives a 

convergence error to zero and consequently the 

output of the system follows its reference. 

In this part, the main idea of the Backstepping 

control is demonstrated by its application to the 

Double-fed Induction Machine consists in 

establishing a control law of the machine via a 

Lyapunov function selected. It has the advantage of 

being robust towards the parametric variations of 

the machine and a good continuation of the 

references. The association of Backstepping control 

and orientation of rotor flux gives the control of the 

machine, the good qualities of interesting 

robustness and consolidates the overall stability of 

the system. 

The primary purpose of non-adaptive 

backstepping control is to regulate the speed of 

DFIM to its reference value Ωref irrespective of 

external disturbances. We suppose in this study that 

machine parameters are constant and known. 

The general structure of the non-adaptive 

Backstepping control non-linear of the Double-fed 

Induction Machine (DFIM) in rotor flux oriented is 

detailed in the following sample: 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: General structure of the non-adaptive Backstepping control the DFIM 
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3.1 Backstepping control applied to DFIM 

 From the electrical equations (2) of the Doubly 

Fed Induction Machine, we can write the following 

expressions: 
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(22)  

With: 

The flux φrd, φrq, φsd and φsq are the 

instantaneous Torque control. 

It is obvious that the dynamic model (22) is 

highly non-linear due to the coupling between the 

velocity and magnetic flux. 

For the study of stability, the system is 

characterized by: 

[ ] [ ]TsqsdrqrdX Ω= ϕϕϕϕ : is the state vector 

(the flux and speed are measurable). 

[ ] [ ]Tsqsdrqrd VVVVU =  : is the control 

variable (voltage stator and rotor). 

To find a Lyapunov function two steps are 

needed one for the control of speed and the other 

for the control of the Flux. 

3.2 Backstepping Controller speed. 

The first step of the Backstepping control is 

defined Lag error of the state variable by the 

following calculation: 
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With the application the principles of rotor flux 

orientation: 
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( )
J

C

J

f

MJ

P
e r

sqrdref +Ω+






 −
−Ω=Ω ϕϕ

σ
σ

.
..

)1(
&&  (28)  

Subsequently we define the Lyapunov function of 

the form: 
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Its derivative gives: 

( ) ).
..

)1(
(

1

J

C

J

f

MJ

P
e

eeV

r
sqrdref +Ω+







 −
−Ω=

=

Ω

ΩΩ

ϕϕ
σ
σ

&

&&

  (30)  

Using the Backstepping design method, to 

ensure the stability of the sub system, for this we 

need to make equation (29) more negative, we 

consider the flux φrd, φsq as virtual inputs of our 

system (22) and define the following equations: 
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With KΩ this is a positive constant. 

We substitute equation (30) in the derivative of the 

Lyapunov function equation V1 (29) and assuming 

that Ωref is constant we have the negativity of the 

function as: 

0
2

1 ≤−= ΩΩeKV&         (32)  

Hence the asymptotic stability of the origin of 

the equation system (22) 

3.3 Backstepping Controller flux 

The objective of the section is the elimination of 

the flux regulators by calculation of the control 

voltages and for this we define the following errors: 
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The results of the derivative of equation (32) are 
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The laws of real machine control are Vsd, Vsq, 

Vrd and Vrq appear in equation (33), then to analyze 

the stability of this system, we define a new 

Lyapunov final function V2 is given by the 

following form: 
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The result of the derivative of equation (34) is: 
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(36)  

With K1, K2, K3 and K4 are positive constants. 

Extracted from equation (35) expressions the 

controls voltages Vsd, Vsq, Vrq and Vrd as following: 
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(37)  

This equation (36) implies the negativity of the 

following Lyapunov function V2: 

0443322112 ≤−−−−−= ΩΩ eKeKeKeKeKV      (38)  

4. SIMULATION AND TEST PERFORMANCE & DISCUSSION 
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Figure 3: Simulation scheme of the non-adaptive Backstepping Control on Matlab & Simulink environment 

To verify the performance and the asymptotic 

stability of the non-adaptive Backstepping control, 

The DFIM is object to the tests of robustness for 

varying conditions of functioning at a nominal 

charge, rated speed, variation in speed, machine 

parameters and load change. We implemented the 

system in Matlab / Simulink environment according 

to the scheme following principle (Fig.3). 

The values of the gains of the non-adaptive 

Backstepping control are selected after several tests 

adjustment (KΩ=550; K1=700; K2=500; K3= 800; 

K4= 900). The different results of simulation tests 

obtained are subsequently exposed. 

4.1 Followed of the trajectory with constant 

speed 

The study makes for a constant speed 

Ωref=150rad/s to 0s, φrd_ref=10wb and Cr = 0N.m. 

the following figures (4, 5, 6) show the 

performance of the control input and output 

linearization. 
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(b) 

Figure 4: (a) Speed of Rotation; (b) Speed error. 
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(b) 

Figure 5: (a) Stator Current; (b) Stator Voltage 
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(b) 

Figure 6: (a) Torque; (b) Direct and quadratic Flux 

The results obtained by the application of non-

adaptive Backstepping control of the DFIM show 

excellent performance and good pursuit speed to its 

reference. 

The good decoupling between the flux and 

Torque is maintained, the flux is similar to the 

nominal case. Voltages and currents present 

variations according to regime change, the static 

error rapidly converging to zero for this study 

profile. 
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4.2 Followed by the trajectory with variable 

speed and a change of rotation direction  

In figures (7, 8, 9) following, the Flux is 

constant (φrd_ref=10wb) and null load Torque 

(Cr=0N.m), the DFIM accelerated to the nominal 

speed (150rad/s), Then, the machine decelerates 

and the direction of rotation is reversed (-150rad/s), 

after a moment the machine is accelerated again but 

at a low speed (50 rad/s). 
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(b) 

Figure 7:  (a) Speed of Rotation; (b) Spped error. 
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Figure 8: (a) Stator Current; (b) Stator Voltage 
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(b) 

Figure 9:  (a) Torque; (b) Direct and quadratic Flux 

In this part of the profit studies are perfect, the 

modules of voltages and currents are constant, 

observed speed almost perfectly follows its 

reference. 

The flux and Torque are constant modules, 

decoupling between the flux and the Torque is quite 

good. 

4.3 Followed by the trajectory with a variation 

of the nominal load 

In the same preceding conditions, the machine 

runs to a nominal variable speed, initially without 

load, at time t = 0.7s is applied to the machine a 

nominal load Cr=20N.m, then the Torque load 

demined to Cr=5N.m at time t = 1.5s. 
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(a) 

 

 
 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 10:  (a) Speed of Rotation; (b) Spped error. 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a)  
 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
Figure 11: (a) Stator Current; (b) Stator Voltage 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 12: (a) Torque; (b) Direct and quadratic Flux 

The simulation results show a good function of 

the machine in spite of the variation of the load, the 

voltage and the stator current experience an 

increase proportionally to that of the machine load, 

the speed and the Torque have a good track their set 

point, the decoupling of Torque and flux is always 

achieved.  

We also note that the orientation of the rotor 

flux is perfectly realized and verified. This shows 

the perfect adaptation of the Backstepping control 

to the orientation of the rotor flux. In order to test 

the robustness of the controller, the electrical and 

the mechanical parameters are varied in the non-

adaptive controller.  

Indeed, the values of the resistor, the inductance 

changes are some percentages of the nominal value. 

5. CONCLUSION 

The aim of this work is devoted to modeling, 

development and simulation of non- adaptive 

Backstepping control for double-fed Induction 

Machine, connected directly to voltage converter 

PWM. 

In the following, we highlight the improvement 

made by the non-adaptive Backstepping control on 

the dynamic performance of DFIM. 

The originality of our work is to combine the 

simulation experiments of different control 

algorithms to define a control structure realizing the 

best value simplicity and performance. 

Finally, we believe that the proposed solutions 

will improve the tracking performance of the 

trajectory and disturbance rejection load Torque 
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and parameter variations and also enhance stability 

through the robust look of the non-adaptive 

Backstepping control. The disadvantage of this 

control is that it is unable to eliminate the non-zero 

errors. 

ANNEXE 

Table 1: DFIM parameters used in simulation 

Stator resistance Rs=1.2 mΩ 

Rotor resistance Rr=1.8 mΩ 

Stator inductance Ls = 0.1554 mH 

Rotor inductance Lr = 0.1554 mH 

mutual inductance M=0.15 

Inertia moment J=0.07 Kg.m2 

Coefficient of viscous 

friction 

f=0.001 

Number of pairs of poles P=2 
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